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Abstract

In this report, we present the Ctadel system, a Code-generation Tool for Applica-

tions based on Di�erential Equations using a very high level Language speci�cation. The

Ctadel system generates e�cient and vectorizable Fortran 77 code automatically from

a very high level language description of a model described by partial di�erential equa-

tions (PDEs). The system combines algebraic simpli�cation and powerful global common

subexpression elimination to guarantee the generation of e�cient code. A prototype im-

plementation has been developed which is currently limited to explicit �nite di�erence

methods as solution method. After an informal, but detailed description of the Ctadel

system, results of this prototype implementation will be presented for the time-dependent

Euler equations to simulate an inviscid, compressible 
ow and for the calculation of the

explicit dynamical tendencies within the hirlam model, which is a production code for

limited area numerical weather forecasting. These results show that generation of e�cient

code is well feasible within the presented approach.

1 Introduction

Since the early days of computing, the demand of large scale scienti�c applications for more

powerful hardware platforms has been a driving force for the development of advanced soft-

ware environments including dedicated, machine dependent libraries for scienti�c computing.

As more and more hardware platforms emerge, the adaption of scienti�c applications codes

to each hardware platform type requires signi�cant programming e�orts. Some of these

e�orts can be alleviated by employing restructuring compilers to restructure existing appli-

cation codes. However, restructuring compilers need relatively `clean code' without many

�
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programming tricks that are often exploited by human programmers. Otherwise, automatic

restructuring of code for another hardware architecture can be an unsolved problem for those

applications developed with a speci�c target architecture in mind; in such an implementa-

tion, part of the knowledge content of a model is lost. This knowledge may be needed for an

e�cient implementation of the model on another hardware platform.

While code (re)writing by hand is common practice in the �eld of application development,

it will be evident that the (semi-)automatic generation of code directly from a very high

level language description of a problem provides a fast, robust, and, therefore, attractive

alternative. In this respect, an automatic code generator should translate the model into

`optimal' code with respect to the target architecture. It is of great importance for the

acceptance and actual usage of an automatic code generator that the generated code should

be as e�cient as the `best' hand-written code.

In this report, the Ctadel system will be presented. The Ctadel system is a Code-

generation Tool for Applications based on Di�erential Equations using a very high level Lan-

guage speci�cation. A prototype system has been implemented. This prototype system

adopts currently only explicit �nite di�erence methods as a solution method and generates

vectorizable Fortran 77 code. In addition, from the Fortran 77 code, reasonably e�cient

data-parallel Fortran 90 code can be obtained by using the MasPar Vast-2 parallelizing com-

piler [18]. Results of the prototype implementation will be presented for the time-dependent

Euler equations for inviscid, compressible 
ow and for the explicit dynamical tendencies of

the hirlam model, which is a production code for limited area numerical weather forecasting.

The Ctadel system includes an extensible algebraic simpli�er and a powerful global com-

mon subexpression eleminator. Algebraic simpli�cation is one of the key techniques adopted

for the automatic generation of e�cient code. Axiomatic laws such as laws governing linear

operators are applied in the translation of a model. In fact, the role of the simpli�er is twofold:

�rstly, to reduce the computational complexity of the problem, and secondly, to generate a

discretization of a model that is close to the discretization of the model that would have

been obtained by hand. Together with the global common subexpression eliminator, these

techniques provide the necessary means within the Ctadel system to generate e�cient code

automatically from a very high level language description of the model.

Why yet another code generator? The development of the Ctadel system received a

major impetus by the request of the Royal Netherlands Meteorological Institute for e�cient

codes to be executed on vector and parallel computer architectures to solve the hirlam

1

limited area numerical weather forecast model [15].

Several parallel implementations of the forecast model have been realized: a data-parallel

implementation [25], a message-passing version [11], a data-transposition code [16], and oth-

ers. All modi�cations required for these implementations were made by hand starting from

the (vectorized) hirlam reference code. As a result, several versions of the forecast system

are now available, which all di�er signi�cantly from the reference code. Clearly, this is an

undesirable situation from a maintenance point of view. It also hampers the easy inclusion

of new insights into the model by meteorologists, since they are not acquainted with the

parallelization techniques. This was one reason to investigate the possibilities of creating a

system that automatically could generate code for the hirlam forecast model, or at least for

some parts of it.

1
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An important part in the hirlam model consists of the calculation of the dynamics of

the atmosphere. It is described by a coupled system of three-dimensional non-linear hyper-

bolic partial di�erential equations. A time-consuming routine within the dynamics computes

the explicit dynamical tendency of each variable based on explicit �nite di�erence methods.

This routine can be relatively easily parallelized even for di�erent parallel programming par-

adigms [7]. However, in order to obtain more e�cient parallel code for the hirlam dynamics,

extensive recoding of the dynamical tendencies is required. In general, the development of

codes for large models employing �nite di�erence methods on staggered grids is error-prone

due to (de)staggering and the derivation of the bounds for the computational domains. There-

fore, (semi-)automatic generation of e�cient code will signi�cantly speed up this process.

However, it was soon recognized that existing software environments in this area failed to

generate e�cient code for the hirlam dynamics for various target hardware platforms. Most

existing code generating systems lack a combination of automatic discretization, algebraic

manipulation and, especially, simpli�cation, and global common subexpression elimination.

These key elements for the generation of e�cient code are all included in the Ctadel system.

