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1 Introduction

The development of plants and animals is governed by
the genetic information contained in each cell of the
organism. Each cell contains the same genetic informa-
tion (thegenotype), which determines the way in which
each cell behaves and, as a result of that, the final form
and functioning of the organism (thephenotype). This
genetic information is not a blueprint of that final form
but can be seen as arecipe[4] that is followed not by the
organism as a whole but by each cell individually. The
shape and behaviour of a cell depend on those genes that
are expressed in its interior. Which genes actually are
expressed depends on the context of the cell. Already at
the very beginning of an organism’s life, subtle intercel-
lular interaction takes place, changing the set of genes
that are expressed in each cell. This process ofcell dif-
ferentiation is responsible for the formation of all differ-
ent organs.

In order to model this kind of development in plants
the biologist Aristid Lindenmayer developed a mathe-
matical construct called ‘L-systems’ [12]. With an L-
system, a sequence of symbols can be rewritten into
another sequence, by rewriting all symbols in the string
in parallel into other symbols, using so-called ‘rewriting
rules’. Whether a specific rewriting rule can be applied
or not depends on which rules have been applied in the
past and on the neighbouring symbols of the symbol to
be rewritten.

In our research [1, 2, 3, 8] we tried to find a way to
implement agrowth model that could generate artificial
neural networks. To optimize the design of such a net-

work for a specific task, we used a genetic algorithm to
optimize the rules to be used by the growth model.
What we needed was a context sensitive graph rewriting
system that could generatemodular graphs. After trying
several alternatives [1] we focused on L-systems
because they make use of context and were already used
to generate biological structures. The changes to the L-
system mechanism which were needed to construct a
graph grammar will be presented in this paper.

The rest of this paper has the following structure: the
next section will describe in short the workings of sim-
ple L-systems. Sections 3 and 4 will explore some of
the possibilities of L-systems. Sections 5 and 6 will give
a description of how we can adapt the operation and
interpretation of a 2L-system (see section 3) to get a
Graph-2L-System (G2L-System). Section 7 will give a
short description of the application of the developed
grammar: genetically optimizing artificial neural net-
works. Also a short introduction to the ideas behind
genetic algorithms and artificial neural networks will be
presented. A comparison with other methods that use
graph grammars to generate neural networks is given in
section 8. Our conclusions of using the G2L-system and
some further research possibilities will be in section 9.

2 L-systems

L-systems are parallel string rewriting mechanisms. A
grammar, the definition of what is called alanguage in
formal language theory, consists of an alphabet, a start-
ing string and a set of rewriting rules. The starting
string, also known as theaxiom, is rewritten by applying
the rewriting rules: each rule describes how a certain
symbol or string should be rewritten into another string
of symbols. Whereas in most other grammars rewriting
rules are applied sequentially, in an L-system all rewrit-
ing rules are applied in parallel to generate the next
string in the rewriting process.
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We define the L-system grammarG of a languageL
as:

,
whereΣ is the finite set of symbols or alphabet of the
language, Π is the finite set of rewriting rules (also: pro-
duction rules), and  is the starting string (axiom)
of L.

is the set of rewriting rules. Each rewriting rule defines
a unique rewriting of a symbol ofΣ, the left side of the
rewriting rule, into a string , the right side of the
rewriting rule. All symbols in  that do not appear as
the left side of a rewriting rule are rewritten into them-
selves. For clarity, these default rewriting rules are usu-
ally not included in .
Example 1—If we take the L-system

with

we get the following language:

. ❏

The example shows that each rewriting rule is applied in
parallel in consecutiverewriting steps. After each
rewriting step, all symbols of the original string which
matched with the left side of a rewriting rule have been
rewritten into their successor, as defined by the right side
of this rewriting rule. The language  is the set of all
strings that are generated by applying the rewriting
rules; each rewriting step generates the next string of the
language until no more rules apply.

Alternatively, one could view the set of rewriting rules
Π as anoperator. Applying the operatorΠ to a string
executes all rewriting rules as explained above. Using
this operator, we can write the language  produced by
a grammar  in a shorter form as:

3 Extensions of L-systems
The simple L-systems described in the previous para-
graph can be extended withcontext sensitivity, which is
used to generate conditional rewriting rules.
Example 2—The rewriting rule

expresses thatB may only be rewritten if it is preceded
by anA. ❑

In general the context sensitive rewriting rules will have
this form:

,
with

.

G Σ Π α, ,{ }=

α Σ∗∈

Π π π:Σ Σ∗→{ }=

s Σ∗∈
Σ

Π

G Σ Π α, ,{ }=

Σ A B C, ,{ } ,=

Π A BA→ B CB→ C AC→, ,{ } and=

α ABC=

L ABC BACBAC CBBAACCBBAAC…, , ,{ }=

L

L
G

L α Πα Π Πα( ) Π Π Πα( )( ) …, , , ,{ }=

Π= ∗α.

