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Abstract

The multi-parent scanning crossover, generalizing the traditional uniform crossover,

and diagonal crossover, generalizing 1-point (n-point) crossovers, were introduced in

[5]. In subsequent publications, see [6, 18, 19], several aspects of multi-parent re-

combination are discussed. Due to space limitations, however, a full overview of

experimental results showing the performance of multi-parent GAs on numerical op-

timization problems has never been published. This technical report is meant to �ll

this gap and make results available.
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1 Introduction

As it was stated in earlier publications, [5, 6, 18, 19], the use of multi-parent crossovers

can improve GA performance signi�cantly on numerical optimization problems. The main

goal of this report is to present the performance curves that provide empirical evidence on

the advantages of multi-parent reproduction mechanisms. In particular, in this report we:

1. Give the de�nitions of the multi-parent recombination operators scanning crossover

and diagonal crossover.

2. Present a test suite consisting of 8 di�cult numerical optimization problems.

3. Discuss three performance measures:

� success rate (the percentage of cases when an optimum is found),

� e�ectivity (the best function value found by the GA),

� e�ciency (the number of evaluations before termination).

4. Present the results concerning both multi-parent mechanisms on each function ac-

cording to each performance measure. As for the diagonal crossover we also make a

comparison with the (2-parent) n-point crossover to show that the performance gain

is not simply the result of using more crossover points.

5. Draw some conclusions and sketch our ongoing and further research.

2 Diagonal crossover

Traditional crossover creates two children from two parents by splicing the parents along

the single crossover point and exchanging the 'tails'. The basic idea behind diagonal

crossover is to generalize this mechanism to an n-ary (n � 1)-point crossover. Diagonal

crossover selects (n � 1) crossover points resulting in n chromosome segments in each of

the n parents and composes n children by taking the pieces from the parents 'along the

diagonals'. Figure 1 illustrates this idea.

Notice that for n = 2 diagonal crossover coincides with the traditional 1-point crossover.

Obviously, n� 1 crossover points specify n chromosome segments per parent, which allows

the creation of n

n

di�erent children from n parents (n of which will equal the parents).

By constructing children along the diagonal lines only we keep the number of o�spring

at 'reasonable level', in the meanwhile each child contains a segment of each parent, thus

we obtain a high level of mixing genes. There are two reasons to expect that the use of

more parents in diagonal crossover leads to improved GA performance: a high level of

disruption and a large sample of the search space used when creating o�spring. As for the

�rst aspect, by using more crossover points the operator becomes more disruptive, thus

more explorative and less sensitive for premature convergence. Secondly, by the use of

more parents there is more information on the search space and there is more consensus
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Figure 1: Diagonal crossover with three parents

needed to focus the search to a certain region, that is the danger of (too) early commitment

is reduced.

Clearly, traditional 2-parent n-point crossover also has a high level of disruptivity. To

see whether the usage of more parents is really important we decided to perform parallel

tests with n-point crossover and monitor GA performance for di�erent n's.

3 Scanning crossover

The idea behind scanning crossover is to take n parents and to create one child by 'scanning'

the parents' genes deciding at each gene which parent can deliver its allele to the child.

The pseudo-code for scanning crossover is the following.

INITIALIZE MARKERS

(% mark the 1st gene in each parent, open/mark position 1 in the child)

FOR child:marker = 1 TO chrom:length

CHOOSE one marked gene from the parents and include it in the child

UPDATE markers

END FOR

Obviously, traditional uniform crossover works by the same mechanism, always making

a random choice. In scanning crossover the choice mechanism is not de�ned in general.

It can be a uniform random choice (uniform scanning), it can choose the value with the

most occurrences in the parents (occurrence based scanning), or make a random, �tness

proportional choice giving the highest chance to the �ttest parent (�tness based scanning).

In the tests reported here we always use uniform scanning.
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Let us note that for simple bitstrings UPDATE is x := x+ 1, i.e. we shift the markers

one position to the right. With an easy modi�cation scanning can be adapted for for

order-based chromosomes. We only need to scan the genes of the n > 1 parents in such a

way that no value is put in the child twice: UPDATE-ing is not x := x+ 1, but

x := minfyjy � x; gene(y) is not included in the child g.