Related work. Since the early days of computing, attempts have been made to solve scien-

ti�c or physical models numerically or symbolically using computers. Today, a large collection

of libraries, tools, and Problem Solving Environments (PSEs) have been developed for solv-

ing such problems. The current and future role of these environments is discussed in [10].

Well-known PSEs for solving PDEs, see [9] for an extensive overview, are ellpack [20] and

deqsol [22], and in the �eld of parallel computing //ellpack [13]. The computational ker-

nels of these PSEs consist of a large library containing routines for many numerical solution

methods. These routines form the templates for the resulting code. The numerical knowledge

of such systems is determined by the power of its library.

A di�erent approach than these library-based PSEs consists of a system that generates

code based on the speci�c problem speci�cation without the use of a library. Here the nu-

merical knowledge is determined by the expressiveness of the problem speci�cation language.

This implicitely means that a powerful translation mechanism from that language to the re-

sulting code is a vital component for these kind of systems. An example is described in [6].

Also the dpml Data Parallel scienti�c Modelling Language [8] falls in this category. The

prototype of Ctadel should be considered as a system of the last type. However, a novel

approach is taken, which, in contrast to dpml, includes automatic discretization of the model

and reduction of the computational complexity of the problem prior to the generation of code.

This report is organized as follows. Section 2 brie
y describes �nite di�erence methods,

the methods employed by Ctadel to solve a model numerically. In Section 3, the Ctadel

prototype implementation will be discussed; the high level language constructs, discretization,

and code generation. Section 4 presents preliminary results of the prototype implementation

for two physical models. To conclude, in Section 5, we summarize our results and conclusions

and deal with some issues related to further work.

2 Finite Di�erence Methods and Staggered Grids

In this section, a brief introduction to �nite di�erence methods and staggered grids will be

given. For a more detailed discussion the reader is referred to a textbook, e.g. [2]. Finite

di�erence methods combined with staggered grids are at the moment the basic methods
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employed by the prototype implementation of the Ctadel system to e�ciently solve a model

numerically. By means of an example the numerical solution of a physical model using �nite

di�erence methods and staggered grids will be demonstrated.

Many scienti�c models can be written generally as a set of n partial di�erential equations

in the form

@

@t

L

i

(u

i

) = F

i

(u

1

; : : : ; u

n

); i = 1; : : : ; n; (1)

together with initial conditions and a set of boundary conditions which are said to hold on

the boundary @
 of the domain 
 � IR

d

. Here, u

i

= u

i

(x; t), i = 1; : : : ; n, are scalar

functions of the space coordinates given by x 2 
, and time t, called the dependent variables

of the problem. The space coordinates x and time t are called the independent variables of

the problem. In this report, we will use the phrase variable and �eld interchangably. F

i

is a function involving the u

i

as well as their space and time derivatives and L

i

is a space

di�erential operator which in many cases is the identity operator, i.e. L

i

(u

i

) = u

i

, or the

Laplacian operator, i.e. L

i

= � = r

2

.

As an example, consider the two-dimensional advection of temperature T in an incom-

pressible medium on the domain (x; y) 2 IR

2

, time t. Periodic boundary conditions are

enforced. Firstly, the advection of temperature can be described by

@T

@t

+ u

@T

@x

+ v

@T

@y

= 0; (2)

where u and v are the 
ow velocities in the x and y-direction, respectively. Secondly, the

continuity equation

r �w = 0 (3)

holds, which states that the medium is of constant mass density. In the continuity equation

r = [

@

@x

;

@

@y

]

T

and w = [u; v]

T

. By combining Equations (2) and (3) we have

@T

@t

+r � (w T ) = 0; (4)

which is the advection equation in 
ux form. Rewriting Equation (4) in the form of Equa-

tion (1) yields

@T

@t

= �

@(uT )

@x

�

@(v T )

@y

: (5)

The problem described by Equation (5) with appropriate boundary and initial conditions, can

be solved numerically using �nite di�erence methods. Finite di�erence methods are examples

of so-called discrete methods. In these methods the continuous domain on which the problem

is de�ned, is replaced by a grid of discrete points, which are called grid points. The values of

variables of interest are only calculated on these grid points by numerical approximations.

Speci�c to �nite di�erence methods is the approximation of partial derivatives by �nite

di�erence schemes. These schemes are based on di�erence quotients, that are derived from

e.g. Taylor series. In addition, values that are required in the interval between grid points are

obtained using interpolation methods. See for more details e.g. [2].

An important consideration in the choice of �nite di�erence schemes is the arrangement

of variables on the grid. The use of staggered grids is a common technique employed to
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Figure 1: Arakawa A-grid (left), C-grid (middle), and E-grid (right).

avoid producing separate solutions on alternating grid points: when partial derivatives are

approximated by centered di�erence quotients, for example

@u

@x

�

u(x

i+1

; y

j

)� u(x

i�1

; y

j

)

x

i+1

� x

i�1

; (6)

the approximated value of the derivative of the variable u is determined by the values

u(x

i+1

; y

j

) and u(x

i�1

; y

j

) at grid points (x

i+1

; y

j

) and (x

i�1

; y

j

) respectively, and is thereby

completely decoupled from the value u(x

i

; y

j

) at grid point (x

i

; y

j

). This decoupling results

in two separate numerical solutions of the problem, which clearly is an undesirable result.

