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Abstract

With the growing complexity of software, incurred by the widespread accep-

tance of parallel and distributed computer systems and networks, program design

would bene�t from clearly separating the correctness issues (the computation) from

e�ciency issues (the coordination). Gamma has shown to be a powerful and ex-

pressive programming model that allows the basic computations of a program to

be expressed with a minimum of control. This enables the programmer to defer

e�ciency related decisions until a second stage in the design process. In support

of this second activity we introduce in this paper a coordination language that

exploits the highly nondeterministic behaviour of Gamma to impose additional

control. Furthermore, we propose a compositional notion of re�nement that can

be used to reason about coordination of Gamma programs. This notion induces

a number of re�nement laws that can be used in an algebraic style of reasoning.

Some examples are presented to illustrate application of these laws.

�

A short version of this report appears as [10].
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1 Introduction

The �rst and foremost requirement of a program is that it yields the correct answer. In

many cases, the second requirement is that the answer is computed as fast as possible,

or at least within reasonable time. With the growing complexity of software, incurred

by the widespread acceptance of parallel and distributed computer systems and net-

works, program design would bene�t from clearly separating the correctness issues (the

computation) from e�ciency issues (the coordination). The signi�cance of treating the

computational part of a program separately from coordination issues is discussed in [13].

An approach based on this separation of concerns consists of the following phases:

1. First, a program is constructed that performs the required computation, but does

not impose premature constraints on the behaviour of the program.

2. Secondly, the computations of the program are coordinated into an e�cient exe-

cution strategy. This is often achieved by exploiting some property of a particular

order of execution.

In order to realize this approach, we need a programming model that supports the

separation between computation and coordination. Existing programming models usu-

ally stress only one of these aspects. For instance, functional and logical programming

languages emphasize their declarative nature and the advantages it has for proving cor-

rectness. In order to improve their e�ciency, functional- and logic-programs have to be

tailored to capitalize on the �xed execution strategies provided by the respective exe-

cution mechanisms. With imperative languages, the programmer has complete control

over the operational behaviour. Here, the control-
ow is an integral part of the program,

which makes it very di�cult to focus on the correctness while abstracting from opera-

tional details.

Programming by multiset transformation, as exempli�ed by Gamma [5] has shown to be

well suited to express the computations of a program without imposing premature con-

straints on the mode of execution. The minimal level of control yields some important

advantages. First, Gamma programs are inherently parallel; in fact, it needs additional

e�ort from the programmer to write sequential programs. Furthermore, the seman-

tics of Gamma can be stated in a very clean and concise way, thus facilitating formal

reasoning about programs. For this reason, Gamma is often put forward as an interme-

diate language in the program derivation process: �rst a Gamma program is speci�ed
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which abstracts from operational details and which is therefore easier to prove correct.

Subsequently, a specialized version of this program can be constructed by introducing

additional control. A method for the derivation of Gamma programs was proposed in [4].

Though in [3] it has been demonstrated that the Gamma model can be implemented,

the absence of control makes it very di�cult to do this e�ciently. Several e�orts aimed

at achieving more e�cient executions of Gamma programs have been proposed.

In [14], Hankin et al. derive a number of re�nement and equivalence laws by considering

the input-output behaviour of Gamma programs induced by an operational semantics.

The theory developed is used to design a method that imposes a \pipelining" execution

order on programs. The main shortcoming of the calculus reported in [14] is that the

laws described are not compositional; i.e. re�ning part of a program does not necessarily

result in a re�nement of the program as a whole. This limits the applicability of the

laws. The following remedies have been put forward:

� In [19] a compositional semantics, based on transition traces, is given for some

combining forms of Gamma programs. A more detailed study of the laws resulting

from this semantics is given in [20].

� Another approach, presented in [11], uses a notion of equivalence based on bisim-

ulation [17] to obtain compositional semantics.

� More general laws are obtained by focussing on a set of higher-level combining

forms for Gamma, called TROPES [15]. The TROPES encapsulate typical forms

of Gamma programs that have emerged from programming experience (e.g. [5]).

These approaches have in common that they try to improve the e�ciency of a program by

modifying the program itself. An alternative approach, that is adopted in this paper, is

based on the idea of separating computation from coordination. The basic computation

that is required to solve the problem at hand, is speci�ed as a Gamma program which

is proven correct. Then we exploit the highly nondeterministic behaviour of Gamma

to improve the e�ciency. This is done by using the coordination language presented in

[9] that enables the programmer to control the otherwise chaotic execution of Gamma

programs to the level of fully deterministic behaviour. The coordination component is

speci�ed separately from the Gamma program allowing more e�cient versions of a pro-
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gram to be constructed while leaving the computational part una�ected.

Using this approach it is essential that the coordination component does not a�ect the

established correctness of the original Gamma program. To meet this requirement, we

present in this paper a method that opens up the opportunity for coordinating Gamma

programs in a provably correct way. The method that we propose uses a transforma-

tional approach: Based on the semantics of schedules and a notion of re�nement we

derive laws that can be used to re�ne schedules while preserving correctness.

The paper is organized as follows. First we successively introduce the Gamma model

and its coordination language. In Section 4.2 we then propose a compositional notion

of re�nement that can be used in reasoning about the coordination component of a

program. In Section 4.4 we derive a number of laws of re�nement that support an

algebraic style of reasoning. We illustrate these laws with some example applications in

Section 5. We conclude the paper in Section 6 with some �nal remarks and directions

for future research.

2 The Gamma Model

We start with a brief introduction to Gamma. For more details the reader is referred to

[5] which includes a broad spectrum of example programs.

The uniform data structure in Gamma is the multiset. Multisets can be formed over

arbitrary domains of values, including integers, reals, booleans and tuples. The sim-

plest Gamma program is a conditional multiset rewrite-rule, written as x ! m ( b.

Here x denotes a sequence of variables x

1

; : : : ; x

n

, m is a multiset expression, and b is

a boolean expression. The free variables that occur in m and b are taken from x

1

; : : : ; x

n

.

Application of the rule x ! m ( b to a multiset proceeds by replacing elements in the

multiset satisfying the condition b by the elements that result from evaluating the mul-

tiset expressionm. This step is repeated until no more elements are present that satisfy b.

For example, a Gamma program for sorting a sequence of numbers into ascending order
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is given by the following rule.

swap b=(x; i); (y; j) ! (y; i); (x; j) ( x > y ^ i < j

The sequence is represented by a multiset consisting of value-index pairs. The program

executes by exchanging ill-ordered values until there are no more pairs that satisfy this

condition. At that point the resulting multiset represents a well-ordered sequence. It

is important to note that the Gamma program does not specify in which order pairs of

values are compared and exchanged. Disjoint pairs can be compared and exchanged in

parallel, but this need not necessarily be the case. The Gamma program can be seen as

the speci�cation of a wide spectrum of more deterministic sorting strategies.

More complex Gamma programs can be built using two basic combinators. Individual

rules can be composed into so-called simple programs [14] using the parallel combinator,

denoted \+". The constituent rules in parallel composition are executed in any order

(possibly in parallel) until none of the rules can be successfully applied. Simple pro-

grams can in turn be composed using the sequential combinator, denoted \ � ". If P

1

and P

2

are simple programs, then P

1

� P

2

�rst executes P

2

until its rules can no longer

be applied, after which P

1

is executed on the resulting multiset.

The abstract syntax of Gamma programs can be speci�ed as follows. We use r, R and

P to range over the syntactic categories of multiset rewrite-rules, simple programs, and

programs respectively.

r ::= x ! m ( b

R ::= r j R +R

P ::= R j P � P

A con�guration of a program P and a multiset M is written hP;Mi. To de�ne the op-

erational semantics of Gamma we use a labelled multi-step transition relation between

con�gurations. A transition is written as hP;Mi

�

; hP

0

;M

0

i where the label � stands

for the multiset substitution that transforms M into M

0

. A terminal con�guration is

written hP;Mi

p

.

The semantics of Gamma is collected in Figure 1. The multi-step transition relation is

de�ned in terms of a single-step transition relation, that we distinguish by the subscript

\1", i.e. hP;Mi

�

�!

1

hP;M

0

i. The various notations that we use in de�ning the semantics
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are best explained by considering the semantic rule for r = x ! m ( b:

if v �M : b[x := v] then hr;Mi

�

�!

1

hr;M [�]i where � = m[x := v]=v

We write b[x := v] to denote the boolean expression that results from replacing each free

occurrence of x

i

by v

i

. By M [�] we denote the multiset that results from applying the

substitution � toM . More formally, letM

0

= m[x := v], then M [M

0

=v] = (M	v)�M

0

,

where � and 	 denote multiset addition and subtraction respectively. Note that for ease

of notation we confuse the sequence v with the multiset consisting of the same elements

as v.

When multiple transitions transform disjoint parts of the multiset, then these transitions

do not interfere with each other, hence they can also happen in parallel. This observation

directly leads to the multi-step transition semantics of Gamma as de�ned in Figure 1.

Formally the notion of non-interference can be de�ned in terms of the labels of the

constituent transitions as follows. (In [7] a more liberal de�nition is given that re
ects

the possibility of concurrent reading of data.)

De�nition 2.1 Given a multiset M and two multiset substitutions �

1

= M

1

=N

1

and

�

2

= M

2

=N

2

, we say that �

1

and �

2

are independent in M if N

1

� N

2

� M . We write

M j= �

1

1�

2

if �

1

and �

2

are independent in M .

The label assigned to a multi-step transition is a combination of the labels of the con-

stituent transitions.

De�nition 2.2 Given two multiset substitutions �

1

= M

1

=N

1

and �

2

= M

2

=N

2

, the

composition of �

1

and �

2

is de�ned as �

1

� �

2

= (M

1

�M

2

)=(N

1

�N

2

).

The semantics of Gamma as presented here di�ers from the one in [14]. The latter uses

a single step transition relation { suggesting an interleaved semantics. As mentioned

before, our coordination language restricts the otherwise nondeterministic behaviour of

Gamma programs, hence it cannot introduce new behaviour. Consequently, the seman-

tics we choose for programs, limits the behaviours we can obtain using a coordination

language. Because we want to distinguish between parallel and sequential execution at

the coordination level, we need this distinction to be present in the semantics of Gamma.
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(C0) hx ! m ( b;Mi

�

�!

1

hx ! m ( b;M [�]i if v �M ^ b[x := v]

where � = m[x := v]=v

(C1) hx ! m ( b;Mi

p

if :(9v �M : b[x := v])

(C2)

hR

1

;Mi

�

�!

1

hR

1

;M

0

i

hR

1

+R

2

;Mi

�

�!

1

hR

1

+R

2

;M

0

i

hR

2

+R

1

;Mi

�

�!

1

hR

2

+R

1

;M

0

i

(C3)

hR;Mi

�

�!

1

hR;M

0

i

hR;Mi

�

;hR;M

0

i

(C4)

hR;Mi

�

1

;hR;M

1

i

hR;Mi

�

2

;hR;M

2

i

hR;Mi

�

1

��

2

; hR;M [�

1

� �

2

]i

if M j= �

1

1�

2

(C5)

hR

1

;Mi

p

hR

2

;Mi

p

hR

1

+R

2

;Mi

p

(C6)

hP

1

;Mi

p

hP

2

;Mi

p

hP

1

� P

2

;Mi

p

(C7)

hP

1

;Mi

p

hP

2

;Mi

�

;hP

0

2

;M

0

i

hP

2

� P

1

;Mi

�

;hP

0

2

;M

0

i

(C8)

hP

1

;Mi

�

;hP

0

1

;M

0

i

hP

2

� P

1

;Mi

�

;hP

2

� P

0

1

;M

0

i

Figure 1: Structured Operational Semantics of Gamma
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3 Coordination of Gamma Programs

Gamma is an expressive and powerful programming model that allows the basic compu-

tations of a program to be expressed in a concise way and with a minimum of control.

This enables the programmer to defer e�ciency related decisions until a second stage in

the design process. In support of this second activity we next introduce a coordination

language that exploits the highly nondeterministic behaviour of Gamma to impose ad-

ditional control with the objective to improve e�ciency.

We refer to the programs that are written in the coordination language as schedules to

emphasize the fact that they are not really programs but rather execution plans or har-

nesses for an existing program. A schedule is an expression representing an imperative

statement over the rules from a Gamma program. The simplest schedule for a program

P (next to skip which denotes the empty schedule) has the form r ! s[t], where r is

a rule from P and s and t denote arbitrary schedules. This schedule is executed by

�rst attempting to execute the rule r, if this succeeds, then execution continues with

the schedule s. If execution of r fails, then execution continues with t. As a notational

convention, we write r ! s[skip] as r ! s and r ! skip as r.

The coordination language provides a number of basic combinators that can be used

to build more complex schedules. The complete set of combinators that is included in

the kernel language is de�ned by the following abstract syntax for schedules. We use

S to denote the set of schedule expressions, ranged over by s; t; u. The set S denotes

the set of schedule identi�ers, ranged over by S; T . A schedule without free schedule

variables is called a ground schedule. The set of ground schedules is denoted S

ground

.