It is easy to see that this scanning mechanism preserves the property of 'being a per-

mutation'.

Parent 1: 1111010111000110

Parent 2: 1100010101000010

Parent 3: 0011101010101011

Parent 4: 0101010101100100

Child : 1111010111000010

Figure 2: Occurence based scanning crossover on bit patterns

4 Test functions

We have decided to perform experiments on numerical function optimization problems. We

have chosen the DeJong functions F1, F2, F3, the Ackley, the Griewangk, the Michalewicz,

the Rastigin and the Schwefel functions as test suite, [10, 13, 14, 20]. For the sake of

completeness we present the function de�nitions we used.

The DeJong function F1 (also called the spherical function) is de�ned as:

f(~x) =

3

X

i=1

x

2

i

;

where �5:12 � x

i

� 5:12.

The DeJong function F2 (also called the Rosenbrock function) is de�ned as:

f(~x) = 100 � (x

2

1

� x

2

)

2

+ (1� x

1

)

2

;

where �2:048 � x

i

� 2:048. The global minimum is zero at the point (1; 1). The Rosen-

brock function is characterized by an extremely deep valley along the parabola x

2

1

= x

2

.

The plots of these functions are given in Figure 3.

The DeJong function F3 is de�ned as:

f(~x) =

5

X

i=1

integer(x

i

)
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Figure 3: Plots of the spherical function (F1) and Rosenbrock's saddle (F2)

Where �5:12 � x

i

� 5:12.

The Michalewicz function is a highly multimodal function to be maximized. It is de�ned

as:

f(~x) = 21:5 + x

1

� sin(4�x

1

) + x

2

� sin(20�x

2

);

where �3:0 � x

1

� 12:1 and 4:1 � x

2

� 5:8. The optimum of this function is 38.8503.

The plots of these two functions are given in Figure 4.
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Figure 4: Plots of DeJong's F3 and the Michalewicz function

The Griewangk function is de�ned as:

f(~x) = 1 +

n

X

i=1

x

2

i

4000

�

Y

cos

 

x

i

p

i

!

where n = 10 and �600 � x

i

� 600. The global minimum of zero is at the point ~x =

(0; 0; 0; � � �). This function has a product term introducing an interdependency between the
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Figure 5: Plots of the Griewangk function for n=1 and n=2

variables. This is intended to disrupt optimization techniques that work on one function

variable at a time. The plots is given in Figure 5.

The Rastrigin function is:

f(~x) = �n +

n

X

i=1

x

2

i

� � cos(2�x

i

)

where �5:12 � x

i

� 5:12. In our tests we used the value of � = 10:0 and n = 20. The

global minimum of zero is at the point ~x = (0; 0; � � �). The primary characteristic of this

function is the existence of many suboptimal peaks whose values increase as the distance

from the global optimum point increases. The plot is given in Figure 6.
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Figure 6: Plots of the Rastrigin function for n=1 and n=2

The Schwefel function is de�ned as:

f(~x) = 418:9829n�

n

X

i=1

x

i

sin

�

q

jx

i

j

�
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where �512:03 � x

i

� 511:97. In our tests we used the value n = 10. The global minimum

of zero is at the point ~x = (420:9687; 420:9687; � � �). The interesting characteristic of this

function is the presence of a second-best minimum far away from the global minimum.

The plot is given in Figure 7.
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Figure 7: Plots of the Schwefel function for n=1 and n=2

The Ackley function is de�ned as:

f(~x) = 20 + e� 20 exp

0

@

�0:2

v

u

u

t

1

n

n

X

i=1

x

2

i

1

A

� exp

 

1

n

n

X

i=1

cos(2�x

i

)

!

where n = 30 and �30 � x

i

� 30. The global minimum of zero is at the point ~x =

(0; 0; 0; � � �). At a low resolution the landscape of this function is unimodal; however, the

second exponential term covers the landscape with many small peaks and valleys.