Various arrangements of variables in the horizontal domain for atmospheric models were

classi�ed by Arakawa [3]. Typical Arakawa grids are depicted in Figure 1. Using the C-grid,

the �nite di�erence approximation of Equation (5) using centered �nite di�erences in space

is given by

@T

@t

= ��

x

(uT )� �

y

(v T ); (7)

where the �nite di�erence operator �

x

is de�ned as

�

x

u =

u(x

i

+

1

2

�x; y

j

)� u(x

i

�

1

2

�x; y

j

)

�x

(8)

with �x the distance between two grid points in the x-direction. The operator �

y

is de�ned

analogously with respect to y. From Equation (7) it can be observed that values of variable T

are required at the same grid point positions as u and v are de�ned. However, with a C-grid,

these values for T are not available. To obtain T at the required position, T is interpolated

at a half grid point x

i

+

1

2

�x in the x-direction. This is called staggering T with respect to

x, denoted by T

x

. Analogously, T

y

denotes the interpolated value of T at a half grid point

y

j

+

1

2

�y in the y-direction. In this case, since the �

x

operator is second order in �x, linear

interpolation is su�ciently accurate, that is, T

x

is de�ned as

T

x

=

1

2

(T (x

i

+

1

2

�x; y

j

) + T (x

i

�

1

2

�x; y

j

)): (9)

T

y

is de�ned analogously with respect to y. With these de�nitions, Equation (7) becomes

@T

@t

= ��

x

(uT

x

)� �

y

(v T

y

): (10)

5



This equation shows one of the possible space discretizations of Equation (5). For the dis-

cretization in time, several �nite di�erence schemes can be employed depending on the trade-

o� between required accuracy, stability, and computational complexity of the scheme. For

example, leap-frog time di�erencing of the advection of temperature problem yields

T

k+1

= T

k�1

� 2�t (�

x

(uT

k

x

) + �

y

(v T

k

y

)); (11)

where T

k

is the temperature at time k and �t the time step. By applying �nite di�erence

methods combined with staggered grids, an approximation method has been chosen to derive

discrete formula(s) from the original problem which gives for each time step a numerical

solution of the problem.

3 Ctadel Implementation

In this section an outline of the Ctadel system will be presented. The Ctadel system takes a

very high level language description of a model comprising a set of coupled partial di�erential

equations, discretizes these equations using �nite di�erence methods, and generates e�cient

Fortran 77 code for solving the model numerically. An overview of the Ctadel system is

depicted in Figure 2. The translation of a model into code by the Ctadel system consist of

three main phases.

Phase 1: In the �rst phase, the model speci�ed in Ctadel's very high level language is

discretized by replacing the partial derivatives by �nite di�erence operators and by

(de)staggering variables if necessary, as will be discussed in Section 3.3. The discrete

equations are simpli�ed using axiomatic laws from basic algebra and trigonometry, as

will be discussed in Section 3.4. The model and the resulting simpli�ed discretized

equations of this �rst phase are also saved in L

A

T

E

X form for user veri�cation and

automatic report generation.

Phase 2: In the second phase, an intermediate internal representation of the discretized

model is created prior to the generation of code in the third phase. Firstly, the discrete

operators are expanded, e.g. �nite di�erence operators are replaced by their correspond-

ing �nite di�erence quotients. Secondly, the resulting equations are simpli�ed and op-

timized by employing global common subexpression elimination, as will be described

in Section 3.5. The result of this phase is an intermediate form of code for the model,

consisting of a set of assignments to (temporary) array variables. In addition, the array

boundaries of each variable are derived symbolically through global inspection. These

bounds are expressions containing symbolic and numerical constants and max and min

functions. The obtained set of assignments is again saved in L

A

T

E

X form for report

generation.

Phase 3: Finally, in the third phase, vectorizable Fortran 77 code is generated for the model,

as will be discussed in Section 3.6. For the intermediate representation of the discretized

model code is generated in the form of a Fortran 77 procedure. This procedure com-

putes the numerical approximation of the problem for one time step. A scheme for the

time integration should then be chosen by the user to complete the program. At the

moment, the user has to code the time integration scheme by hand. The arguments of

the procedure comprise the fundamental variables and derived variables of the model.
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Machine dependent
   code generation

Global common
 subexpression
    elimination

Finite difference
  discretization

Grid and field
 declarations

 Operator
definitions

   LaTeX output
of c.s. eliminated
      equations

Rule−base Algebraic simplification

Operators applied

     LaTeX
descriptions

LaTeX output
  of discrete
   equations

phase 1

phase 2

phase 3

   Vector to scalar
    translation and
function application

    Operator
‘overloading’

Utility functions
       (macros)

grid i = 0:n, j = 0:m.
def dx0 = 1/n.
def dx1 = 1/n.
def dy0 = 1/m.
def dy1 = 1/m.
field h(x,y): stag(0,0).
field p(x,y): stag(0,0).
field u(x,y): stag(1,0).
field v(x,y): stag(0,1).
vector w = [u, v].

u = dx(2*h*p)
v = dy(2*h*p)

w = grad(2*h*p). grad(U) := [dx(U), dy(U)].