The substitution of schedule(s) t for variables X in a schedule s is written sft=Xg. A

sequence of values is denoted by v. Variables that range over these values are denoted

by x; y. This type of variables are also called control variables.

s ::= skip j r ! s[s] j s; s j s k s j c . s[s] j !s j S(v)

Schedules can be composed sequentially, using the combinator \;" and be composed in

parallel using \ k ". The execution of a parallel composition s k t proceeds by a step

performed by either s or t, or by a parallel step in which both s and t participate. For

notational convenience, we write s

k

, for k � 0, to denote k copies of schedule s composed
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in parallel. Furthermore, we use �

n

i=1

s

i

to denote s

1

k s

2

k : : : k s

n

.

Execution of a Gamma program is such that the number of rules that may be executed

varies dynamically with the number of available elements in the multiset. In order to

describe this dynamic behaviour using schedules, the replication operator \!" is included.

The schedule !s denotes an arbitrary number of copies of s executing in parallel.

The occurrence of a schedule identi�er S(v) is accompanied by a corresponding schedule

de�nition of the form S(x) b= s. The free variables in s are taken from the sequence x.

Schedule de�nitions are included for structuring purposes, as well as a means to express

recursive schedules. The use of recursion is typically accompanied by the use of a con-

ditional schedule c . s[t]. Here, c represents a boolean expression; if c evaluates to true,

then schedule s is executed, otherwise execution continues with t. Analogously to the

rule-conditional, c . s[skip] is written as c . s.

Nondeterminism in Gamma arises at two levels:

1. at the selection of a rewrite-rule,

2. in selecting elements from the multiset.

The coordination language as introduced so far is only capable of resolving the �rst

type of nondeterminism. The second type is resolved by strengthening the condition of

a rewrite-rule. Consider a rule r = x ! m ( b. Rather than scheduling r directly, we

can schedule a rule r

0

= x ! m ( b

0

, such that b

0

) b. Since b

0

is a strengthening of b,

the rule r

0

exhibits restricted behaviour compared to r.

To illustrate, we return to the example sorting program consisting of the rule swap.

A schedule that, for instance, exchanges neighbouring values only, will make use of a

rule swap' which is obtained from the original rule by strengthening condition i < j to

i = j � 1 to get

swap

0

b=(x; i); (y; j) ! (y; i); (x; j) ( x > y ^ i = j � 1

To facilitate this process we shall adopt the notational convention that rule de�nitions

are parameterized in the variables that are used to select elements from the multiset.

For sorting this means that we de�ne the rule

10



swap(i; j) b=(x; i); (y; j) ! (y; i); (x; j) ( x > y ^ i < j

A schedule that coordinates the sorting program such that it behaves like insertion sort,

for instance, can now be speci�ed as InsertionSort(1) where

InsertionSort(i) b= (i � n) . (Insert(i); InsertionSort(i + 1))

Insert(i) b= (i > 0) . (swap(i� 1; i) ! Insert(i� 1))

Here n denotes the length of the sequence. A well known parallel sorting algorithm (see

e.g. [18]) is Odd-Even Transposition Sort. Coordination of the sorting program into a

corresponding behaviour can be speci�ed as OddEvenSort(n) where

OddEvenSort(m) b= (m � 0) . (Odd ; Even ; OddEvenSort(m� 2)

Odd b= �

n div 2�1

i=0

swap(2i+ 1; 2i+ 2)

Even b= �

n+1 div 2�1

i=0

swap(2i; 2i+ 1)

The operational semantics of the coordination language is de�ned in Figure 2 as a labelled

multi-step transition relation between con�gurations which uses the following structural

congruences

(E1) skip; s � s

(E2) s

1

; (s

2

; s

3

) � (s

1

; s

2

); s

3

(E3) skip k s � s

(E4) s

1

k (s

2

k s

3

) � (s

1

k s

2

) k s

3

(E5) s

1

k s

2

� s

2

k s

1

(E6) true . s[t] � s

(E7) false . s[t] � t

(E8) !skip � skip

(E9) S(v) � skip if S(x) b= s and s[x := v]� skip

A con�guration consists of a schedule-multiset pair hs;Mi. The label � of a transition is

either a multiset substitution or the special symbol " which denotes an internal transition

that does not a�ect the multiset. Note that the semantics of schedules is de�ned in terms

of the single-step semantics of Gamma from Figure 1.
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(N0)

hr;Mi

p

hr ! s[t];Mi

"

�!ht;Mi

(N1)

hr;Mi

�

�!

1

hr;M

0

i

hr ! s[t];Mi

�

�!hs;M

0

i

(N2)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

1

k s

2

;Mi

�

�!hs

0

1

k s

2

;M

0

i

(N3)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

2

;Mi

"

�!hs

0

2

;Mi

hs

1

k s

2

;Mi

�

�!hs

0

1

k s

0

2

;M

0

i

(N4)

hs

1

;Mi

�

1

�!hs

0

1

;M

1

i

hs

2

;Mi

�

2

�!hs

0

2

;M

2

i

hs

1

k s

2

;Mi

�

1

��

2

�! hs

0

1

k s

0

2

;M [�

1

� �

2

]i

if M j= �

1

1�

2

(N5)

hs

1

;Mi

�

�!hs

0

1

;M

0

i

hs

1

; s

2

;Mi

�

�!hs

0

1

; s

2

;M

0

i

(N6)

hs;Mi

�

�!hs

0

;M

0

i

h!s;Mi

�

�!hs

0

;M

0

i

(N7)

hs k !s;Mi

�

�!hs

0

;M

0

i

h!s;Mi

�

�!hs

0

;M

0

i

(N8)

hs[x := v];Mi

�

�!hs

0

;M

0

i

hS(v);Mi

�

�!hs

0

;M

0

i

where S(x) b= s

(N9)

s � t

hs;Mi

�

�!hs

0

;M

0

i

s

0

� t

0

ht;Mi

�

�!ht

0

;M

0

i

Figure 2: Structured Operational Semantics of Schedules
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4 Re�nement of Schedules

Our aim is to devise a design method for (parallel) programs where computation is clearly

separated from coordination. An essential aspect of such a design method is the ability

to reason about coordination. In our framework coordination is achieved by resolving

nondeterministic choices in Gamma. As an instrument to eliminate nondeterminism, we

propose in this section a notion of re�nement for schedules. The problem of �nding e�-

cient execution strategies can be broken down in smaller steps by constructing succesive

re�nements where every subsequent re�nement gradually achieves more deterministic

control.

In Figure 3 we visualize the intuitive e�ect of re�nement on the possible behaviours of a

schedule.

final

initial

is a re�nement of

final

initial

Figure 3: Re�nement by Limiting Execution Space

The right hand side of Figure 3 informally depicts the execution space of a schedule. In

general, schedules are nondeterministic, hence there are multiple execution paths that

a schedule may follow. These execution paths are represented by the branching lines

going from the single initial state (on the left) to one of the �nal states (denoted by the

vertical line on the right). All correct schedules must end in one of the terminal states.

The execution space of a re�nement of the schedule is depicted on the left hand side

of Figure 3. Dotted lines indicate execution paths of the original schedule, that are no

longer possible executions of the re�ning schedule. We will consider a schedule to be a

re�nement of another schedule if it allows fewer ways to be executed but maintains total

correctness. The re�nement suggested by Figure 3 can be seen to preserve correctness,
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because it retains (at least) one execution path that reaches a �nal state.

Such a notion of re�nement does not automatically yield e�cient schedules. It provides

a tool that, when used thoughfully, can eliminate the less e�cient execution paths, thus

retaining the more e�cient ones.

Next, we set out to formally de�ne a notion of re�nement. We then derive a number of

re�nement laws that can be used in an algebraic style of reasoning about coordination.

Applications of these laws will be illustrated in Section 5.

4.1 Pre�x Simulation

Bisimulation is commonly used for models of concurrency where process and state are

identi�ed [17]

1

. In Gamma and also in its coordination language, communication is

implicit through the use of the shared multiset. As a result, the behaviour of (programs

and) schedules depends on the state of the multiset. Therefore we use con�gurations

hs;Mi rather than just schedules in our de�nition of bisimulation.

De�nition 4.1 A binary relation R � S� S is a bisimulation if (s; t) 2 R implies, for

all �, for all M ,

1. hs;Mi

�

�!hs

0

;M

0

i ) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i ^ (s

0

; t

0

) 2 R

2. ht;Mi

�

�!ht

0

;M

0

i ) 9s

0

: hs;Mi

�

�!hs

0

;M

0

i ^ (s

0

; t

0

) 2 R

The obvious, but as it turns out naive, way of obtaining simulation from bisimulation is

by breaking the symmetry. For reasons that will be explained shortly, we call this notion

pre�x simulation.

De�nition 4.2 A binary relation R � S�S is a pre�x simulation if (s; t) 2 R implies,

for all �, for all M ,

hs;Mi

�

�!hs

0

;M

0

i ) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i ^ (s

0

; t

0

) 2 R

De�nition 4.3 Given schedules s and t of program P . Schedule s is a pre�x simulation

of t, written s 6

p

t, if (s; t) 2 R for some pre�x simulation R. This may be equivalently

expressed as follows:

1

Terminology not explained in this section is from [17]
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6

p

=

S

fR j R is a pre�x simulation g

Following standard techniques it is possible to show that 6

p

is the greatest �xed point

of the pre�x simulation relation.

The de�nition of pre�x simulation says that if s is to be a pre�x simulation of t, then for

every transition that s makes, t must be able to follow suit and make a transition that

performs the same computation. This works as expected for the following example (we

abbreviate r

i

! skip by r

i

).

Example 4.1 Consider the following pre�x re�nement

r

1

; r

2

; r

3

6

p

r

1

k r

2

k r

3

If r

1

; r

2

; r

3

executes its �rst rule r

1

(resulting in r

2

; r

3

) then this can be simulated by

r

1

k r

2

k r

3

which leads to a schedule r

2

k r

3

. Next r

2

; r

3

may proceed by executing r

2

yielding r

3

, this can be mimicked by r

2

k r

3

, also ending up as r

3

.

We intend to use simulation to repeatedly get successively more re�ned versions of a

schedule. In order to retain correctness, it is necessary that a re�ned version reaches (at

least one of) the same �nal state(s) as the schedule that it re�nes. The next example

illustrates that this requirement is not guaranteed by the notion of pre�x simulation.

Example 4.2

r

1

6

p

r

1

k r

2

k r

3

After both sides execute r

1

, on the left hand side remains skip, on the right hand side

r

2

k r

3

. Now the left hand side can not make any more transitions, hence the de�nition

of 6

p

applies (vacuously).

From this example we learn that, in general, we have, for any s,

skip 6

p

s

This would justify the re�nement of any schedule s by the empty schedule. (which

in general does not compute the same function). Of course this does not satisfy our

15



intended meaning of re�nement.

4.2 Re�nement based on Simulation

In the previous section we found out that breaking the symmetry of standard bisimulation

[17] does not meet our requirement of preserving total correctness because is allows a

re�ning schedule to terminate prematurely. In this section we set out to remedy this by

extending the de�nition of simulation with the condition that that s can only terminate,

if t may terminate. This gives the following de�nition of simulation.

De�nition 4.4 A binary relation R on schedules is a simulation if (s; t) 2 R implies,

for all � and for all M

1: hs;Mi

�

�!hs

0

;M

0

i ) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i ^ (s

0

; t

0

) 2 R

2: s� skip ) t� skip

In Figure 4 a Hasse diagram is shown which illustrates the notion of re�nement implied

by simulation. There is an arc from a node v to a node u if the schedule in u (represented

by the possible executions) is a re�nement of the schedule in v. A dotted arc from v to

u denotes that the schedule in v is only a pre�x-re�nement of the schedule in u.

We continue, similar to Milner's treatment in [17], by showing some basic properties of

simulations.

Lemma 4.1 Assume that each R

i

(i = 1; 2; : : :) is a simulation. Then the following

relations are all simulations:

1. Id

S

2. R

1

R

2

3.

S

i2I

R

i

Proof

1. By re
exivity of ) ,

2. Suppose (s

1

; s

2

) 2 R

1

R

2

, then for some t we have (s

1

; t) 2 R

1

and (t; s

2

) 2 R

2

.

Now let hs

1

;Mi

�

�!hs

0

1

;M

0

i. Because (s

1

; t) 2 R

1

we have

ht;Mi

�

�!ht

0

;M

0

i and (s

0

1

; t

0

) 2 R

1

16



1 r2

r1 r2

r1 r1 r2
r2

r2 r1

r1
r2

r2
r1r2 r1

r1 r2

r2 r1

r1 r2

r
,

skip

r1 r2,

r1 r2,

,

Figure 4: Hasse diagram of the re�nements of r

1

k r

2

.