The plot is given in Figure 8.
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Figure 8: Plots of the Ackley function for n=1 and n=2

For each function we applied binary representation. The most important properties of

the test functions and their representation are summarized in Table 1.
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F1 F2 F3 ACKL GRIE MICH RAST SCHE

dimension 3 2 5 30 10 2 20 10

chrom. length 30 22 50 600 200 33 400 210

global opt. 0 0 0 0 0 38.8503 0 0

Table 1: Properties of the test functions

5 GA setup

We compared the performance of di�erent number of parents ranging from 2 to 15. Recall

that for n = 2 diagonal crossover coincides with the usual 1-point crossover, thus we

immediately obtained a comparison with a traditional GA as well. As discussed in Section

2, we compared diagonal crossover to 2-parent n-point crossover, in order to distinguish

the e�ects of having more crossover points and those of using more parents.

In all of the experiments we used a modi�ed version of the package LibGA [3] with the

GA-setup exhibited in Table 2.

representation �xed point binary

w/o Gray coding

GA type steady state

selection ranked bias

mechanism bias = 1.2

reduction worst �tness

mechanism deletion

nr. of parents 2-15

xover rate 0.7

mut. rate 1/chrom. length

pool size 200

max. nr. of 70.000

evaluations

alternative optimum hit

termination or

condition population converged

results

averaged 100 runs

over

Table 2: GA setup used in the experiments
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6 Performance measures

When monitoring the performance we maintained di�erent measures, namely

� success rate, that is the percentage of cases when an optimum was found;

� e�ectivity, i.e. quality of the solutions, measured by the best function value at

termination, averaged over all runs;

� e�ciency, i.e. speed, measured by the total number of function evaluations before

termination, averaged over all runs.

Notice that success rate and e�ectivity are closely related, however, not the same. On

the one hand, e�ectivity results are averaged over all runs. Hence, even with a high success

rate, a few unlucky runs can corrupt the averages that measure e�ectivity. On the other

hand, we work with a certain computational limit, the total number of �tness evaluations.

This limit might be just too low to hit the optimum, but enough to approximate it closely.

In other words, it can happen that success rates are low, but the average �tness values

at the end of the evolution are close to the optimum. Therefore, the �gures on e�ectivity

provide extra information w.r.t. success rates. They demonstrate the robustness of the

GA, that is they show how certain is the GA in approximating good solutions.

Note that using more parents can imply a higher number of function evaluations before

termination. This, however, is not necessarily a negative e�ect if slower search comes

together with higher success rates. In the meanwhile, hitting an optimum immediately

terminates the search, thus using a more successful operator (more parents) can even

reduce run times, thus yielding a double pro�t.

In the Appendices we display each performance measure for each test function and each

number of parents.

7 Experimental results: diagonal crossover

We compare di�erent number of parents in diagonal crossover, furthermore we compare

diagonal crossover with n-point traditional crossover. Note that for n-point crossover the

number of parents is always 2, for this operator the horizontal axis in the �gures shows the

number of chromosome segments (that equals the number of crossover points plus 1).

7.1 Success rate

Results on F1 and F3 were not too interesting: both diagonal crossover and n-point

crossover found an optimum in 100 % of the cases for every n. The maximum number

of �tness evaluations was obviously too high for these functions. This aspect will be fur-

ther discussed in the section on e�ciency. On the other test functions we observed that

the success rates were increasing as n increased, for diagonal as well as n-point crossover.

However, diagonal crossover steadily outperformed n-point crossover, see Figure 9, 10 and

11 in Appendix A.
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7.2 E�ectivity

The good success rate curves in the previous section make us expect that the graphs of the

best function values show the same behaviour: improving if n is increased. On F1 and F3

the results were again 'boring', both operators reached the optimum in each run, resulting

in a constant e�ectivity curve. Our observations on the other functions are summarized in

Appendix B, in Figures 12, 13 and 14. The �gures show a clear advantage of more parents

on three functions and a somewhat zigzagging, but improving performance curve on the

other ones.

7.3 E�ciency

As for e�ciency we did not have a priori expectations on the behaviour of the GA. The

details of the test results are given in Appendix C, in Figures 15, 16, 17 and 18. As the

results show, on four out of the eight functions the total number of evaluations roughly

decreases with increasing n. Thus, here we have a double advantage of more parents:

the search becomes better (see success rates) and also faster. On the Michalewicz, the

Rastrigin and the Schwefel functions this is not the case. Recall that the DeJong's F1 and

F3 wre not depicted w.r.t. the other performance measure. The reason is that they were

easy, success rates were 100%, hence the e�ectivity curves were also constant, suggesting

that no advantage is gained by using more parents. The curves on e�ciency, however,

clearly show that more parents are better here too: the search is accelerated.