PDE(s)

u(i,j) = dx1(2*h(i,j)*p(i,j))
v(i,j) = dy1(2*h(i,j)*p(i,j))

u(i,j) = 2*dx1(h(i,j)*p(i,j))
v(i,j) = 2*dy1(h(i,j)*p(i,j))

u(i,j) = 2*n*(h(i+1,j)*p(i+1,j)−h(i,j)*p(i,j))
v(i,j) = 2*m*(h(i,j+1)*p(i,j+1)−h(i,j)*p(i,j))

t(i,j) = h(i,j)*p(i,j)
u(i,j) = 2*n*(t(i+1,j)−t(i,j))
v(i,j) = 2*m*(t(i,j+1)−t(i,j))

real h(0:n+1, 0:m+1), p(0:n+1, 0:m+1)
real u(0:n, 0:m), v(0:n, 0:m), t(0:n+1, 0:m+1)
t(0:n+1, 0:m+1) = h(0:n+1, 0:m+1)*p(0:n+1, 0:m+1)
u(0:n, 0:m) = 2*n*(t(1:n+1, 0:m)−t(0:n, 0:m))
v(0:n, 0:m) = 2*m*(t(0:n, 1:m+1)−t(0:n, 0:m))

def dx1(U:stag(0,Y,Z))
                 :stag(1,Y,Z)
     = (U@(i+1)−U)/dx0.

union dx(U) = 
[dx0(U),dx1(U),dx2(U)].

dx1(A*B) −> A*dx1(B),
   if A independent of x.

    Vast−2
parallelizing
   compiler

Figure 2: Ctadel system overview.
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Array declarations for the fundamental, derived and temporary variables are generated

with appropriately derived array bounds. The generated code consists of do-loops and

if-then-else statements for the assignments to the array variables.

The Ctadel system supports the automatic generation of reports. As was mentioned

above, the model, the set of discretized equations, and the set of assignments that result

after elimination of common subexpressions are saved as L

A

T

E

X �les. These �les can be easily

included in a report. Furthermore, the L

A

T

E

X output may serve as a feedback to the user to

verify the result of each phase. Clearly, the L

A

T

E

X output for automatic report generation is

more convenient for the user to verify than textual output.

The prototype Ctadel system is implemented using the Prolog programming language

with the public domain SWI-Prolog [23] package.

3.1 The Very High Level Language of Ctadel

The very high level language of the Ctadel system provides a level of abstraction to hide the

numerical solution techniques from the description of a problem. In this way, a model can be

described in a natural way, close to the mathematical formulation of the problem. With the

very high level language, the problem can be described for one time step.

In the following informal description of the high level language expr denotes an arithmetic

expression involving �elds, vectors, arithmetic operators and logarithmic and trigonometric

functions. An index-expr involves indices and symbolic or integer constants only. A logical-

expr is an expression which, in addition to expr, involves the logical connectives and, or, and

not, the relational operators <, =<, >, >=, =, \=, and the constants true and false.

A vector in an expression is written [expr,expr,. . . ] and a matrix in an expression is writ-

ten [[expr,expr,. . . ],. . . ], like a `vector of vectors' where the innermost vectors constitute

the rows of the matrix.

The following keywords can be used in the very high level language description of a

model. Each keyword speci�cation ends with a period (.). Parts enclosed in brackets [ and ]

are optional.

grid rangelist. The description of a model should start with the declaration of a one, two,

or three-dimensional grid. rangelist is a comma-separated list of (symbolic) ranges for

each dimension of the form index = lb : ub. The lb and ub denote expressions consisting

of (symbolic) integer constants only. This de�nes the indices and lower and upper

boundaries of the discrete domain. For example,

grid i = 1:n, j = 1:n^2+1.

de�nes a two-dimensional n� n

2

+ 1 grid. The constant n is assumed to be an integer

parameter declared explicitly by the user in the �nal Fortran 77 code.

field �eldname(coordinatelist)[:stag(�eldstaglist)]. Declares a �eld �eldname where co-

ordinatelist is a comma-separated list of x, y, and/or z in this order which speci�es the

spatial coordinates of which the �eld is dependent. Optionally, the type of staggering of

the �eld can be speci�ed by appending the declaration with :stag(�eldstaglist), where

�eldstaglist is a comma-separated list of 0 (no staggering) and/or 1 (staggering on half

grid point), each corresponding to the x, y, and z coordinates. The declaration of a

�eld may appear only once. For example

8



field u(x,y): stag(1,0).

field v(z).

declares two �elds u and v. The �rst declaration speci�es that u is placed on a half

grid-point for the x-dimension and on a whole grid point for the y-dimension. Field v

is placed on whole grid points in the z-dimension implicitly.

vector vectorname = [componentlist]. Declares a vector vectorname, where componentlist

is a comma-separated list of expressions for the components of the vector. The decla-

ration of a vector may appear only once. For example

vector v = [sin(u), cos(u), 2].

declares a vector v with components sin(u), cos(u), and 2.

lhs = rhs. Speci�es an equation where lhs and rhs are expressions.

infix op. prefix op. postfix op. Declares an in�x, pre�x, or post�x function or

operator op, respectively. This declaration should precede the de�nition of op and the

use of op in an expression. To assign a left- or right-associative precedence to an in�x

function/operator, the infix op declaration may be optionally followed by :leftassoc

or :rightassoc. The precedence of a user de�ned in�x function/operator is stronger

than the precedence of `+' and `-', but weaker than the precedence of `*' and `/'. The

precedence of a user de�ned pre�x or post�x function/operator is stronger than the

precedence of any other operator. Use brackets when in doubt, or write op with its

arguments in brackets, i.e. op(arg,. . . ). Only one of the three declarations infix,

prefix, or postfix may be given for a given function or operator. As an example the

statements

postfix !.