Also because (t; s

2

) 2 R

2

we have, for some s

0

2

hs

2

;Mi

�

�!hs

0

2

;M

0

i and (t

0

; s

0

2

) 2 R

2

From (s

0

1

; t

0

) 2 R

1

and (t

0

; s

0

2

) 2 R

2

follows (s

0

1

; s

0

2

) 2 R

1

R

2

.

If s

1

� skip then from (s

1

; t) 2 R

1

we have t� skip . From (t; s

2

) 2 R

2

we get

s

2

� skip .

3. Let R =

S

i2I

R

i

. Suppose (s

1

; s

2

) 2 R, then (s

1

; s

2

) 2 R

i

, for some i 2 I. If

hs

1

;Mi

�

�!hs

0

1

;M

0

i then, because R

i

is a simulation, we have hs

2

;Mi

�

�!hs

0

2

;M

0

i

and (s

0

1

; s

0

2

) 2 R

i

. Because R

i

� R also (s

0

1

; s

0

2

) 2 R.

The case s

1

� skip goes analogously.

2

17



De�nition 4.5 Let s and t be schedules. Schedule s is a re�nement of t, written s 6 t,

if (s; t) 2 R for some simulation R. This may be equivalently expressed as follows:

6 =

S

fR j R is a simulation g

In De�nition 4.6 we use a standard method of generating an equivalence relation from an

arbitrary preorder. The equivalence thus obtained is the kernel of the preorder induced

by 6 .

De�nition 4.6 We say that schedules s and t are bisimilar, denoted s

�

=

t,

if (s 6 t) ^ (t 6 s). This can be formulated alternatively as

�

=

= 6 \ 6

�1

.

Lemma 4.2

1. 6 is the largest simulation.

2. 6 is a partial order.

3.

�

=

is an equivalence relation.

Proof

1. By Lemma 4.1(3) 6 is a simulation, and by De�nition 4.5 it includes any other

such.

2. Re
exivity: By Lemma 4.1(1).

Transitivity: If s

1

6 s

2

and s

2

6 s

3

then (s

1

; s

2

) 2 R

1

and (s

2

; s

3

) 2 R

2

for some simulations R

1

and R

2

. Hence (s

1

; s

3

) 2 R

1

R

2

. By

4.1(2) R

1

R

2

is a simulation, by De�nition 4.5 6 contains all

simulations hence s

1

6 s

3

.

Antisymmetry: If s

1

6 s

2

and s

2

6 s

1

then, by De�nition 4.6, s

1

�

=

s

2

.

3. By Lemma 4.1(1 and 2)

�

=

is re
exive and transitive. Symmetry follows from

De�nition 4.6.

2

We set out to show that 6 is well de�ned. To this end we use some �xed-point theory

(see for example [12]).
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De�nition 4.7 De�ne a function F over binary relations on schedules, i.e. F : S�

S! S� S, as follows. If R 2 S� S, then (s; t) 2 F(R) if and only if, for all �, for all

M ,

1. hs;Mi

�

�!hs

0

;M

0

i then ht;Mi

�

�!ht

0

;M

0

i ^ (s

0

; t

0

) 2 R

2. s� skip ) t� skip

Lemma 4.3

1. F is monotonic; i.e. if R

1

� R

2

then F(R

1

) � F(R

2

)

2. R is a simulation if and only if R � F(R)

Proof

1. Follows directly from the de�nition of F.

2. This is a reformulation of the de�nition of simulation where \implies" is replaced

by �.

2

Monotonicity of F says that it preserves the ordering � on P(S� S).

We call R a �xed-point of F if R = F(R). Similarly, we say that R is a pre-�xed-point

of F if R � F(R). So simulations are, by Lemma 4.3.2, exactly the pre-�xed-points of

F, and we wish to show that 6 , which is the largest pre-�xed-point, is a �xed-point of F.

Lemma 4.4 6 is the largest �xed-point of F.

Proof

Because 6 is a simulation we have 6 � F( 6 ).

Monotonicity of F implies F( 6 ) � F(F ( 6 )). But because 6 is the largest

pre-�xed-point, it includes F( 6 ), i.e. F( 6 ) � 6 .

Hence F( 6 ) = 6 . Moreover 6 must be the largest �xed-point of F because it

is the largest pre-�xed-point.

2

Thus 6 is the largest relation that satis�es De�nition 4.4. To establish s 6 t it su�ces

to prove that a relation R, such that (s; t) 2 R, is a simulation relation, because from
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Lemma 4.4 follows, for any such simulation relation R, that R � 6 , hence s 6 t.

In De�nition 4.8 we de�ne a generalization of simulation. In combination with Lemma

4.5 this de�nition facilitates proving that some relation is a simulation because it allows

us to make use of the fact that we have already proven other relations to be re�nements.

De�nition 4.8 A binary relation R � S� S is a simulation up to 6 if (s; t) 2 R

implies, for all �, for all M ,

1: hs;Mi

�

�!hs

0

;M

0

i ) 9t

0

: ht;Mi

�

�!ht

0

;M

0

i ^ (s

0

; t

0

) 2 6R6

2: s � skip ) t � skip

From Lemmas 4.5 and 4.6 follows that, in order to show s 6 t, it su�ces to show that

s and t are related by some simulation up to 6 .

Lemma 4.5 If R is a simulation up to 6 , then 6R6 is a simulation.

Proof

Let s 6R6 t, hence for some s

1

and t

1

, s 6 s

1

, s

1

Rt

1

and t

1

6 t. Let

hs;Mi

�

�!hs

0

;M

0

i. From s 6 s

1

follows by Lemma 4.4 that hs

1

;Mi

�

�!hs

0

1

;M

0

i

such that (s

0

; s

0

1

) 2 6 . From s

1

Rt

1

follows ht

1

;Mi

�

�!ht

0

1

;M

0

i such that

(s

0

1

; t

0

1

) 2 6R6 . From t

1

6 t follows ht;Mi

�

�!ht

0

;M

0

i such that (t

0

1

; t

0

) 2 6 .

From s

0

6 s

0

1

, s

0

1

6R6 t

0

1

and t

0

1

6 t

0

follows s

0

6 6 R 6 6 t

0

. By transitivity of

6 follows that 6 6 � 6 , hence s

0

6R6 t

0

.

The case s � skip follows directly.

2

Lemma 4.6 If R is a simulation up to 6 , then R � 6 .

Proof

By Lemma 4.5 6R6 is a simulation, hence 6R6 � 6 . From Id

S

� 6

follows R � 6R6 , hence R � 6 .

2

We end this section with an example re�nement. It illustrates that simulation can be

used to verify that one schedule \correctly implements" another.
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Example 4.3 Let r

1

and r

2

be rules, then

(r

1

; r

2

) k (r

2

; r

1

) 6 !(r

1

k r

2

)

In order to show this consider the following relation R:

R = f((r

1

; r

2

) k (r

2

; r

1

); !(r

1

k r

2

))g (1)

[ f(r

2

k (r

2

; r

1

); r

2

k (r

2

k r

1

))g (2)

[ f((r

1

; r

2

) k r

1

; r

1

k (r

1

k r

2

))g (3)

[ f(r

1

k r

2

; r

1

k r

2

)g (4)

[ f(r

2

; r

1

; r

1

k r

2

)g (5)

[ f(r

1

; r

2

; r

1

k r

2

)g (6)

[ f(r

1

; r

1

)g (7)

[ f(r

2

; r

2

)g (8)

[ f(skip; skip)g (9)

By considering the possible transitions for each of the elements of R, it follows that R is

a simulation. We depict the (relevant parts of the) transition graphs of these schedules

in Figure 5. Note that the numbers used to distinguish subsets of R correspond to the

di�erent states of the computation.

r1
7

r2;r1
5

r2 8

r2||r1

(r1;r2)||(r2;r1)
1

r1;r2
6

r2||(r2;r1) (r1;r2)||r1

r2

9

r1||r2

r1

r2

r1||r2

r2 r1

r1 r2

r1

r1

4

2 3

skip

r1||r2 r1||r2

r2 r2 r1

2
r2||(r1||r2)

3
r1||(r1||r2)

r1
7

r2 8

4,5,6

skip
9

!(r1||r2)

r1||r2

r2

1

r1 r2

r1

r1r2

r1||r2
r1 r2

r2||r2 r1||r1r1||r2

Figure 5: Transition graphs of (r

1

; r

2

) k (r

2

; r

1

) (left) and partially of !(r

1

k r

2

) (right).
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Alternatively, let R

0

= (1)[ (2)[ (3)[ (5)[ (6). It can be shown that R

0

is a simulation

up{to{ 6 . From this example can be seen that considering simulation up{to{ 6 may

reduce the complexity of re�nemnt proofs.

4.3 Precongruence Of Re�nement

For practical purposes it is desirable that our re�nement relation is precongruent, al-

lowing for a modular approach in reasoning about coordination. Precongruence of 6

follows from a set of lemma's which state that 6 is substitutive under all combinators

of the coordination language.

First, we prove Lemma 4.7 which is used in the proofs of the subsequent lemma's. It

states that if two terms are considered syntactically equal (structurally congruent), then

they are also semantically equal.

Lemma 4.7 Let s; t 2 S. If s � t then s

�

=

t.

Proof

� We �rst prove s � t ) s 6 t.

We have to prove the cases \transition" and \termination."

transition

If hs;Mi

�

�!hs

0

;M

0

i then, by (N9) and s � t follows ht;Mi

�

�!hs

0

;M

0

i. By

re
exivity of 6 , we have s

0

6 s

0

.

termination

If s � skip , then by transitivity of � follows t � skip .

� The proof s � t ) t 6 s is analogous.

2

Lemma 4.8 Let s

1

; s

2

; t

1

and t

2

2 S such that s

1

6 s

2

and t

1

6 t

2

, then

r ! s

1

[t

1

] 6 r ! s

2

[t

2

].
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Proof We have to prove the two cases \transition" and \termination."

transition

We consider the possible transitions of the schedule r ! s

1

[t

1

]:

{ A transition hr ! s

1

[t

1

];Mi

"

�!ht

1

;Mi can be derived using (N0) if hr;Mi

p

.

Then, also by (N0), hr ! s

2

[t

2

];Mi

"

�!ht

2

;Mi and by assumption t

1

6 t

2

.

{ hr ! s

1

[t

1

];Mi

�

�!hs

1

;M

0

i can be derived using (N1) from hr;Mi

�

; hr;M

0

i.

Then, also by (N1), hr ! s

2

[t

2

];Mi

�

�!hs

2

;M

0

i and by assumption s

1

6 s

2

.

termination

This proof obligation is vacuous.

2

Lemma 4.9 Let s

1

; s

2

, t

1

and t

2

2 S such that s

1

6 s

2

and t

1

6 t

2

, then s

1

; t

1

6 s

2

; t

2

.

Proof We show that the relation R = f(s

1

; t

1

; s

2

; t

2

) j s

1

6 s

2

; t

1

6 t

2

g is a simulation

up to 6 .

transition

Let (s

1

; t

1

; s

2

; t

2

) 2 R. A transition for s

1

; t

1

can be derived in two ways:

{ By (N5) from hs

1

;Mi

�

�!hs

0

1

;M

0

i. From s

1

6 s

2

follows hs

2

;Mi

�

�!hs

0

2

;M

0

i

such that s

0

1

6 s

0

2

. By (N5) we infer hs

2

; t

2

;Mi

�

�!hs

0

2

; t

2

;M

0

i. From t

1

6 t

2

and Id

S

� 6 now follows that (s

0

1

; t

1

; s

0

2

; t

2

) 2 6R6 .

{ By (N9) from s

1

� skip and ht

1

;Mi

�

�!ht

0

1

;M

0

i. Because s

1

6 s

2

and t

1

6 t

2

we have s

2

� skip and ht

2

;Mi

�

�!ht

0

2

;M

0

i such that t

0

1

6 t

0

2

. By (N9) we infer

hs

2

; t

2

;Mi

�

�!ht

0

2

;M

0

i. By Lemma 4.7 t

0

1

6 skip; t

0

1

and skip; t

0

2

6 t

0

2

. Hence

from (skip; t

0

1

; skip; t

0

2

) 2 R follows (t

0

1

; t

0

2

) 2 6R6 .

termination

s

1

; t

1

� skip only if both s

1

� skip and t

1

� skip . From s

1

6 s

2

and t

1

6 t

2

follows

that also s

2

� skip and t

2

� skip , hence s

2

; t

2

� skip .

2
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Corollary 4.10 Given s

1

, s

2

and t 2 S such that s

1

6 s

2

, then

i. s

1

; t 6 s

2

; t

ii. t; s

1

6 t; s

2

Proof

This follows from Lemma 4.9 and re
exivity of 6 .

2

Lemma 4.11 Let s

1

; s

2

; t

1

and t

2

2 S such that s

1

6 s

2

and t

1

6 t

2

, then

s

1

k t

1

6 s

2

k t

2

.