A B< C→

L P< R S→>

P Σ∈ andL R S Σ∈, ∗,

P, the predecessor, andS, the successor, are what we ear-
lier called the left and right side of a rewriting rule.L
andR, the left and right context respectively, determine
whether or not a rewriting rule will be applied to a sym-
bol  in the string. Only those symbolsP with L on its
left andR on its right side will be rewritten. One or both
contexts may be empty, in which case only the context
that is present in the rewriting rule will be checked.

Example 3—Suppose our current string in the rewriting
process of an L-system is:

,

and we have the following rewriting rules:

the string that results after one rewriting step is:

. ❑

L-systems without context are called 0L-systems. L-
systems with one-sided context or two-sided context are
called 1L-systems or 2L-systems respectively. It is
allowed to have empty contexts, which implies† that:

.

If two rewriting rules apply for a certain symbol, one
with and one without context, the one with context is
used. In general, the rewriting rule that is more specific
will prevail. It is, however, possible to get conflicts
between several rules that can be applied to the same
symbol.

Two other extensions areprobabilistic rewriting rules
and rewriting ruleranges. With probabilistic rewriting
rules, more than one successor can be given for the same

, each with a fixed probability. When rewrit-
ing a string, one of the rules is selected with a chance
proportional to its probability. Rewriting rule ranges
introduce a temporal aspect to the L-system by telling
which rules are active at a certain rewriting step.

4 Interpretation of strings

When we attach a specific meaning (based on a LOGO-
style turtle, [17]) to the symbols in a string, we are able
to visualize the strings resulting from the rewriting steps.

The usual—see e.g. [14]—interpretation of the sym-
bols used is as follows:

• ‘F’: draw a line in the current direction,

• ‘+’: rotate ϕ° to the left and

• ‘−’: rotateϕ° to the right.

Example 4—The well-known Koch graph from figure 1,
can be described by the following L-system:

†The proof that this is a strict hierarchy is trivial.

P

ABBACAADBAABBAC

CA A< EG→
A A B>< BE→

B RT,→

ARTRTACAEGDRTABERTRTAC

0L-systems 1L-systems 2L-systems⊂ ⊂

L P< R>

G F + –, ,{ } F F F F–– F+ +→{ } F, ,{ }=

ϕ 60°.=
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The axiom and the rewriting rule, also called theinitia-
tor andgenerator, look like:

After one rewriting step, the initiator will look like the
generator; each successive rewriting step replaces every
line with the (scaled) generator, so the next rewriting
step will result in:

and so on.❑
Other symbols frequently mentioned in the literature are:
• ‘f ’ : move in the current direction but donot draw a

line,
• ‘[’: push the current position and direction on a stack,

and continue,
• ‘]’: pop a position and direction from the stack and

continue from there.
Example 5—The effect of the move instruction can be
seen in figure 2. This figure has been drawn after two
rewriting steps of the following L-system:

with

Figure 1:  The Koch graph (after 5 rewriting steps)

Figure 2:  The recursive islands of example 5

G Σ Π α, ,{ }=

and . ❑

The usage of brackets for push and pop operations while
interpreting the string was introduced by Lindenmayer
[12] to achieve more realistic representations of plants
and trees. A nice example is a drawing, see figure 3a, of
a 2L-system taken from [10]. A stochastic adaptation of
this is shown in figure 3b, where in just one rule,

, the ‘+’ symbol was changed
in a ‘–’ symbol in 50% of the cases.

Introducing brackets in 2L-systems has some effect on
the determination of the left and right contexts of the
rewriting rules. The left context consists of the path
before the predecessor, and the right context consists of a
subtree after the predecessor. To detect this, the tree rep-
resentation of the string must be examined at each
rewriting step.
Example 6—(from [14]) The rewriting rule with the fol-
lowing left-side

,

can be applied to the symbol  in the string

.

Figure 4 gives a graphical interpretation of this match.
❑

For an extensive look at the possibilities of and some
more extensions to this kind of interpretation of the
strings resulting from an L-system see e.g. [10, 13, 14].

5 A graph interpretation: GL-systems

L-systems originally were constructed to model biologi-
cal growth, which makes it a logical choice to use them
when trying to describe the growth of the brain (see sec-
tion 7). For an L-system to generate the graph topolo-
gies that are needed, a suitable interpretation has been
constructed in [1, 2 and 3]. Here, a generalized interpre-
tation is given, allowing the construction of cyclic
graphs, which allows for recurrent networks.