def N! extern fac(N).

declare the post�x factorial function which is de�ned externally as a Fortran 77 function

in the �nal code by the user (see def extern).

funcname[(arg,arg,. . .)] := expr. De�nes a function funcname with optional formal ar-

guments (arg,arg,. . .). In this report, we will call these functions utility functions to

distinguish these type of functions from Fortran 77 functions. Utility functions can be

used to de�ne e.g., gradient, divergence, and Laplacian operators. They are applied

symbolically in the �rst phase of the translation. Each formal argument arg is either a

name starting with an upper-case letter or is a vector of names starting with upper-case

letters, e.g. [A,B]. Di�erent utility functions may share the same function name as long

as they have a di�erent number of arguments and/or di�erent kinds of arguments. For

example, the divergence in one-, two-, and three-dimensional cartesian geometry can be

de�ned as

prefix div.

div [A,B] := dx A + dy B.

div [A,B,C] := dx A + dy B + dz C.

div A := dx A.

9



utility function meaning

apply(op,[arg,. . . ]) apply op on arguments arg,. . . , i.e. op(arg,...)

protect(expr) protect expr, see Section 3.4

reduce(op,vector-expr) reduce a vector using binary operator op

rhs(�eldname) return right hand side expression of equation for �eldname

vector-expr .* vector-expr inner product

vector-expr # vector-expr outer product

matrix-expr :* vector-expr matrix-vector product

Table 1: Built-in utility functions.

When a utility function with multiple declarations is encountered in an expression, the

system searches from the �rst to the last declaration for a de�nition of the function with

matching arguments. The �rst matching declaration of the function will be selected and

applied. Therefore, utility functions with more speci�c arguments, i.e., vectors, should

always precede utility functions with more general arguments if they share the same

function name. Utility functions without arguments can be considered as macros, i.e.,

their bodies will be substituted in the expression. Table 1 lists the prede�ned utility

functions. For example, reduce(+,[2,a,sin(u)]) sums the elements of the vector

[2,a,sin(u)] to give 2+a+sin(u).

def op[(arg[:stag(defstaglist)],arg[:stag(defstaglist)],. . .)][:stag(defstaglist)] = expr.

De�nes a discrete operator op with optional formal arguments (arg,arg,. . .). Each for-

mal argument arg should start with an upper-case letter and can be optionally quali�ed

by a three-dimensional staggering speci�cation :stag(defstaglist) where defstaglist is a

comma-separated list of three elements. Each element is either 0, 1, (underscore) or

a name starting with an upper-case letter, see Section 3.2 for more details on the role

of defstaglist. In addition, op can have an optional speci�cation for a three-dimensional

staggering for the value to be returned. Since the body of a discrete operator is ex-

panded after the equations of a model are discretized, a body of an operator should

comprise a discrete expression: �elds should be indexed appropriately and the use of

unions and utility functions is allowed in the body of the operator. Di�erent operators

can share the same operator if and only if their number of arguments di�er. See Sec-

tions 3.2 and 3.3 for more details. Table 2 lists the prede�ned discrete operators. Their

de�nitions and usage will be discussed in Section 3.3. The @ operator can be used to

index an expression and the arguments in the body of an operator. For example, the

de�nition of the built-in central di�erence operator dx2 is

def dx2(U:stag(0,Y,Z)):stag(0,Y,Z) = (U@(i+1,j,k)-U@(i-1,j,k))/(2*dx0).

A detailed description of this de�nition will be given in Section 3.3. The index of

the reduction operators any, all, count, sum, prod, min, and max should be an index

declared by the grid declaration. For example, in the model description

grid i=1:n, j=1:m.

field u(x,y).

field v(x,y).

v=sum(i=i:n,u).

10



operator meaning

any(index = index-expr : index-expr, logical-expr) global or

all(index = index-expr : index-expr, logical-expr) global and

count(index = index-expr : index-expr, logical-expr) count true elements

sum(index = index-expr : index-expr, expr) sum of elements

prod(index = index-expr : index-expr, expr) product of elements

max(index = index-expr : index-expr, expr) maximum of elements

min(index = index-expr : index-expr, expr) minimum of elements

if(logical-expr, expr, expr) if-then-else

expr @ (index-expr[; index-expr]

�

) value at discrete index

sx(expr) sy(expr) sz(expr) (de)staggering with respect to x, y, or z

sx0(expr) sy0(expr) sz0(expr) (See Sections 3.2 and 3.3)

sx1(expr) sy1(expr) sz1(expr) ,,

dx(expr) dy(expr) dz(expr) centered �nite di�erences w.r.t. x, y, or z

dx0(expr) dy0(expr) dz0(expr) (See Sections 3.2 and 3.3)

dx1(expr) dy1(expr) dz1(expr) ,,

dx2(expr) dy2(expr) dz2(expr) ,,

qx(lo,hi,expr) qy(lo,hi,expr) qz(lo,hi,expr) numerical quadrature lo,. . . ,hi w.r.t. x, y, or z

qx0(lo,hi,expr) qy0(lo,hi,expr) qz0(lo,hi,expr) (See Sections 3.2 and 3.3)

qx1(lo,hi,expr) qy1(lo,hi,expr) qz1(lo,hi,expr) ,,

qx2(lo,hi,expr) qy2(lo,hi,expr) qz2(lo,hi,expr) ,,

nhx(expr) nhy(expr) nhz(expr) value of expr at next half grid point

nhx0(expr) nhy0(expr) nhz0(expr) w.r.t. x, y, or z (See Sections 3.2 and 3.3)

nhx1(expr) nhy1(expr) nhz1(expr) ,,

phx(expr) phy(expr) phz(expr) value of expr at previous half grid point

phx0(expr) phy0(expr) phz0(expr) w.r.t. x, y, or z (See Sections 3.2 and 3.3)

phx1(expr) phy1(expr) phz1(expr) ,,

nosx(expr) nosy(expr) nosz(expr) prevent the implicit use of sx, sy, or sz

to convert expr at a half grid point to a

whole grid point and v.v., w.r.t. x, y, or z

Table 2: Built-in operators.