Proof We show that the relation R = f(s

1

k t

1

; s

2

k t

2

) j s

1

6 s

2

; t

1

6 t

2

g is a simula-

tion.

transition

We continue by analyzing the possible ways by which transitions hs

1

k t

1

;Mi

�

�!hs

0

1

k t

0

1

;M

0

i

may be derived.

1. By (N2) hs

1

;Mi

�

�!hs

0

1

;M

0

i hence t

0

1

� t

1

. From s

1

6 s

2

follows that

hs

2

;Mi

�

�!hs

0

2

;M

0

i such that s

0

1

6 s

0

2

. By (N2) we get hs

2

k t

2

;Mi

�

�!hs

0

2

k t

2

;M

0

i.

From the de�nition of R follows that (s

0

1

k t

1

; s

0

2

k t

2

) 2 R.

2. By (N2) ht

1

;Mi

�

�!ht

0

1

;M

0

i hence s

0

1

� s

1

.

The proof goes analogous to the previous case.

3. By (N3) from hs

1

;Mi

�

�!hs

0

1

;M

0

i and ht

1

;Mi

"

�!ht

0

1

;Mi. From s

1

6 s

2

and

t

1

6 t

2

follows that hs

2

;Mi

�

�!hs

0

2

;M

0

i and ht

2

;Mi

"

�!ht

0

2

;Mi. such that s

0

1

6 s

0

2

and t

0

1

6 t

0

2

. By (N3) we get hs

2

k t

2

;Mi

�

�!hs

0

2

k t

0

2

;M

0

i and (s

0

1

k t

0

1

; s

0

2

k t

0

2

) 2 R.

4. By (N3) from hs

1

;Mi

�

�!hs

0

1

;M

0

i and ht

1

;Mi

"

�!ht

0

1

;Mi.

The proof continues analogous to the previous case.

5. By (N4) from hs

1

;Mi

�

1

�!hs

0

1

;M

1

i and ht

1

;Mi

�

2

�!ht

0

1

;M

2

i and M j= �

1

1�

2

.

From s

1

6 s

2

and t

1

6 t

2

follows that hs

2

;Mi

�

1

�!hs

0

2

;M

1

i and ht

2

;Mi

�

2

�!ht

0

2

;M

2

i
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such that s

0

1

6 s

0

2

and t

0

1

6 t

0

2

. Because M j= �

1

1�

2

we conclude by (N4) that

hs

2

k t

2

;Mi

�

�!hs

0

1

k t

0

2

;M

0

i and from the de�nition of R follows (s

0

1

k t

0

1

; s

0

2

k t

0

2

) 2

R.

transition

s

1

k t

1

� skip only if s

1

� skip and t

1

� skip . From s

1

6 s

2

and t

1

6 t

2

follows that also

s

2

� skip and t

2

� skip , hence s

2

k t

2

� skip .

2

Lemma 4.12 Let s

1

; s

2

; t

1

and t

2

2 S such that s

1

6 s

2

and t

1

6 t

2

, then

c . s

1

[t

1

] 6 c . s

2

[t

2

].

Proof Consider the cases

- c = true: Then c . s

1

[t

1

] � s

1

and c . s

2

[t

2

] � s

2

and by assumption s

1

6 s

2

.

- c = false: Then c . s

1

[t

1

] � t

1

and c . s

2

[t

2

] � t

2

and by assumption t

1

6 t

2

.

2

Lemma 4.13 Let s

1

and s

2

2 S such that s

1

6 s

2

, then !s

1

6 !s

2

.

Proof

Let R = f(t

1

k !s

1

; t

2

k !s

2

) j t

1

6 t

2

; s

1

6 s

2

g [ 6 . We show that R is a simulation by

induction on the depth of the inference. We will use the following property of R

If (s

1

; s

2

) 2 R and t

1

6 t

2

, then (t

1

k s

1

; t

2

k s

2

) 2 R (*)

transition

We consider the possible transitions for (t

1

k !s

1

; t

2

k !s

2

).

A transition can be derived in the following ways:

1. By (N2) from ht

1

;Mi

�

�!ht

0

1

;M

0

i. From t

1

6 t

2

follows ht

2

;Mi

�

�!ht

0

2

;M

0

i

such that t

0

1

6 t

0

2

. By (N2) we infer ht

2

k !s

2

;Mi

�

�!ht

0

2

k !s

2

;M

0

i. Clearly

(t

0

1

k !s

1

; t

0

2

k !s

2

) 2 R.

2. By (N2) from h!s

1

;Mi

�

�!hs

0

1

;M

0

i. This transition can be derived in the

following ways.
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{ By (N6) from hs

1

;Mi

�

�!hs

0

1

;M

0

i. From s

1

6 s

2

follows hs

2

;Mi

�

�!hs

0

2

;M

0

i

such that s

0

1

6 s

0

2

. Then by (N6) h!s

2

;Mi

�

�!hs

0

2

;M

0

i, and by

(N2) ht

2

k !s

2

;Mi

�

�!ht

2

k s

0

2

;M

0

i. From Lemma 4.11 follows that

t

1

k s

0

1

6 t

2

k s

0

2

, hence (t

1

k s

0

1

; t

2

k s

0

2

) 2 R.

{ By (N7) from hs

1

k !s

1

;Mi

�

�!hs

0

1

;M

0

i. By the induction hypothesis we

get hs

2

k !s

2

;Mi

�

�!hs

0

2

;M

0

i such that (s

0

1

; s

0

2

) 2 R. By (N7) we in-

fer h!s

2

;Mi

�

�!hs

0

2

;M

0

i. From (N2) we get ht

2

k !s

2

;Mi

�

�!ht

2

k s

0

2

;M

0

i.

From (s

0

1

; s

0

2

) 2 R and by (*) follows (t

1

k s

0

1

; t

2

k s

0

2

) 2 R.

3. By (N3) from ht

1

;Mi

�

�!ht

0

1

;M

0

i and h!s

1

;Mi

"

�!hs

0

1

;Mi.

The proof of is a routine combination of cases 1. and 2.

4. By (N3) from ht

1

;Mi

"

�!ht

0

1

;Mi and h!s

1

;Mi

�

�!hs

0

1

;M

0

i.

The remainder of the proof is analogous to case 3.

5. By (N4) from ht

1

;Mi

�

1

�!ht

0

1

;M

1

i and h!s

1

;Mi

�

2

�!hs

0

;M

2

i whereM j= �

1

1�

2

.

The proof is analogous to case 3.

termination

t

1

k !s

1

� skip only if t

1

� skip and s

1

� skip . From t

1

6 t

2

and s

1

6 s

2

follows t

2

� skip

and s

2

� skip , hence t

2

k !s

2

� skip . 2

Simulation is de�ned in terms of the possible transitions of schedules. Because the

behaviour of schedules that contain schedule-variables is unknown, simulation as we

have seen so far deals only with ground schedules. We would also like to manipulate

schedule expressions containing variables. Therefore, we extend the de�nition of 6 to

cover schedule expressions as follows.

De�nition 4.9 Let s

1

and s

2

2 S contain control variables x at most, and schedule

variables X at most. Then s

1

6 s

2

if, for all values v and ground schedules t 2 S

ground

,

s

1

[x := v]ft=Xg 6 s

2

[x := v]ft=Xg.

We proceed by showing that recursive de�nitions preserve equivalence.

Lemma 4.14 Let S 2 S be a schedule variable, and s 2 S

ground

be a ground schedule

(i.e. without free schedule variables) such that S(x) b= s, then S(x)

�

=

s.
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Proof

It is straightforward to prove, using (N8), that S(x) and s have the same derivatives

for any v. Hence, for any v, both s[x := v] 6 S(v) and S(v) 6 s[x := v].

2

Lemma 4.15 is concerned with the schedule-variables that appear in a schedule. The

control variables play no role of importance and have been left out to increase readability.

Lemma 4.15 Let s

1

and s

2

2 S contain at most schedule variable X. Let S

1

and S

2

2 S

be de�ned by S

1

b= s

1

fS

1

=Xg, and S

2

b= s

2

fS

2

=Xg. If s

1

6 s

2

, then S

1

6 S

2

.

Proof We show that

R = f(tfS

1

=Xg; tfS

2

=Xg) j t contains at most the variable Xg

is a simulation up{to{ 6 . By induction on the structure of t for termination and on the

depth of the inference of htfS

1

=Xg;Mi

�

�!hs

0

;M

0

i for any transition.

termination

We must show that tfS

1

=Xg� skip ) tfS

2

=Xg� skip . We consider the possible

cases for t:

� t� skip :

Then tfS

1

=Xg � skip � tfS

2

=Xg.

� t � X:

Then tfS

1

=Xg = S

1

and tfS

2

=Xg = S

2

. Clearly S

1

does not syntactically equal

skip, hence this case holds vacuously.

� t � r ! t

1

[t

2

]:

There exists no schedules t

1

and t

2

such that r ! t

1

[t

2

] � skip, hence this case

holds vacuously.

� t � c . t

1

[t

2

]:

Then tfS

1

=Xg = c . t

1

fS

1

=Xg[t

2

fS

1

=Xg]

and tfS

2

=Xg = c . t

1

fS

2

=Xg[t

2

fS

2

=Xg].
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{ If c = true then t

1

fS

1

=Xg� skip .

By induction t

1

fS

2

=Xg� skip , hence tfS

2

=Xg� skip .

{ If c = false the proof proceeds analogously.

� t � t

1

k t

2

:

Then t

1

fS

1

=Xg k t

2

fS

1

=Xg� skip only if, by (E1), t

1

fS

1

=Xg� skip and

t

2

fS

1

=Xg� skip . By induction t

1

fS

2

=Xg� skip and t

2

fS

2

=Xg� skip . By (E1)

we conclude t

1

fS

2

=Xg k t

2

fS

2

=Xg� skip .

� t � t

1

; t

2

:

Analogous to the previous case.

� t �!t

0

:

Then !t

0

fS

1

=Xg� skip only if, by (E8), t

0

fS

1

=Xg� skip .

By induction t

0

fS

2

=Xg� skip . By (E8) we conclude !tfS

2

=Xg� skip .

� t � T , where T b= t

0

and t

0

is a schedule without variables:

Then tfS

1

=Xg = tfS

2

=Xg = t

0

. Clearly tfS

1

=Xg� skip , tfS

2

=Xg� skip .

transition

We consider the possible transitions for ht;Mi

�

�!ht

0

;M

0

i where t is one of the following:

� t � X:

Then tfS

1

=Xg � S

1

, hence the transition we consider is hS

1

;Mi

�

�!hs

0

;M

0

i. This

must be inferred by (N8), using S

1

b= s

1

fS

1

=Xg, from hs

1

fS

1

=Xg;Mi

�

�!hs

0

;M

0

i.

This transition is derived by a shorter inference, hence by the induction hypoth-

esis hs

1

fS

2

=Xg;Mi

�

�!hs

00

;M

0

i with (s

0

; s

00

) 2 6R6 . From s

1

6 s

2

follows

hs

2

fS

2

=Xg;Mi

�

�!hs

000

;M

0

i with (s

00

; s

000

) 2 6 . Because S

2

b= s

2

fS

2

=Xg and

S

2

� tfS

2

=Xg we get by (N8) htfS

2

=Xg;Mi

�

�!hs

000

;M

0

i with (s

0

; s

000

) 2 6R6

as required.

� t � r ! t

1

[t

2

]:

Then tfS

1

=Xg � r ! t

1

fS

1

=Xg[t

2

fS

1

=Xg]. Here t

1

and t

2

contain at most the

variable X. The transitions we have to consider are

{ If hr ! t

1

fS

1

=Xg[t

2

fS

1

=Xg];Mi

"

�!ht

2

fS

1

=Xg;Mi, then by (N0) also

hr ! t

1

fS

2

=Xg[t

2

fS

2

=Xg];Mi

"

�!ht

2

fS

2

=Xg;Mi.

By de�nition of R: (t

2

fS

1

=Xg; t

2

fS

2

=Xg) 2 6R6 .
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{ hr ! t

1

fS

1

=Xg[t

2

fS

1

=Xg];Mi

�

�!ht

1

fS

1

=Xg;M

0

i. The proof is analogous

to the previous case.

� t � c . t

1

[t

2

]:

Then tfS

1

=Xg = c . t

1

fS

1

=Xg[t

2

fS

1

=Xg] and tfS

2

=Xg = c . t

1

fS

2

=Xg[t

2

fS

2

=Xg].

The following reasoning holds for i = 1 if c = true and i = 2 if c = false.

A transition can be derived by (N9) from c . t

1

[t

2

] � t

i

and

ht

i

fS

1

=Xg;Mi

�

�!ht

0

i

;M

0

i. This transition is derived by a shorter inference, hence

by induction we get ht

i

fS

2

=Xg;Mi

�

�!ht

00

i

;M

0

i such that (t

0

i

; t

00

i

) 2 6R6 .

By (N9) we derive hc . t

1

[t

2

]fS

2

=Xg;Mi

�

�!ht

00

i

;M

0

i.