Σ F f + –, , ,{ } ,=

Π { F F–f+FF–F–FF–Ff–FF+f–FF+F+FF+Ff+FFF,→=

f ffffff } ,→
α F F– F– F,–=

ϕ 90°=

Figure 3:  2L-systems (see text)

a b

0 0 1 1 +F1F1[ ]→><

BC S< G H[ ] M>
S

ABC DE[ ] SG HI JK[ ] L[ ] MNO[ ]
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Instead of the graphical interpretation of a string
resulting from the rewriting steps, a direct transforma-
tion into a graph is possible using

,

with Z the set of integer numbers where each  is
read as one symbol, called aconnect. The symbols ‘[’
and ‘]’ are used to denote subgraphs (see below). Each

 in the string represents a node in the correspond-
ing graph. The numbersj directly behind a symbol from
Σ or ‘]’ connect the node or subgraph with a directed
edge to the jth node or subgraph to the left or right in the
string, depending on the sign ofj.
Example 7—The stringA1 2 B2 C0 1 D–3 represents
the graphs drawn in figure 5. The symbols in the nodes
are not labels of the graph, but are used as matching
symbols for the GL-system.❑
Theorem—All possible finite unlabelled directed graphs
can be represented and generated with a finite GL-sys-
tem.
Proof—Label all nodes of an arbitrary graphF with ,

, with n the number of nodes inF. For each
edge  insert the number  directly after
in the string . The resulting stringS can now be
used directly to construct the GL-systemG that gener-
ates the graph, simply by taking the stringS as axiom.❑
The special symbols ‘[’ and ‘]’ are used to group nodes
into subgraphs (ormodules), which can be recursively
repeated. Each subgraph is assigned alevel, which is

Figure 4:  Matching in bracketed 2L-systems.
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D
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context
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Σg Z [ ],{ }∪ Σ∪=

j Z∈
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2

or
A

B

D

C

Figure 5:  the graphs of example 7.

Ai
i 1…n=

Ai Aj,( ) j i– Ai
A1…An

calculated by counting the number of surrounding
bracket pairs. In calculating thejth node or subgraph
when making the connections, each subgraph is seen as a
unity, and can be regarded as one node on the same level
as the subgraph. The numbers directly to the right of a
closing bracket will connect alloutput nodes of the sub-
graph. All connections madeto a subgraph are con-
nected with all itsinput nodes. There are two possible
definitions of in- and output nodes:

• The first possibility defines the output nodes of a sub-
graph as those nodes that have no outgoing edges to
other nodes of the same subgraph. The input nodes
of a subgraph are those nodes that do not have
incoming edges from within the same subgraph.
GL-systems with this interpretation will be referred
to asstrictly modular. This definition is particularly
suited for generating layered networks, and is there-
fore used in the application described in section 7.

• The second possibility takes into account the order of
the symbols in the string representing the graph.
Besides having the input and output nodes as defined
in the previous definition, also those nodes that have
no edges to nodes in the same subgraph that are
denoted to the right in the string are output nodes and
those nodes that do not have edges from nodes of the
same subgraph that are denoted to the left in the
string are input nodes. GL-systems with this inter-
pretation will be referred to asnot strictly modular.

As a consequence, specific edges to nodes within a sub-
graph can not be made from outside of the subgraph,
while edges from a node in a subgraph to nodes or other
subgraphs outside its own subgraph are possible, after
counting across the subgraph boundary, the level at
which the nodes are counted is decreased by one. This
idea of limiting the possible connections from and to a
subgraph corresponds to a sense of information hiding
and improves the capability of the GL-system to gener-
ate modular graphs, which is important for our purposes
(see section 7).

Example 8—A nice example of defining a recursive
graph is the following not strictly modular GL-system:

After three rewriting steps the graph will look as shown
in figure 6. The string will be:

[BB]1[[BB]1[[BB]1[AB]1B–2B]1B–2B]1B–2. ❑

G { A B [ ] 1 2–, , , , ,{ } ,=

A BB[ ] 1 AB[ ] 1B 2–→{ } ,

A}.

B

B

B B

B

B

B B

B

B

B B

A

Figure 6:  The recursive graph of example 8.



5

6 Context in G2L-systems

The definition ofcontext in G2L-systems is not the same
as in normal L-systems. Usually the context of a symbol
that is being rewritten is directly on the left and right
side of that symbol. In bracketed 2L-systems, context
can be seen by looking at the path towards, and a subtree
directly after the predecessor. This limits the part of the
string that has to be interpreted in order to match con-
text.

In G2L-systems, however, context can only be deter-
mined after the complete string has been interpreted.
Also, not only single symbols may be rewritten, but
complete substrings can be replaced by others. Here, a
left to right order for matching the rewriting rules is fol-
lowed, and a preference for more specific rewriting rules
when more rules are possible. The specifity of a rewrit-
ing rule is determined simply by counting the number of
symbols in the left side of the rule. G2L-systems that
have no conflicts, which means that no ambiguity exists
about which rule has to be applied, will be called
conflict-free.