�eld v will contain all partial sums of �eld u from n to 1, that is, v

n;j

= u

n;j

, v

n�1;j

=

u

n�1;j

+ u

n;j

, . . . , v

1;j

= u

1;j

+ � � �+ u

n;j

.

def op[(arg[:stag(defstaglist)],arg[:stag(defstaglist)],. . .)][:stag(defstaglist)] extern func-

name[(arg,arg,. . .)]. Similar to def above but the body of the declaration is replaced

by a Fortran 77 function call: it declares an external Fortran 77 function funcname to

be called where op occurs in an expression. The arguments arg should be names starting

with an upper-case letter. The actual arguments of op are copied to the corresponding

call to funcname. Example

postfix !.

def N! extern fac(N).

union union�eldname = [�eldlist]. Declares a union union�eldname of the set �eldlist.

�eldlist is a comma-separated list of di�erently staggered �elds and non-staggered �elds.

Each occurrence of the union union�eldname in an equation will be replaced by one of

the �elds in �eldlist. The �rst �eld in �eldlist with the `closest' matching type of

staggering will be selected and substituted for unionfieldname. See Sections 3.2 and

3.3 for more details. For example,
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field u00(x,y): stag(0,0).

field u10(x,y): stag(1,0).

field v(x,y): stag(0,0).

union u = [u00, u10].

v = u+sin(u).

declares that u is a union of u00 and u10. In this example u00 will be substituted for

u in the equation for v.

union unionop[(arg,arg,. . .)] = [oplist]. Declares a union unionop of a set of operators

oplist. The optional arguments arg of unionop are names starting with an upper-case

letter and oplist is a comma-separated list of op(arg,arg,. . .), where arg should be

expressions containing the arguments of the union unionop(arg,arg,. . .). Each occur-

rence of unionop(arg,arg,. . .) in an equation will be replaced by one of the operators

in oplist. The �rst operator in oplist with the `closest' matching type of staggering will

be substituted. See Sections 3.2 and 3.3 for more details.

latex name = [latexlist]. latex op(arg,arg,. . .) = [latexlist]. The �rst form speci-

�es a L

A

T

E

X description for the name of a �eld, vector, function or operator. The

second form is more speci�c for functions and operators as it allows the L

A

T

E

X de-

scription for op and its arguments. The formal arguments arg are names starting with

an upper-case letter. latexlist is a comma-separated list of either strings enclosed in

double quotes (") or arguments arg of the function/operator op. The default L

A

T

E

X

output of the system prints �elds in italic style with names of Greek symbols printed

as Greek symbols, boldface style for names of vectors, and roman style for the names

of functions. Furthermore, default L

A

T

E

X descriptions are given for the built-in utility

functions and operators. These descriptions can be overwritten. See the examples in

Section 4. Vectors and matrices will be printed using brackets. These speci�cations are

only necessary to overwrite the default L

A

T

E

X representation. It is mandatory to include

a L

A

T

E

X description for names that contain characters and/or character sequences that

are interpreted by T

E

X or L

A

T

E

X. For example, if an operator & is de�ned, a latex

description should be given, e.g.

latex & = ["\&"].

Some other examples are

latex t = ["T"].

latex div Vec = ["\nabla\cdot",Vec].

will result in the printing of T for t and r �

�

u

v

�

for div [u,v].

% comment Comments can be placed anywhere. A comment begins with a % and lasts to

the end of a line.

It is important to note that names for �elds, vectors, functions, and operators should all start

with a lower-case letter. Except for the grid declaration and the prefix, postfix and infix

keywords, the keywords described above can be given in any order.

The current prototype implementation of the system adopts explicit �nite di�erence meth-

ods as a solution method only. In addition, the left-hand side of an equation should comprise

a �eld or a vector of �elds only, that is, in Equation (1) L

i

, for all i = 1; : : : ; n, is the identity
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operator. Hence, elliptic problems cannot be formulated yet. In the future, however, the

system will be extended with (semi-) implicit �nite di�erence methods and elliptic problems

can be speci�ed as well.

3.2 Operator Overloading and Type Inference

During the �rst phase of the translation of a model the default and user de�ned utility

functions, which de�ne for example inner product, gradient, and Laplacian operators, are

applied symbolically. In this way, the system of partial di�erential equations of a model is

translated to a system of equations containing logarithmic and trigonometric functions and

discrete operators on scalars. Then, if necessary, each resulting equation, which may still be

formulated in vector form, is translated into a vector of equations, each in scalar form, by the

usual deterministic mathematical rewriting. For example, [u,v]=[1,-1]-sin(2*[p,q])^2 is

translated into [u=1-sin(2*p)^2,v=-1-sin(2*q)^2]. After converting the model equations

in scalar form, type inference is employed in order to determine the type of staggering of �elds

and discrete operators in the model equations. When this type information is available, the

equations can be discretized. In the equations of the model, appropriate discrete operators are

selected depending on the type of arguments of the operator. Furthermore, subexpressions in

the equations are (de)staggered to convert between several types of staggering.