� t � t

1

; t

2

:

Then tfS

1

=Xg = t

1

fS

1

=Xg; t

2

fS

1

=Xg.

There are two possibilities for deriving a transition:

{ By (N5) from ht

1

fS

1

=Xg;Mi

�

�!ht

0

1

;M

0

i, hence t

0

� t

0

1

; t

2

fS

1

=Xg.

This is derived by a shorter inference, so by induction ht

1

fS

2

=Xg;Mi

�

�!ht

00

1

;M

0

i

such that (t

0

1

; t

00

1

) 2 6R6 .

Then by (N5) ht

1

fS

2

=Xg; t

2

fS

2

=Xg;Mi

�

�!ht

00

1

; t

2

fS

2

=Xg;M

0

i.

From (t

0

1

; t

00

1

) 2 6R6 follows that there are g and g

0

such that t

0

1

6 g,

(g; g

0

) 2 R and g

0

6 t

00

1

. Then by monotonicity of ; with respect to 6 follows

that t

0

1

; t

2

fS

2

=Xg 6 g; t

2

fS

2

=Xg and g

0

; t

2

fS

2

=Xg 6 t

00

1

; t

2

fS

2

=Xg.

Because t

2

contains at most variable X, we get by de�nition of R

that (g; t

2

fS

2

=Xg; g

0

; t

2

fS

2

=Xg) 2 R, hence (t

0

1

; t

2

fS

2

=Xg; t

00

1

; t

2

fS

2

=Xg) 2

6R6 as required.

{ By (N9) from t

1

fS

1

=Xg� skip and ht

2

fS

1

=Xg;Mi

�

�!ht

0

2

;M

0

i, hence t

0

� t

0

2

.

By the termination-part of this proof we know that t

1

fS

2

=Xg� skip .

This transition is derived by a shorter inference, so by induction

ht

2

fS

2

=Xg;Mi

�

�!ht

00

2

;M

0

i such that (t

0

2

; t

00

2

) 2 6R6 .

By (N9) we infer ht

1

fS

2

=Xg; t

2

fS

2

=Xg;Mi

�

�!ht

00

2

;M

0

i.

� t � t

1

k t

2

:

Then tfS

1

=Xg = t

1

fS

1

=Xg k t

2

fS

1

=Xg and a transition can be derived by

{ (N2) from ht

1

fS

1

=Xg;Mi

�

�!ht

0

1

;M

0

i.

By induction ht

1

fS

2

=Xg;Mi

�

�!ht

00

1

;M

0

i such that (t

0

1

; t

00

1

) 2 6R6 .

By (N2) ht

1

fS

2

=Xg k t

2

fS

2

=Xg;Mi

�

�!ht

00

1

k t

2

fS

2

=Xg;M

0

i.
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From (t

0

1

; t

00

1

) 2 6R6 follows that there are g and g

0

that contain at most

variable X such that t

0

1

6 g, (g; g

0

) 2 R and g

0

6 t

00

1

.

By monotonicity of k with respect to 6 follows that

t

0

1

k t

2

fS

2

=Xg 6 g k t

2

fS

2

=Xg) and g

0

k t

2

fS

2

=Xg 6 t

00

1

k t

2

fS

2

=Xg.

Because t

2

contains at most variable X, we get by de�nition of R that

(g k t

2

fS

2

=Xg; g

0

k t

2

fS

2

=Xg) 2 R, hence (t

0

1

k t

2

fS

2

=Xg; t

00

1

k t

2

fS

2

=Xg) 2

6R6 as required.

{ (N2) from ht

2

fS

1

=Xg;Mi

�

�!ht

0

2

;M

0

i.

The proof is analogous to the previous case.

{ (N3) from ht

1

fS

1

=Xg;Mi

�

�!ht

0

1

;M

0

i and ht

2

fS

1

=Xg;Mi

"

�!ht

0

2

;Mi.

By induction ht

1

fS

2

=Xg;Mi

�

�!ht

00

1

;M

0

i and ht

2

fS

2

=Xg;Mi

"

�!ht

00

2

;Mi such

that (t

0

1

; t

00

1

) 2 6R6 and (t

0

2

; t

00

2

) 2 6R6 .

Hence there are g; g

0

; h; h

0

that contain at most variable X such that t

0

1

6 g,

(g; g

0

) 2 R, g

0

6 t

00

1

and t

0

2

6 h, (h; h

0

) 2 R h

0

6 t

00

2

. Then by monotonicity of

k w.r.t. 6 we have t

0

1

k t

0

2

6 g k h and g

0

kh

0

6 t

00

1

k t

00

2

. By de�nition of R

we have (g kh; g

0

k h

0

) 2 R, hence (t

0

1

k t

0

2

; t

00

1

k t

00

2

) 2 6R6 .

{ (N3) from ht

1

fS

1

=Xg;Mi

"

�!ht

0

1

;Mi and ht

2

fS

1

=Xg;Mi

�

�!ht

0

2

;M

0

i.

The proof is analogous to the previous case.

{ (N4) from ht

1

fS

1

=Xg;Mi

�

1

�!ht

0

1

;M

1

i and ht

2

fS

1

=Xg;Mi

�

2

�!ht

0

2

;M

2

i where

M j= �

1

1�

2

. The proof is analogous to the previous case.

� t �!t

0

:

Then tfS

1

=Xg =!t

0

fS

1

=Xg. A transition can be derived in the following ways:

{ By (N6) from ht

0

fS

1

=Xg;Mi

�

�!ht

00

;M

0

i.

The term t

0

contains at most the variable X, and the transition is

derived by a shorter inference hence the induction hypothesis gives

ht

0

fS

2

=Xg;Mi

�

�!ht

000

;M

0

i such that (t

00

; t

000

) 2 6R6 . By (N6)

h!t

0

fS

2

=Xg;Mi

�

�!ht

000

;M

0

i.

{ By (N7) from ht

0

fS

1

=Xg k !t

0

fS

1

=Xg;Mi

�

�!ht

00

;M

0

i.

Because t =!t

0

contains at most variable X, so does t

0

, hence also t

0

k !t

0

. The

transition is derived by a shorter inference, hence the induction hypothesis

gives ht

0

fS

2

=Xg k !t

0

fS

2

=Xg;Mi

�

�!ht

000

;M

0

i such that

(t

00

; t

000

) 2 6R6 . By (N7) h!t

0

fS

2

=Xg;Mi

�

�!ht

000

;M

0

i.
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� t � T , where T b= t

0

and t

0

is a schedule without variables:

Then tfS

1

=Xg � tfS

2

=Xg � t

0

. If htfS

1

=Xg;Mi

�

�!ht

00

;M

0

i then

htfS

2

=Xg;Mi

�

�!ht

00

;M

0

i. From (t

00

; t

00

) � (t

00

fS

1

=Xg; t

00

fS

2

=Xg) and re
exivity

of 6 follows (t

00

; t

00

) 2 6R6 .

2

Theorem 4.16 6 is a precongruence on S (the terms of the schedule language).

Proof From Lemmas 4.8, 4.9, 4.11, 4.12, 4.13 and 4.15. 2

It follows that

�

=

is a congruence on schedules.

Corollary 4.17

�

=

is a congruence relation on schedules.

Proof Let u[x] be a schedule that has x as a subterm. Let s and t be schedules

such that s

�

=

t, we have to prove that u[s]

�

=

u[t]. By De�nition 4.6 s

�

=

t if and only if

s 6 t and t 6 s. By Theorem 4.16 follows u[s] 6 u[t] and u[t] 6 u[s]. By De�nition 4.6

u[s]

�

=

u[t]. 2

4.4 Re�nement Laws

In the previous section we showed that simulation is a precongruence. In this section

we present a number of the basic re�nement laws. These laws give additional insight

into the algebraic properties of re�nement. Furthermore, the laws give rise to an alge-

braic style of reasoning about schedules. Precongruence of 6 guarantees the modular

applicability of the laws.

We continue by presenting the laws grouped per operator.

4.4.1 Laws for Rule Conditional Composition

The �rst law can be used to move a single rule-conditional out of a parallel composition

such that it is scheduled for execution �rst. The second law is a special case of the �rst.

The fact that \;" enforces a more determined ordering on the execution of schedules,
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has as a consequence that the law for \;" is a congruence, while the case for \ k " is a

re�nement.

Lemma 4.18

1: r ! (s

1

k t)[s

2

k t] 6 (r ! s

1

[s

2

]) k t

2: r ! (s

1

; t)[s

2

; t]

�

=

(r ! s

1

[s

2

]); t

Proof We consider case 1. Case 2 then follows by Lemma 4.22.

transition

There are two possible transitions:

� If hr ! (s

1

k t)[s

2

k t];Mi

�

�!hs

1

k t;M

0

i then,

by (N1), h(r ! s

1

[s

2

]) k t;Mi

�

�!hs

1

k t;M

0

i. By re
exivity, s

1

k t 6 s

1

k t.

� If hr ! (s

1

k t)[s

2

k t];Mi

"

�!hs

2

k t;Mi then,

by (N0), h(r ! s

1

[s

2

]) k t;Mi

"

�!hs

2

k t;Mi. By re
exivity, s

2

k t 6 s

2

k t.

termination

There are no s

1

; s

2

; t

1

and t

2

such that r ! (s

1

k t)[s

2

k t]� skip , hence this case hold

vacuously. 2

4.4.2 Laws for Sequential Composition

The laws from Lemma 4.19 show that \;" is a monoid with unit skip.

Lemma 4.19

1: skip; s

�

=

s

2: s; skip

�

=

s

3: s

1

; (s

2

; s

3

)

�

=

(s

1

; s

2

); s

3

Proof

Cases 1. and 3. follow from the structural congruence and Lemma 4.7. We consider the

second case s; skip

�

=

s. We have to prove s; skip 6 s and s 6 s; skip. We give the details

for the former; the proof of the latter goes analogously.

Let R = f(s; skip; s) j s 2 Sg. We show that R is a simulation.

transition
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The only way to derive a transition for s; skip is by (N5) from

hs;Mi

�

�!hs

0

;M

0

i. By de�nition of R: (s

0

; skip; s

0

) 2 R. The case s � skip is

covered by termination.

termination

s; skip� skip only if s� skip .

2

4.4.3 Laws for Parallel Composition

The laws for parallel composition follow from structural congruence and Lemma 4.7.

They show that \ k " is a commutative monoid with unit skip.

Lemma 4.20

1: skip k s

�

=

s

2: s

1

k s

2

�

=

s

2

k s

1

3: s

1

k (s

2

k s

3

)

�

=

(s

1

k s

2

) k s

3

Proof By structural congruence and Lemma 4.7. 2

4.4.4 Laws of Distributivity of Parallel and Sequential Composition

The next Lemma yields a number of useful laws for the distribution of sequential and

parallel composition.

Lemma 4.21 Let s

i

2 S for 1 � i � 4, then (s

1

k s

3

); (s

2

k s

4

) 6 (s

1

; s

2

) k (s

3

; s

4

)

Proof

Let R = f((s

1

k s

3

); (s

2

k s

4

); (s

1

; s

2

) k (s

3

; s

4

)) j s

1

; s

2

; s

3

; s

4

2 Sg[ Id

S

. We show that R

is a simulation. For any pair (s; s) 2 Id

S

the conditions for transition and termination

hold by re
exivity of re�nement (Lemma 4.1(1)). We consider the interesting case.

transition

We consider the possible transitions.
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� By rule (N5) the �rst transition is derived from hs

1

k s

3

;Mi

�

�!hs

0

1

k s

0

3

;M

0

i. This

is in turn derived in one of the following ways.

1. By (N2) from hs

1

;Mi

�

�!hs

0

1

;M

0

i hence s

0

3

� s

3

.

By (N5) we get hs

1

; s

2

;Mi

�

�!hs

0

1

; s

2

;M

0

i.

By (N2) we infer h(s

1

; s

2

) k (s

3

; s

4

);Mi

�

�!h(s

0

1

; s

2

) k (s

3

; s

4

);M

0

i.

And ((s

0

1

k s

3

); (s

2

k s

4

); (s

0

1

; s

2

) k (s

3

; s

4

)) 2 R.

2. By (N2) from hs

3

;Mi

�

�!hs

0

3

;M

0

i hence s

0

1

� s

1

.

The proof is analogous to the previous case.

3. By (N3) from hs

1

;Mi

�

�!hs

0

1

;M

0

i and hs

3

;Mi

"

�!hs

0

3

;Mi. By (N5)

we get for the former hs

1

; s

2

;Mi

�

�!hs

0

1

; s

2

;M

0

i, and for the latter

hs

3

; s

4

;Mi

"

�!hs

0

3

; s

4

;Mi.

Then by (N3) we obtain h(s

1

; s

2

) k (s

3

; s

4

);Mi

�

�!h(s

0

1

; s

2

) k (s

0

3

; s

4

);M

0

i. And

((s

0

1

k s

0

3

); (s

2

k s

4

); (s

0

1

; s

2

) k (s

0

3

; s

4

)) 2 R.