8 Experimental results: scanning crossover

In Appendices D - F we display each performance measure for each test function and

each number of parents for the scanning crossover. For comparison between scanning and

diagonal crossover we include the results for diagonal crossover in the �gures. Note that

the number of parents in the tests for scanning crossover was 1-10.

8.1 Success rate

For the scanning crossover we also observed that the success rates were increasing as n

increased, see Figures 19, 20 and 21. However, the correlation between n and the success

rates was less monotonous than for diagonal crossover. Nevertheless, as the plots show,

the optimal number of parents was higher than 2, with the Schwefel function as the only

exception. The clearest advantage of high n's can be seen on the Griewangk function.

8.2 E�ectivity

Our observations are summarized in Figures 22, 23 and 24 in Appendix E. Looking at

the e�ectivity curve belonging to the Schwefel function we can see the advantage of more

parents that would have remained invisible if we had considered success rates only.

12



8.3 E�ciency

The Figures 25, 26 and 27 in Appendix F exhibit the e�ciency curves. On the Griewangk,

Ackley and Rastrigin functions we can observe an accelerated search. This, together with

the success rate results indicates a double pro�t as discussed in Section 7.3.

9 Conclusions and future work

From a strict optimization point of view the success rate is the most interesting performance

measure. It is also the basis of calculating the expected amount of processing needed to

solve a problem with a given probability, cf. [12] chapter 8. Table 3 shows the optimal

versions of the genetic operators and the corresponding success rates for each test function.

Within brackets we displayed the success rate of the 2-parent versions.

test Scanning Xover Diagonal Xover N-point Xover

function #par succ. #par succ. #Xover points succ.

F2 7 .91 (.73) 11 .88 (.38) 11 .84

Mic 10 .72 (.57) 15 .76 (.34) 15 .6

Schw 2 .015 (.015) 15 .24 (.00) 10 .1

Grie 10 .48 (.22) 14 .32 (.04) 10 .15

Ras 5 .10 (.00) 13 .28 (.00) 15 .06

Ackl 8 .90 (.84) 15 .89 (.00) 10 .24

Table 3: Optimal nr. of parents and corresponding success rates (within brackets the

results for 2 parents)

It appears immediately that the optimal number of parents is always higher than 2

with one exception, the Schwefel function. (But, as discussed in Section 8.2, even on

this function more parents have a clear advantage in terms of better approximation of

the optimum, see Figure 24.) The gains achieved by using more than two parents are

substantial, especially for the diagonal crossover. The �gures within brackets show an

interesting phenomenon. Namely, on all tests functions the standard uniform crossover

performs much better than 1-point crossover (diagonal crossover for two parents). Looking

at the results of diagonal crossover and n-point (2 parent) crossover we can see that the

better performance of diagonal crossover is not only the consequence of applying more

crossover points, but the higher number of parents contributes considerably.

In the last ten years Evolutionary Computation has grown to a large and diverse �eld

covering Genetic Algorithms [4, 10, 13], Evolution Strategies [1, 15], Evolutionary Pro-

gramming [9] and Genetic Programming [12].

Parallel to, and partly caused by, the increasing variety of Evolutionary Algorithms

(EAs) the usefulness of sexual recombination in GAs has been questioned. For instance,

13



Eshelman and Scha�er [8] look for 'crossover's niche', i.e. problems where pair-wise mat-

ing has competitive advantages. They do �nd such problems, in the meanwhile suspect

that sexual recombination in GAs might be less powerful than generally believed. Hordijk

and Manderick [11] investigate the usefulness of recombination on (epistatic) NK land-

scapes. Evolutionary Programming uses unary operators only. Evolution Strategies are

traditionally based on mutation as main search operator [2], but use recombination too.

Interestingly, the so-called global recombination in ES allows that a child receives its genes

from more than two parents. However, for each bit in the child only two parents are con-

sidered, the increased parent number comes by randomly choosing two new parents for

each bit. In the comparisons reported in [2] ES and EP exhibit better performance than

GAs.