Operator overloading provides a mechanism for de�ning discrete operators that operate

di�erently on di�erently staggered expressions. For example, the de�nition of the central

di�erence of a �eld depends on the type of staggering of this �eld, as will be discussed in

Section 3.3. To this end, the de�nition of the union for a discrete operator provides a means

for overloading the discrete operator. That is, depending on the type of the context and

arguments of the operator, an appropriate operator is selected from the list speci�ed for this

overloaded operator.

In general, using overloaded operators results in sets of feasible types for an expression,

see e.g. [1]. Therefore, the type inference mechanism follows a repeated forward/backward

scheme. Repetition is necessary due to the implementation of parameterized types with

possible variable parameters. In fact, for the implemented parameterized stag type, constant,

variable and wildcard parameters are to be distinguished. Constant parameters are either 0

(no staggering) or 1 (staggering on half grid point). The variable parameters of stag are

speci�ed as names starting with an upper-case letter. These variable parameters take either

a value of 0 or 1. For example, a variable parameter of the type of a formal argument of

an operator takes a value of the type of the actual argument of the operator. A wildcard

parameter, denoted by (underscore), discards any value for the type parameter.

Using variable type parameters, the type of staggering of the actual arguments of an

operator can be copied to the result type of the operator and vice versa. For example,

consider the following declarations:

field u(x,y,z): stag(0,1,0).

field v(x,y,z): stag(0,0,0).

def op(A: stag(0,Y,_)): stag(1,Y,1) = expressionfor(A).

field w(x,y,z): stag(1,1,1).

w = op(u) + op(v).

Type inference of the speci�ed equation reveals that the type of op(u) is stag(1,1,1). The

variable type parameter Y in the declaration of op takes the value 1 when the type of the

expression op(u) is being inferred. Furthermore, discards the second 0 type parameter of
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stag(0,1,0). Similarly, the type of op(v) is stag(1,0,1). In this way, the type system

is said to have sub-typing semantics, e.g. stag(0,1, ) is a subtype of stag(X,1, ) while

stag(0,0,0) is not. That is, an operator with stag(X,1, ) as argument type will accept

an actual argument of type stag(0,1, ) and not an actual argument of type stag(0,0,0).

Clearly, the main advantage of the implemented type inference scheme employing variable type

parameters is that operators do not have to be de�ned for every possible multi-dimensional

type of staggering.

As was mentioned above, the de�nition of a union for a set of operators provides a mecha-

nism for overloading an operator. When a union is declared for some set of operators and this

union is encountered in an equation, the �rst operator of the speci�ed list is selected which

has the `closest' matching type of staggering for replacing the union. By selecting the `closest'

matching type, a minimum of type conversions by (de)staggering are needed for converting

the type of the actual arguments and result of the operator. The `closest' matching type is

computed using the Hamming distance between the types of the formal and actual arguments

in the space spanned by the 0{1 type parameter values. The �rst operator in the speci�ed

list for a union is selected with the smallest sum of Hamming distances of the result and

arguments of the operator. Similarly, the �rst �eld is selected from the list with the smallest

Hamming distance between the actual and required type of staggering. After this selection,

Ctadel inserts sx, sy, and/or sz operators to convert the arguments and resulting value of

a �eld or operator that (de)stagger with respect to x, y, and/or z, respectively. For example,

consider the following declaration for three staggered �elds p, q, and r and an overloaded

operator op:

field p0(x,y,z): stag(0,1,0).

field p1(x,y,z): stag(1,1,0).

union p = [p0, p1].

field q(x,y,z): stag(0,0,0).

def op0(A: stag(1,Y,_)): stag(0,Y,1) = expressionfor(A).

def op1(A: stag(0,Y,_)): stag(0,Y,1) = expressionfor(A).

union op(U) = [op0(U), op1(U)].

field r(x,y,z): stag(0,1,1).

r = op(p) + op(q).

Note that �eld p is staggered, via p1, as well as non-staggered, via p0, with respect to x,

which is speci�ed using the union declaration for p. Now, op(p) in the equation for r will

be replaced by op0(p1) since the type of the context in which op(p) occurs is stag(0,1,1),

the type of �eld r. Similarly, op(q) will be replaced by sy1(op1(q)), where sy1 converts the

type of op1(q) to stag(0,1,1) by staggering with respect to y.

Clearly, the use of unions in expressions possibly with variable parameter types compli-

cates type inference considerably and, therefore, the selection and replacement of overloaded

operators.

In the next section, we will discuss the �nite di�erence discretization using the default

discrete operators and illustrate this automatic process of discretization by means of an ex-

ample.

3.3 Discretization

As discussed in the previous section, during the �rst translation phase of a model, the model

equations are discretized after type inference has taken place. In this section, we will discuss
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the default second order �nite di�erence discretization and set guidelines to obtain other

user-de�ned �nite di�erence discretizations.

For the default discretization of a model, the following operations are de�ned:

� (De)staggering by linear interpolation of a �eld u

u

x

=

(

u

x

�

=

1

2

(u

i�1

+ u

i

) if u is staggered in the x-direction

u

x

+

=

1

2

(u

i

+ u

i+1

) otherwise.