4. By (N3) from hs

1

;Mi

"

�!hs

0

1

;Mi and hs

3

;Mi

�

�!hs

0

3

;M

0

i.

The proof is similar to the previous case.

5. By (N4) from hs

1

;Mi

�

1

�!hs

0

1

;M

1

i and hs

3

;Mi

�

2

�!hs

0

3

;M

2

i such that M j=

�

1

1�

2

. The proof is analogous to the previous case where use of (N3) should

be replaced by use of (N4).

� By (N9) from (s

1

k s

3

)� skip (hence s

1

� skip and s

3

� skip), and

hs

2

k s

4

;Mi

�

�!h(s

0

);M

0

i. From (skip; s

2

) k (skip; s

4

) � s

2

k s

4

we get, also by (N9),

that h(skip; s

2

) k (skip; s

4

);Mi

�

�!hs

0

;M

0

i.

Clearly (s

0

; s

0

) 2 Id

S

� R.

termination

(s

1

k s

3

); (s

2

k s

4

)� skip only if s

i

� skip for 1 � i � 4.

Then also (s

1

; s

2

) k (s

3

; s

4

)� skip .

2

The re�nement of Lemma 4.21 is represented graphically by Figure 6 where arrows denote

the execution in time of a schedule.
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S

S

S

1

3

2

4

S

S

S

S

1

3

S
2

4

Figure 6: re�nements of the Lemma 4.21

The �gure on the right hand side corresponds to the schedule (s

1

; s

2

) k (s

3

; s

4

). There

are two \threads" s

1

; s

2

and s

3

; s

4

that can proceed independently of each other. For

example, the thread s

1

; s

2

may terminate while the other thread is still executing s

3

. The

�gure on the left hand side represents the schedule (s

1

k s

3

); (s

2

k s

4

). In this schedule,

the semi-colon forces the two threads to synchronize after termination of s

1

and s

3

; i.e.

before starting execution of either s

2

or s

4

.

Corollary 4.22 Let s

1

; s

2

and s

3

2 S be schedules, then

1: s

1

; s

2

6 s

1

k s

2

2: s

1

; (s

2

k s

3

) 6 (s

1

; s

2

) k s

3

3: (s

1

k s

3

); s

2

6 (s

1

; s

2

) k s

3

Proof

All three follow from Lemma 4.21 by taking one or two terms equal to skip and

then using Lemma 4.19.

2

4.4.5 Laws for Conditional Composition

The laws for c . s[t] follow by propositional calculus and structural congruence.

Lemma 4.23

1: false . s[t]

�

=

t

2: true . s[t]

�

=

s

3: c . skip

�

=

skip

4: (c . s

1

)[t

1

]; (c . s

2

)[t

2

]

�

=

c . (s

1

; s

2

)[t

1

; t

2

]

5: (c . s

1

)[t

1

] k (c . s

2

)[t

2

]

�

=

c . (s

1

k s

2

)[t

1

k t

2

]

6: !(c . s[t])

�

=

c . (!s)[!t]
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In \c . r ! s[t]" the conditional is used to test whether or not the rule \r" needs to

be executed. A number of re�nement laws apply if some relation between conditions

c and b (of rule r) hold. The conditional c and the enabling condition b of r are both

formed over the variables x. In the following laws, we use c ) :b to mean: for all

valuations v, c[x := v] ) :b[x := v]. Lemma 4.24 relates conditional c to a enabling

condition b. There, fail denotes a rewrite rule that never succeeds (can only make failing

transitions). We can think of it as being de�ned as fail b=x ! m ( false. For any rule

r holds fail^ r, hence fail is a lowerbound for the set or multiset rewrite rules ordered

by the strengthening relation ^ .

Lemma 4.24

c . (fail; s

2

)[t]

�

=

c . (r ! s

1

[s

2

])[t] if c ) :b

Proof

1. If c = false, then c . (fail; s

2

)[t] � t. and c . (r ! s

1

[s

2

])[t] � t.

By re
exivity t

�

=

t.

If c = true, then c . (fail; s

2

)[t] � fail; s

2

and c . (r ! s

1

[s

2

])[t] � r ! s

1

[s

2

].

The only possible transition for fail; s

2

is hfail; s

2

;Mi

"

�!hs

2

;Mi.

Because c ) :b, the schedule r ! s

1

[s

2

] can only make the transition

hr ! s

1

[s

2

];Mi

"

�!hs

2

;Mi. By re
exivity s

2

�

=

s

2

.

2

Corollary 4.25 fail; t

�

=

fail ! s[t]

Proof Follows as a special case from Lemma 4.24 by taking c = true. 2

Execution of fail never changes the input-output behaviour of a schedule (or program).

Hence it can always be omitted. However, the notion of re�nement does not justify the

following law which we desire to remove failing rules

skip 
 fail

Here, the schedule on the left hand side has terminated. In order to constitute a re�ne-

ment (by De�nition 4.4 of simulation) the right hand side should also be terminated.

However, the schedule on the right hand side makes an "-transition before terminating.

It seems natural to extend the notion of re�nement such that it does not distinguish
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between di�ering numbers of failing transition in schedules. Research in this direction

will be published in future work [8].

4.4.6 Laws for Replication

In subsequent proofs we will use the notational convention that s

k

stands for k � 0

copies of schedule s composed in parallel. Formally: s

0

� skip, s

k+1

� s k s

k

.

Lemma 4.26 Let s 2 S, then s 6 !s.

Proof

transition

From hs;Mi

�

�!hs

0

;M

0

i we get by (N6) that h!s;Mi

�

�!hs

0

;M

0

i and s

0

6 s

0

as

required.

termination

s� skip implies, by (E8), !s� skip .

2

Lemma 4.27 Let s 2 S, then s k !s 6 !s

Proof

transition

From hs k !s;Mi

�

�!hs

0

;M

0

i we get by (N7) that h!s;Mi

�

�!hs

0

;M

0

i and s

0

6 s

0

as required.

termination

s k !s� skip only if s� skip , then also !s� skip .

2

Corollary 4.28 justi�es the intuition that \!s" stands for an arbitrary number of copies

of \s" composed in parallel.

Corollary 4.28 For all s 2 S, k � 1 : s

k

6 !s
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Proof

By induction on k.

k = 1:

s 6 !s by Lemma 4.26.

k > 1:

s

k

�

=

de�nition of s

k

, Lemma 4.7

s k s

k�1

6 Induction Hypothesis

s k !s

6 Lemma 4.27

!s

2

Corollary 4.29 For all s 2 S, k � 0 : s

k

k !s 6 !s

Proof

By induction on k.

k = 0:

From s

0

� skip follows by Lemma 4.20(1 and 2) that skip k !s

�

=

!s, hence, by Def-

inition 4.6, skip k !s 6 !s.

k > 0:

s

k

k !s

�

=

de�nition of s

k

, Lemma 4.7

(s

k�1

k s) k !s

�

=

Lemma 4.20(3)

s

k�1

k (s k !s)

6 Lemma 4.27

s

k�1

k !s

6 Induction Hypothesis

!s

2

An important property of replication is its idempotence. First, we prove the following

simpler case.
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Lemma 4.30 Let s 2 S, then !s k !s 6 !s

Proof

Let R = f(t k (!s k !s); t k !s) j s; t 2 Sg [ Id

S

. We prove that R is a simulation by

induction on the depth of the inference. We will use the following property of R

let (s

1

; s

2

) 2 R and t 2 S, then (t k s

1

; t k s

2

) 2 R (*)

Transition and termination follow directly for the case (s; t) 2 Id

S

. We consider the

remaining case.

transition

1. From (N2) by ht;Mi

�

�!ht

0

;M

0

i. Then by (N2) also ht k !s;Mi

�

�!ht

0

k !s;M

0

i.

Clearly (t

0

k (!s k !s); t

0

k !s) 2 R.

2. From (N2) by h!s k !s;Mi

�

�!hs

0

;M

0

i. This transition can in turn be derived in

�ve ways. Two of these are symmetric, hence we only need to consider three.

(a) By (N2) from h!s;Mi

�

�!hs

00

;M

0

i. This can be derived in two ways.

i. By (N6) from hs;Mi

�

�!hs

00

;M

0

i, hence s

0

= s

00

k !s. By (N2) we

derive the transition hs k !s;Mi

�

�!hs

00

k !s;M

0

i. By (N7) we infer

h!s;Mi

�

�!hs

00

k !s;M

0

i. Hence by (N2) ht k !s;Mi

�

�!ht k s

00

k !s;M

0

i.

Clearly (t k s

00

k !s; t k s

00

k !s) 2 Id

S

� R.

ii. By (N7) from hs k !s;Mi

�

�!hs

00

;M

0

i, hence s

0

= s

00

k !s. By (N2) we

infer hs k !s k !s;Mi

�

�!hs

00

k !s;M

0

i. The derivation for this transition

is shorter than the derivation of the transition we want to prove the

proposition for, hence by induction we get hs k !s;Mi

�

�!hs

000

;M

0

i such

that (s

00

k !s; s

000

) 2 R. By (N7) also h!s;Mi

�

�!hs

000

;M

0

i. By (N2)

ht k !s;Mi

�

�!ht k s

000

;M

0

i. From (s

00

k !s; s

000

) 2 R follows by (*) that

(t k s

00

k !s; t k s

000

) 2 R.

(b) By (N3) from h!s;Mi

�

�!hs

00

;M

0

i and h!s;Mi

"

�!hs

000

;Mi. If we proceed by

induction on the depth of the inference of the former, then the proof proceeds

analogously to the previous case (where we use (N3) rather than (N2)).
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(c) By (N4) from h!s;Mi

�

1

�!hs

1

;M

1

i, and h!s;Mi

�

2

�!hs

2

;M

2

i whereM j= �

1

1�

2

.

This case goes analogously to the previous case (where we use (N4) instead

of (N3)).

3. By (N3) from ht;Mi

�

�!ht

0

;M

0

i and h!s k !s;Mi

"

�!hs

0

;Mi.

The proof is analogous to the previous case.

4. By (N3) from ht;Mi

"

�!ht

0

;Mi and h!s k !s;Mi

�

�!hs

0

;M

0

i.

The proof is analogous to the previous case.

5. By (N4) from ht;Mi

�

1

�!ht

0

;M

1

i and h!s k !s;Mi

�

2

�!hs

0

;M

2

i

such that M j= �

1

1�

2

. The proof is analogous to the previous case.

termination

t k !s k !s� skip only if t� skip and !s� skip , hence t k !s� skip .

2

Corollary 4.31 Let s 2 S, then for all k : k � 1 : (!s)

k

6 !s

Proof

By induction on k.

k = 1:

From re
exivity of 6 .

k > 1:

(!s)

k

�

=

De�nition t

k

, Lemma 4.7

!s k (!s)

k�1

6 Induction Hypothesis

!s k !s

6 Lemma 4.30

!s

2
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Lemma 4.32 Let s 2 S, then !(!s) 6 !s

Proof

Let R = f(t k !(!s); t k !s) j s; t 2 Sg [ Id

S

. We show that R is a simulation up{to{ 6 .

We will use the following property of R:

If (s

1

; s

2

) 2 6R6 and t 2 S, then (t k s

1

; t k s

2

) 2 6R6 (*)

For any pair (s; s) 2 Id

S

the conditions for transition and termination hold by re
exivity

of re�nement (Lemma 4.1(1)). We consider the remaining case.

transition

By induction on the length of the inference of a transition ht k !(!s);Mi

�

�!ht

0

k s

0

;M

0

i.

1. By (N2) from ht;Mi

�

�!ht

0

;M

0

i. Then by (N2) ht k !s;Mi

�

�!ht

0

k !s;M

0

i. Clearly

(t

0

k !(!s); t

0

k !s) 2 6R6 .

2. By (N2) from h!(!s);Mi

�

�!hs

0

;M

0

i. This transition can be derived in two ways:

(a) By (N6) from h!s;Mi

�

�!hs

0

;M

0

i. Then by (N2) ht k !s;Mi

�

�!ht k s

0

;M

0

i.

And (t

0

k s

0

; t

0

k s

0

) 2 Id

S

� 6R6 .

(b) By (N7) from h!s k !(!s);Mi

�

�!hs

0

;M

0

i. By the induction hypothesis

h!s k !s;Mi

�

�!hs

00

;M

0

i such that (s

0

; s

00

) 2 6R6 . From Lemma 4.30 fol-

lows h!s;Mi

�

�!hs

000

;M

0

i such that (s

00

; s

000

) 2 6 . By transitivity of 6

follows that (s

0

; s

000

) 2 6R6 . By (N2) follows ht k !s;Mi

�

�!ht k s

000

;M

0

i.

From (s

0

; s

000

) 2 6R6 and (*) follows (t k s

0

; t k s

000

) 2 6R6 .