One possible way to improve GA performance is to incorporate new features in the

GA, i.e. features that do not belong to the traditional GAs paradigm. Some recent

attempts that were successful use Lamarckian/Baldwinian e�ects, or a problem decom-

position, [14, 20]. By applying multi-parent recombination operators we follow another

approach. We do remain in the original GA paradigm and boost GA performance by

raising the extent of sexuality by allowing 'orgies', i.e. multi-parent reproduction. The

results on our test suite consisting of di�cult functions showed that this approach is very

fruitful on function optimization. Note, however, that our goal was not to make GAs su-

perior function optimizers. For optimizing (continuous) functions Evolution Strategies or

other evolutionary techniques using hill-climbing or local optimization might be a better

alternative.

Our ongoing and future research goes in two directions. On the one hand more research

is needed to understand this new phenomenon of multi-parent reproduction. Theoretical

analysis of schema survival and schema combination rates, [16], can illuminate the success

of using n > 2 parents. Looking at positional and distributional bias, [7], in diagonal,

respectively scanning crossover can explain their di�erences and determine their right do-

main of application. Experiments on carefully designed test functions, such as Royal Road,

deceptive functions, NK landscapes can help to determine 'multi-parent's niche', i.e. to

identify those problems where multi-parent operators have advantage over classical ones.

An interesting sub-issue is the question of the optimum number of parents.

Current research is directed to enhancement of the multi-parent recombination oper-

ators, in order reduce the random noise and get a more reliable behavior. On the other

hand, our experiments put the issues of disruptivity and selection pressure in the focus, and

especially the interaction between these two. Bit variance and co-variance [17], early com-

mitment behaviour [8], the right balance between exploration and exploitation are heavily

inuenced by these two issues. Multi-parent recombination allows for �ne tuning the dis-

ruption rate. In combination with appropriate selection pressure this can be a powerful

tool in designing high performance GAs.
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10 Appendices

Appendix A: Success rates of diagonal crossover
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Figure 9: Diagonal crossover: success rates on F2 and the Griewangk function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

R
at

e 
of

 s
uc

ce
ss

Number of parents (chrom. segments) (Ackley)

diagonal
n-point

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 4 6 8 10 12 14 16

R
at

e 
of

 s
uc

ce
ss

Number of parents (chrom. segments) (Mic)

diagonal
n-point

Figure 10: Diagonal crossover: success rates on the Ackley and the Michalewicz functions
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Figure 11: Diagonal crossover: success rates on the Schwefel and the Rastrigin functions
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Appendix B: E�ectivity of diagonal crossover
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Figure 12: Diagonal crossover: e�ectivity on F2 and the Griewangk function
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Figure 13: Diagonal crossover: e�ectivity on the Ackley and the Michalewicz functions

(the latter one is a maximization problem)
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Figure 14: Diagonal crossover: e�ectivity on the Schwefel and the Rastrigin functions
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Appendix C: E�ciency of diagonal crossover
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Figure 15: Diagonal crossover: e�ciency on F1 and F3
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Figure 16: Diagonal crossover: e�ciency on F2 and the Griewangk function
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Figure 17: Diagonal crossover: e�ciency on the Ackley and the Michalewicz functions
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Figure 18: Diagonal crossover: e�ciency on the Schwefel and the Rastrigin functions
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Appendix D: Success rates of scanning crossover
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Figure 19: Scanning crossover: success rates on F2 and the Griewangk function
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Figure 20: Scanning crossover: success rates on the Ackley and the Michalewicz functions
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Figure 21: Scanning crossover: success rates on the Schwefel and the Rastrigin functions
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Appendix E: E�ectivity of scanning crossover
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Figure 22: Scanning crossover: e�ectivity on F2 and the Griewangk function
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Figure 23: Scanning crossover: e�ectivity on the Ackley and the Michalewicz functions

(the latter one is a maximization problem)
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Figure 24: Scanning crossover: e�ectivity on the Schwefel and the Rastrigin functions

21



Appendix F: E�ciency of scanning crossover
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Figure 25: Scanning crossover: e�ciency on F2 and the Griewangk function
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Figure 26: Scanning crossover: e�ciency on the Ackley and the Michalewicz functions
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Figure 27: Scanning crossover: e�ciency on the Schwefel and the Rastrigin functions
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