The left context of a node (or subgraph) is defined as
the set of all symbols and subgraphs in the string that
have edges to the node (or subgraph) in the graph inter-
pretation of the string. The right context is defined in
the same way, looking at the edges going away from the
node (or subgraph). When, if present in the rewriting
rule, both context parts of the rule are a subset of the left
and right context in the graph, the rule is said to match
and can be applied.

Example 9—Examine the following strictly modular
G2L-system:

with

The successive steps in the rewriting process are shown
in figure 7. After the last step no more rules apply:

G Σg Π α, ,{ }=

Σ A B C D, , ,{ }=

Π { A B1B1B,→=

B B CD[ ] ,→>
B C,→
C D C,→<
D D C2}→>

α A.=

A B

B

C

C

C D

C

C C

C C

D

Figure 7:  The successive rewriting steps

B

To show the workings of left and right context, these are
drawn in figure 7 for the underlined symbol  after the
second rewriting step. The left context of  is the set

and the right context is . Note
that the other  does not have a  in its left context.❑

7 Application

The application for which the G2L-system was devel-
oped is an attempt to imitate the course of evolution of
animal brains in nature withgenetic algorithms, with the
purpose of creating a means of finding optimalartificial
neural network architectures. It can be seen as a reverse
engineering attempt of the process that has ‘invented’
the human brain [1]. The following will give a short
introduction to the terminology and functioning of artifi-
cial neural networks and genetic algorithms, and will
explain why it is useful to use G2L-systems. A more
complete introduction of neural networks and genetic
algorithms can be found in [1 or 5 and 9].

7.1 Artificial neural networks

Artificial neural networks try, in principle, to imitate the
computations as performed by the neural system of ani-
mals. A neuron and its axon, dendrites and synapses, is
usually modelled as a simple computational unit that
implements a simple threshold function on a weighted
sum of its input values. Thearchitectureof an artificial
neural network is defined as the directed graph repre-
senting theconnectivity of the network. Each node rep-
resents a unit and each directed edge represents a
weighted connection from one unit to another.
Example 10—Figure 8 shows an example of the archi-
tecture of the simplest artificial neural network that can
implement the logical XOR function [15, 16]. The
nodes of this network can be topologically sorted, so the
network is afeedforward network. A very simple way to
restrict grammars to generating feedforward networks is
allowing only positive connects.❑

A

⇓
B1B1B

⇓
CD[ ] 1 CD[ ] 1C

⇓
CC2[ ] 1 CC[ ] 1C.

D
D

C D C D,[ ], ,{ } C{ }
D C

Figure 8:  The simplest architecture that can implement
the logical XOR function.

Input

Output
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7.2 Genetic algorithms

One of the major problems in neural network research is
the difficulty of finding the right architecture for a neural
network that has to perform a certain function [8].
Genetic algorithms have been tried as search method,
when looking for the right architecture. Genetic algo-
rithms [5] are search algorithms that work on a popula-
tion of possible solutions. Generated offspring has to
compete for survival in a Darwinian way, based on the
relative quality of the generated solutions.

7.3 Using G2L-systems

Early attempts of searching in an evolutionary way for
optimal network architectures failed on larger problems
because of the exponentially growing search-space of
possible network architectures, that were usually coded
as blueprints in the genes of the population members.
Our current research concentrates on using the described
G2L-system to speed up the search by decreasing the
number of bits needed to code for one network, and by
increasing the inherent modularity that is caused by the
presented interpretation [2, 3]. The G2L-system is used
as arecipe, not coding each connection and node sepa-
rately, but compactly describing how the network should
grow from the axiom. The complete system is schemat-
ically drawn in figure [9].

A major problem that was encountered in reporting on
the work described above is the lack of a drawing tool
able to visualize the generated network architectures.
Currently a tool is under development that uses the sub-
graph information available in the string to ease the task
of optimizing the graph lay-out. The successive levels
are step-size optimized using a genetic algorithm. Fur-
ther extensions, namely also using the rewriting rules,
are being examined.

8 Other graph grammar approaches

Recently several other graph grammar mediated genetic
algorithms for optimizing artificial neural network archi-
tectures have been developed [6, 7, 11]. The complete
paper will give a thorough comparison with the grammar
described here.

9 Conclusion

The L-system based graph grammar described in this
paper allows for a very compact coding for a certain
kind of graph. Although it is shown that all possible
graphs can be generated with a G2L-system, clearly, iter-
ating and recursive application of rewriting rules leads to

Genetic Algorithm

G2L-system

Neural Network

Figure 9:  Where the G2L-system is used.

networks that are very modular. It is expected that the
architecture optimalization using genetic algorithms is
greatly helped with the use of G2L-systems.
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