3. By (N3) from ht;Mi

�

�!ht

0

;M

0

i and h!(!s);Mi

"

�!hs

0

;Mi. From case (2) follows

for the latter that h!s;Mi

"

�!hs

00

;Mi such that (s

0

; s

00

) 2 6R6 . From (N3) then

follows ht k !s;Mi

�

�!ht

0

k s

00

;M

0

i and by (*) we deduce (t

0

k s

0

; t

0

k s

00

) 2 6R6 .

4. By (N3) from ht;Mi

"

�!ht

0

;Mi and h!(!s);Mi

�

�!hs

0

;M

0

i.

The proof is analogous to the previous case.

5. By (N4) from ht;Mi

�

1

�!ht

0

;M

1

i and h!(!s);Mi

�

2

�!hs

0

;M

2

i where M j= �

1

1�

2

.

The proof is analogous to the previous case.

termination
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t k !(!s) � skip only if t � skip and !(!s) � skip. From the latter follows by (E8)

that !s� skip , hence t k !s � skip.

2

Lemma 4.33 Let s 2 S, then !(!s)

�

=

!s

Proof

!s 6 !(!s) follows from Lemma 4.26,

!(!s) 6 !s follows from Lemma 4.32.

2

The next lemma proves a re�nement concerning distributivity of replication over parallel

composition.

Lemma 4.34 Let s

1

; s

2

2 S, then !(s

1

k s

2

) 6 (!s

1

) k (!s

2

)

Proof

LetR = f(t k !(s

1

k s

2

); t k (!s

1

) k (!s

2

))g[Id

S

. We show thatR is a simulation up{to{ 6 .

We will use that R satis�es the following property

If (s

1

; s

2

) 2 6R6 and t 2 S, then (t k s

1

; t k s

2

) 2 6R6 (*)

For any pair (s; s) 2 Id

S

the conditions for transition and termination hold by re
exivity

of re�nement (Lemma 4.1(1)). We consider the remaining case.

transition

By induction on the depth of the inference.

1. By (N2) from ht;Mi

�

�!ht

0

;M

0

i. Then by (N2) ht k !s

1

k !s

2

;Mi

�

�!ht

0

k !s

1

k !s

2

;M

0

i.

Clearly (t

0

k !(s

1

k s

2

); t

0

k (!s

1

) k (!s

2

) 2 6R6 .

2. By (N2) from h!(s

1

k s

2

);Mi

�

�!hs

0

;M

0

i. This transition can be derived in 2 ways.

(a) by (N6) from hs

1

k s

2

;Mi

�

�!hs

0

;M

0

i. Transitions for s

1

k s

2

can be derived

in �ve ways. By symmetry of s

1

k s

2

� s

2

k s

1

we only have to consider three

cases.
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i. By (N2) from hs

1

;Mi

�

�!hs

0

1

;M

0

i hence h!(s

1

k s

2

);Mi

�

�!hs

0

1

k s

2

;M

0

i.

By (N6) we infer from the former h!s

1

;Mi

�

�!hs

0

1

;M

0

i. By (N2)

we obtain ht k !s

1

k !s

2

;Mi

�

�!ht k s

0

1

k !s

2

;M

0

i. Because s

2

6 !s

2

and

(t k s

0

1

k s

2

; t k s

0

1

k s

2

) 2 R we have (t k s

0

1

k s

2

; t k s

0

1

k !s

2

) 2 6R6 .

ii. By (N3) from transitions hs

1

;Mi

�

�!hs

0

1

;M

0

i and hs

2

;Mi

"

�!hs

0

2

;Mi,

hence h!(s

1

k s

2

);Mi

�

�!hs

0

1

k s

0

2

;M

0

i. By (N6) we infer h!s

1

;Mi

�

�!hs

0

1

;M

0

i

and h!s

2

;Mi

"

�!hs

0

2

;Mi. By (N3) we get h!s

1

k !s

2

;Mi

�

�!hs

0

1

k s

0

2

;M

0

i.

By (N2) we obtain ht k !s

1

k !s

2

;Mi

�

�!ht k s

0

1

k s

0

2

;M

0

i. Because Id

S

� R

we have (t k s

0

1

k s

0

2

; t k s

0

1

k s

0

2

) 2 6R6 .

iii. By (N4) from hs

1

;Mi

�

1

�!hs

0

1

;M

1

i and hs

2

;Mi

�

2

�!hs

0

2

;M

2

i with

M j= �

1

1�

2

. The proof proceeds analogously to the preceding case.

(b) by (N7) from h(s

1

k s

2

) k !(s

1

k s

2

);Mi

�

�!hs

0

;M

0

i. By the induction hy-

pothesis we get h(s

1

k s

2

) k (!s

1

) k (!s

2

);Mi

�

�!hs

00

;M

0

i such that (s

0

; s

00

) 2

6R6 . By Lemma 4.20(3) this can be equivalently written as

h(s

1

k !s

1

) k (s

2

k !s

2

);Mi

�

�!hs

00

;M

0

i. From Lemma 4.27 and Lemma 4.11

follows s

1

k !s

1

k s

2

k !s

2

6 !s

1

k !s

2

, hence h(!s

1

) k (!s

2

);Mi

�

�!hs

000

;M

0

i such

that (s

00

; s

000

) 2 6 . By (N2) we infer ht k (!s

1

) k (!s

2

);Mi

�

�!ht k s

000

;M

0

i.

From (s

0

; s

00

) 2 6R6 and (s

00

; s

000

) 2 6 we get by transitivity of 6 that

(s

0

; s

000

) 2 6R6 , hence by (*) follows (t k s

0

; t k s

000

) 2 6R6 .

3. by (N3) from ht;Mi

�

�!ht

0

;M

0

i and h!(s

1

k s

2

);Mi

"

�!hs

0

;Mi. The proof is a

routine combination of the preceding cases.

4. by (N3) from ht;Mi

"

�!ht

0

;Mi and h!(s

1

k s

2

);Mi

�

�!hs

0

;M

0

i. The proof is a

routine combination of the preceding cases.

5. by (N4) from ht;Mi

�

1

�!ht

0

;M

1

i and h!(s

1

k s

2

);Mi

�

1

�!hs

0

;M

2

i whereM j= �

1

1�

2

.

The proof is analogous to the preceding case.

termination

t k !(s

1

k s

2

) � skip implies t � skip and s

1

� skip and s

2

� skip. Then also

t k (!s

1

) k (!s

2

) � skip.

2
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We recall the laws for replication presented in this section

1: s 6 !s

2: s k !s 6 !s

3: !s k !s 6 !s

4: !(s

1

k s

2

) 6 !s

1

k !s

2

5: !(!s)

�

=

!s

We end this section by returning to the re�nement of Example 4.3 at the end of Section

4.2. There, simulation was used to prove the validity of the re�nement. Here we will use

the re�nement laws. The example shows that the same re�nement can be proven much

more concisely using equational reasoning.

Example 4.4 Let r

1

and r

2

be rules, then

(r

1

; r

2

) k (r

2

; r

1

) 6 !(r

1

k r

2

)

In order to show this consider the following proof

Proof

(r

1

; r

2

) k (r

2

; r

1

)

6 s

1

; s

1

6 s

1

k s

2

(r

1

k r

2

) k (r

2

k r

1

)

�

=

s

1

k s

2

�

=

s

2

k s

1

(r

1

k r

2

) k (r

1

k r

2

)

6 s 6 !s

(r

1

k r

2

) k !(r

1

k r

2

)

6 s k !s 6 !s

!(r

1

k r

2

)

2

4.5 Re�nement and Determinism

In [14], Hankin et al. de�ne a re�nement ordering on programs by considering the input-

output relation they induce: a program P

1

is considered a re�nement of P

2

if the set of
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possible outcomes of P

1

is contained in the set of possible outcomes of P

2

. Using this

ordering, the intermediate steps taken by a program to achieve its output are not taken

into account.

For the re�nement of schedules, as studied in this report, we are interested in the be-

haviour that schedules exhibit in order to compute correct output. Consequently, our

notion of re�nement considers a schedule s

1

to be a correct implementation of another

schedule s

2

if the set of behaviours of s

1

are contained in the set of behaviours of s

2

.

In this section we prove that re�nement of schedules reduces the nondeterminism of the

input-output behaviour and hence respects the (relational) ordering on programs (as

used in [14]).

De�nition 4.10 We de�ne the divergence predicate " on con�gurations:

hs;Mi" if and only if hs;Mi = hs

0

;M

0

i and for all i � 0 there exists a �

i

such that

hs

i

;M

i

i

�

i

�!hs

i+1

;M

i+1

i.

The capability of a con�guration is de�ned as the set of possible multisets it may pro-

duce, plus the special symbol ? if the con�guration may never terminate. The capability

function thus associates with any con�guration, its input-ouput behaviour. Using our

notation, the de�nition of the capability function for Gamma programs from [14] be-

comes:

De�nition 4.11 Let P be the set of Gamma programs. The capability function for

programs C : P � M ! P(M ) [ f?g is de�ned as

C(s;M) = f? j hP;Mi"g [

fM

0

j hP;Mi

�

;

�

hP

0

;M

0

i

p

g

De�nition 4.12 Analogously, we de�ne the capability function for schedules

C : S� M ! P(M ) [ f?g as

C(s;M) = f? j hs;Mi"g [

fM

0

j hs;Mi

�

�!

�

hskip;M

0

ig

In [9] it was shown how to construct, for any Gamma program P , a schedule �

P

such
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that the behaviours of the schedule �

P

and the program P correspond. This was used as

justi�cation for using schedules as a representation of the behaviour of Gamma programs.

This behavioural correspondence entails input-output equivalence.

Lemma 4.35 Let P be a Gamma program and let �

P

be its most general schedule.

Then, for all M , C(P;M) = C(�

P

;M).

Proof

C(P;M) � C(�

P

;M):

Let x 2 C(P;M). If x = M

0

(for some M

0

), then P terminates, and the result follows

from Theorem 1 in (Section 5 of) [7].

If x = ?, then the result can be proven as follows:

By induction on the structure of program P :

� P is simple:

First prove that hP;Mi

�

; hP;M

0

i ) h
;Mi

�

�!h


0

;M

0

i where 
 is a �

P

de-

rived schedule. The case hP;Mi

�

;

�

hP;M

0

i ) h
;Mi

�

�!

�

h


0

;M

0

i then follows

straigthforwardly by induction on the length of the sequence of transitions.

� P = P

1

� P

2

:

Follows staightforwardly using Theorem 1 from [7] and the previous case.

C(�

P

;M) � C(P;M):

Let x 2 C(�

P

;M). If x = M

0

(for some M

0

), then �

P

terminates, and the result follows

from Theorem 2 in (Section 5 of) [7].

If x = ?, then the result follows easily using Lemma 3 of (Section 5 in) [7] and induction

on the structure of P . 2

Re�nement of schedules preserves the relational ordering on P(M ):

Theorem 4.36 Let s and t be two schedules such that s 6 t, then, for all M , C(s;M) �

C(t;M).

Proof Let x 2 C(s;M), we have to show that x 2 C(t;M). Consider the following

cases:

� x = ?:

Hence hs;Mi = hs

0

;M

0

i and for all i � 0 there exists a �

i

such that
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hs

i

;M

i

i

�

i

�!hs

i+1

;M

i+1

i. By s 6 t follows ht;Mi = ht

0

;M

0

i and for all i � 0

there exists a �

i

such that ht

i

;M

i

i

�

i

�!ht

i+1

;M

i+1

i. Hence ? 2 C(t;M).

� x = M

0

:

Hence hs;Mi

�

�!

�

hskip;M

0

i. By s 6 t follows ht;Mi

�

�!

�

hskip;M

0

i, hence M

0

2

C(t;M).

2

5 Application: Coordinating a Shortest Paths Pro-

gram

We demonstrate application of the re�nement laws by considering an example problem

that is commonly known as the single source shortest paths problem. Pursuing separa-

tion between computation and coordination we shall �rst specify the basic computation

that is required to solve the problem in Gamma. After that we shall relate several coor-

dination strategies.

The problem description is as follows. Assume we are given a directed graph G = (V;E)

with n vertices v

1

; : : : ; v

n

. A function L associates with every edge (u; v) 2 E a non-

negative length L(u; v). If there is no edge between vertices u and v, then we take

L(u; v) = 1. Also L(u; u) = 0 for all vertices u. Given a source vertex s 2 V , the

problem is to determine for every vertex v 2 V , the length of a shortest path from s to

v.

A Gamma program for solving this problem is given by the rule:

�nd(u; v) b=(u; x); (v; y) ! (u; x); (v; x+ L(u; v)) ( x + L(u; v) < y

The multiset consists of pairs (v; x), where v is a vertex number and x is the length

of a path from the source s to v. The initial multiset is given by: M

0

= f(s; 0)g [

f (v;1) j v 2 V � fsg g.
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Though the program performs the required computation, as can be proven formally

using techniques from [4], it is hopelessly ine�cient because of its unstructured search

through the graph. We may coordinate the program's activities into a coherent (more

deterministic) searching strategy by conducting a directed search on the graph starting

from the source. From a given vertex u the search proceeds by an attempt to construct a

shorter path to every adjacent vertex v (in no preferred order). If the attempt succeeds,

the search is continued; otherwise the search at v is aborted. A schedule that expresses

this strategy is given by Search(s), where

Search(u) b= Visit(1; u)

Visit(i; u) b= (i � n) . (�nd(u; i) ! Search(i)) k Visit(i + 1; u)

Note that the schedule still exhibits highly nondeterministic behaviour. The paths in

the graph are traversed in any order (possibly in parallel). Using the re�nement laws,

however, we can transform the schedule into more deterministic versions. To illustrate,

we shall derive a depth-�rst, a breadth-�rst, and a parallel breadth-�rst ordering from

the schedule Search.

5.1 Depth-First Search

Using Corollary 4.22.1 we may replace the parallel composition, which is at the basis

of schedule Search, by a sequential composition. This results in a strategy where the

vertices in the graph are visited in a depth-�rst order.

DepthFirst(u) b= DFVisit(1; u)

DFVisit(i; u) b= (i � n) . (�nd(u; i) ! DepthFirst(i));DFVisit(i + 1; u)

The proof that the depth-�rst ordering is a correct re�nement of the parallel strategy, i.e.

DepthFirst(s) 6 Search(s), follows immediately using Corollary 4.22.1 and Lemma 4.15.

5.2 Breadth-First Schedule

An alternative to Corollary 4.22.1 to introduce sequential behaviour is presented by

Lemma 4.18.1. It appears that repetitive application of this law to the parallel compo-

sition of schedule Search ultimately yields a breadth-�rst ordering.
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As is standard, the schedule for a breadth-�rst search maintains a sequence of vertices

that are yet to be visited. We write v � w to denote the sequence w with the element v

prepended, and w � u for u appended to w. We use h i to denote the empty sequence.

A breadth-�rst ordering can now be expressed by the following recursive schedule de�-

nitions:

BreadthFirst(h i) b= skip

BreadthFirst(u � w) b= BFVisit(1; u; w)

BFVisit(i; u; w) b= (i � n) . �nd(u; i) ! BFVisit(i+ 1; u; w � i)

[BFVisit(i + 1; u; w)]

[BreadthFirst(w)]

The proof that breadth-�rst search is a correct re�nement of the parallel strategy, i.e.

BreadthFirst(h s i) 6 Search(s), is somewhat more involved than the case of a depth-�rst

ordering, therefore we present it here as a more detailed example of application of the

re�nement laws.

The proof is largely based on an intermediate result that we present �rst. We use x#y

to denote the set of interleavings of sequences x and y. More formally:

De�nition 5.1 Let x and y be two �nite sequences, the set of their interleavings, denoted

x#y, is de�ned by

1: h i#x = fxg

2: x#h i = fxg

3: x

1

� x

0

#y

1

� y

0

= fx

1

� z j z 2 x

0

#(y

1

� y

0

)g [ fy

1

� z j z 2 (x

1

� x

0

)#y

0

g

Associativity of concatenation carries over onto interleaving. From the symmetry of

interleaving, we deduce that # is a commutative operator; furthermore # has unit h i.

Summarized, the interleaving operator \#" has the following properties:

(I0) 1: x#(y#z) = (x#y)#z associativity

2: x#y = y#x commutativity

(I1) If w 2 w

1

#w

2

and w = h i, then w

1

= h i and w

2

= h i.
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(I2) If u �w 2 w

1

#w

2

, then w

1

= u �w

0

1

and w 2 w

0

1

#w

2

or w

2

= u �w

0

2

and w 2 w

1

#w

0

2

.

(I3) If w 2 w

1

#w

2

, then (w � i) 2 (w

1

� i)#w

2

.

Lemma 5.1 Let w;w

1

and w

2

be sequences of vertices such that w 2 w

1

#w

2

. Let n � 0,

1 � i � n, and u 2 V , then BFVisit(i; u; w) 6 BFVisit(i; u; w

1

) kBF (w

2

)

Proof

The result follows by showing that R, de�ned as

R = fBFVisit(i; u; w);BFVisit(i; u; w

1

) k BreadhtFirst(w

2

) j

i � 0; 1 � u � n; w 2 w

1

#w

2

; w

1

; w

2

2 V

�

g

is a simulation.

transition

We consider the possible transitions of BFVisit(i; u; w). First consider the case i � n.

There are two possible transitions:

1. Assume, h�nd(u; i) ! BFVisit(i+ 1; u; w � i)[BFVisit(i + 1; u; w)];Mi

�

�!

hBFVisit(i + 1; u; w � i);M

0

i

Using (N8) we get

hBFVisit(i; u; w);Mi

�

�!hBFVisit(i + 1; u; w � i);M

0

i

Analogously, we get for BFVisit(i; u; w

1

)

hBFVisit(i; u; w

1

);Mi

�

�!hBFVisit(i + 1; u; w

1

� i);M

0

i

hence, by (N2), for BFVisit(i; u; w

1

� i) kBreadhtFirst(w

2

):

hBFVisit(i; u; w

1

) kBreadhtFirst(w

2

);Mi

�

�!

hBFVisit(i + 1; u; w

1

� i) kBreadhtFirst(w

2

);M

0

i

From w 2 w

1

#w

2

follows by (I3) that w � i 2 (w

1

� i)#w

2

, hence

(BFVisit(i+ 1; u; w � i);BFVisit(i + 1; u; w

1

� i) k BreadthFirst(w

2

)) 2 R.
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2. The proof for h�nd(u; i) ! BFVisit(i + 1; u; w � i)[BFVisit(i+ 1; u; w)];Mi

"

�!

hBFVisit(i+ 1; u; w);M

0

i

is analogous to the previous case.

Next, we consider the case i > n and w = u

0

�w

0

. Then BFVisit(i; u; w)

�

=

BreadthFirst(w)

and BreadthFirst(w)

�

=

BFVisit(1; u

0

; w

0

). From u

0

� w

0

2 w

1

#w

2

follows by (I2) that

w

1

= u

0

� w

0

1

or w

2

= u

0

� w

0

2

.

� w

1

= u

0

� w

0

1

: Then

BFVisit(i; u; w

1

) kBreadthFirst(w

2

)

'

BreadthFirst(w

1

) kBreadthFirst(w

2

)

'

BFVisit(1; u

0

; w

0

1

) kBreadthFirst(w

2

)

The previous case (i � n), then gives

(BFVisit(1; u

0

; w

0

);BFVisit(1; u

0

; w

0

1

) k BreadthFirst(w

2

)) 2 R.

� w

2

= u

0

� w

0

2

: Then

BFVisit(i; u; w

1

) kBreadthFirst(w

2

)

'

BreadthFirst(w

1

) kBreadthFirst(w

2

)

'

BreadthFirst(w

1

) kBFVisit(1; u

0

1

; w

0

2

)

The remainder of the proof is analogous to the previous case.

termination

BFVisit(i; u; w) � skip only if i > n and w = h i. Then, from the de�nition of

BreadthFirst follows: BreadthFirst(w)

�

=

skip. From (I1) follows w

1

= h i and w

2

= h i,

hence by de�nition of BreadthFirst follows BreadthFirst(w

1

) kBreadthFirst(w

2

)� skip .

2
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Using Lemma 5.1 we reason as follows:

BFVisit(i; u; w)

�

=

(i � n) . �nd(u; i) ! BFVisit(i+ 1; u; w � i)

[BFVisit(i+ 1; u; w)]

[BreadthFirst(w)]

6 Lemma 5:1

(i � n) . �nd(u; i) ! BFVisit(i+ 1; u; w) k BreadthFirst(h i i)

[BFVisit(i+ 1; u; w)]

[BreadthFirst(w)]

6 Lemmas 4:20; and 4:18:1

(i � n) . (�nd(u; i) ! BreadthFirst(h i i)) k BFVisit(i+ 1; u; w)

[BreadthFirst(w)]

Finally, we prove the speci�c case BreadthFirst(h s i) 6 Search(s) as follows

BFVisit(i; u; h i)

�

=

def:BFVisit

(i � n) . (�nd(s; i) ! BreadthFirst(h i i)) k BFVisit(i + 1; s; h i)

[BreadthFirst(h i)]

�

=

def: BreadthF irst; Lemma 4:20

(i � n) . (�nd(s; i) ! BreadthFirst(h i i)) k BFVisit(i + 1; s; h i)

The latter schedule term can be seen to equal Visit(1; s), by substituting Search(i)

for BreadthFirst(h i i) and Visit(i; u) for BFVisit(i; u; h i). Hence the re�nement

BreadthFirst(h s i) 6 Search(s) follows from the schedule de�nitions of BreadthFirst and

Search and Lemma 4.15.

5.3 Parallel Breadth-�rst Search

We conclude the examples with a parallel version of breadth-�rst search that recursively

divides the searching process into two if the amount of work exceeds some prede�ned

threshold k � 1. A schedule that conducts this kind of search is a variation of the

previous schedule and is de�ned as follows, where the schedule ParBFVisit is a renamed

version of BFVisit from Section 5.2
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ParBF (h i) b= skip

ParBF (h v

1

; : : : ; v

m

i) b=

(m > k) . ParBF (h v

1

; : : : ; v

m div 2

i) kParBF (h v

m div 2+1

; : : : ; v

m

i)

[ParBFVisit(1; v

1

; h v

2

; : : : ; v

m

i)]

ParBFVisit(i; u; w) b= (i � n) . �nd(u; i) ! ParBFVisit(i + 1; u; w � i)

[ParBFVisit(i+ 1; u; w)]

[ParBF (w)]

Lemma 5.2 ParBF (h s i) 6 Search(s)

Proof

Let R = f(�

m

j=1

ParBFVisit(i

j

; u

j

; w

j

);�

m

j=1

(Visit(i

j

; u

j

) k�

jw

j

j

k=1

Search(w

j

k

))) j m � 0g.

The result follows by showing that R is a simulation.

This is a routine proof by induction on m. 2

As an alternative to the proof of BreadthFirst(h s i) 6 Search(h s i) of Section 5.2,

we could use transitivity of 6 and combine Lemma 5.2 with a proof of

BreadthFirst(h s i) 6 ParBF (h s i).

Lemma 5.3 BreadthFirst(h s i) 6 ParBF (h s i)

Proof

Let R = f(BFVisit(i; u; w);ParBFVisit(i; u; ) k�

q

j=1

ParBF (w

j

)) j i � 1; 1 � u � n;

w 2#

q

j=1

w

j

g. It is straightforward to show that R is a simulation. 2

We now arrive at the re�nement ordering

BreadthFirst(h s i) 6 ParBF (h s i) 6 Search(s)

6 Related Work

The computational models of action systems [1] andUNITY [6] resemble that of Gamma

in that a program, consisting of a set of actions, operates upon a shared storage by non-

deterministically selecting actions for execution. This nondeterminism in the selection
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of actions makes them in principle suitable for coordination by schedules.

The method for re�nement of action systems [2] is based on the weakest-precondition

calculus and proceeds by transforming an initial sequential program into a parallel one.

Re�nement of UNITY programs [16] also uses wp-based reasoning, but more promi-

nently employs temporal logic. An initial (non-executable) speci�cation is successively

re�ned into a speci�cation that is suitable for execution on a particular architecture.

In the approach we presented here, a Gamma program constitutes an executable speci-

�cation of the input-output behaviour with high potential for parallelism. The freedom

this o�ers for operational behaviour is subsequently handled by schedules. Hence, in

contrast with action systems, we start with parallel behaviour and decrease the paral-

lelism.

Furthermore, both action systems and UNITY change their initial program or speci�ca-

tion to incorporate more operational detail. Using our approach, operational behaviour is

speci�ed using a coordination language, thereby achieving an explicit separation between

computation and coordination.

7 Conclusion

Our aim is to develop a design method for (parallel) programs where computation is

separated from coordination. The choice for Gamma as a language to specify the basic

computations of a program is motivated by its highly nondeterministic and inherently

parallel execution model. This enables the programmer to �rst concentrate on the com-

putational aspects of a given problem. E�ciency issues are addressed in a second phase

of the design process, where one or more optimized versions of the program are created

using a coordination language. The coordination component is speci�ed separately, leav-

ing the computational part of the program una�ected.

Using such an approach, it is important that we are able to reason about coordination.

In this paper we proposed a compositional notion of re�nement that can be used to prove

that one coordination strategy is a (totally) correct implementation of another. Our re-

�nement relation is an adaptation of strong bisimulation to the shared state model. It
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induces a number of basic laws that, as we have illustrated, can be applied in an algebraic

way of reasoning about coordination. The present notion of re�nement is able to resolve

only one type of nondeterminism in Gamma: the selection of rules. Research currently

proceeds on a larger re�nement relation that also supports the increase of determinacy

in the selection of elements from the multiset.
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