� Central �nite di�erences of a �eld u

�

x

u =

(

�

�

x

u =

u

i

�u

i�1

�x

if u is staggered in the x-direction

�

+

x

u =

u

i+1

�u

i

�x

otherwise,

�

2x

u =

u

i+1

� u

i�1

2�x

:

� Numerical quadrature over a �eld u using the midpoint and trapezoidal formula

midp

x

(a; b; u) =

8

>

>

>

>

>

<

>

>

>

>

>

:

midp

�

x

(a; b; u) =

b�1

X

i=a

u

i

�x if u is staggered in the x-dir.

midp

+

x

(a; b; u) =

b

X

i=a+1

u

i

�x otherwise,

trap

x

(a; b; u) =

0

@

b�1

X

i=a+1

u

i

�x

1

A

+

1

2

(u

a

�x+ u

b

�x) :

In the de�nitions above, �x denotes the grid-point distance in the x-direction. Furthermore,

u

i

denotes to the discretized version of a �eld u, that is, if u is non-staggered with respect

to x, we have that u

i

= u(x

i

) on the grid points x

i

, i = 1; : : : ; n and if u is staggered with

respect to x, we have that u

i

= u(x

i+

1

2

) on the half grid x

i+

1

2

, i = 1; : : : ; n.

The corresponding de�nitions for the built-in operators formulated in the very high level

language are:

def sx0(U:stag(1,Y,Z)):stag(0,Y,Z) = (U@(i-1,j,k) + U)/2.

def sx1(U:stag(0,Y,Z)):stag(1,Y,Z) = (U + U@(i+1,j,k))/2.

def dx0(U:stag(1,Y,Z)):stag(0,Y,Z) = (U - U@(i-1,j,k))/dx1.

def dx1(U:stag(0,Y,Z)):stag(1,Y,Z) = (U@(i+1,j,k) - U)/dx0.

def dx2(U:stag(0,Y,Z)):stag(0,Y,Z) = (U@(i+1,j,k) - U@(i-1,j,k))/(2*dx0).

def qx0(A,B,U:stag(1,Y,Z)):stag(0,Y,Z) = sum(i=A:B-1, dx1*U).

def qx1(A,B,U:stag(0,Y,Z)):stag(1,Y,Z) = sum(i=A+1:B, dx0*U).

def qx2(A,B,U:stag(0,Y,Z)):stag(0,Y,Z) = sum(i=A+1:B-1, dx0*U)

+ ((dx0*U)@(A,j,k) + (dx0*U)@(B,j,k))/2.

union sx(U) = [sx0(U), sx1(U)].

union dx(U) = [dx0(U), dx1(U), dx2(U)].

union qx(Lo,Hi,U) = [qx0(Lo,Hi,U), qx1(Lo,Hi,U), qx2(Lo,Hi,U)].
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and the corresponding default L

A

T

E

X speci�cations for the above operators are:

latex sx(U) = ["{\overline{", U, "}^x}"].

latex sx0(U) = ["{\overline{", U, "}^{x_-}}"].

latex sx1(U) = ["{\overline{", U, "}^{x_+}}"].

latex dx(U) = ["{\frac{\partial}{\partial x}\,}", U].

latex dx0(U) = ["{\delta_x^-\,}", U].

latex dx1(U) = ["{\delta_x^+\,}", U].

latex dx2(U) = ["{\delta_{2x\,}", U].

latex qx(A,B,U) = ["\int_{x_{", A, "}}^{x_{", B, "}}", U, "\,dx"].

latex qx0(A,B,U) = ["midp_x^-\left(", A, ",", B, ",", U, "\right)"].

latex qx1(A,B,U) = ["midp_x^+\left(", A, ",", B, ",", U, "\right)"].

latex qx2(A,B,U) = ["trap_x\left(", A, ",", B, ",", U, "\right)"].

The de�nitions of the built-in operators with respect to y and z and their L

A

T

E

X speci�cations

are similar. Note that the built-in operators assume that the grid is de�ned by the indices i,

j, and k. All of these operator de�nitions can be rede�ned by the user.

To specify a uniform staggered grid with grid point distance h, the user can specify the

following declarations

grid i = 1:n, ...

def x0: stag(0,_,_) = i*h.

def x1: stag(1,_,_) = (i+0.5)*h.

union x = [x0, x1].

def dx0 = h.

def dx1 = h.

In case a tensor product grid is required where the consecutive grid points are stored in x0(i),

i = 1; : : : ; n, and the consecutive half grid points are stored in x1(i), i = 1; : : : ; n, the following

declarations can be given:

grid i = 1:n, ...

field x0(x): stag(0).

field x1(x): stag(1).

union x = [x0, x1].

def dx0: stag(0,_,_) = x0(i+1)-x0(i).

def dx1: stag(1,_,_) = x1(i+1)-x1(i).

The de�nitions with respect to y and z are similar. It may seem odd to include a de�nition

for x in the speci�cation of a grid as it is an independent variable. However, this de�nition

is very convenient because x simply denotes the value of the independent variable x at each

(half) grid point in an equation where x occurs. For example, in the following high level

language speci�cation

field hx(x): stag(1).

hx = cos(x).

the cosine of x at each half grid point is assigned to hx, that is, hx(i) = cos((i+0.5)*h) in

case of a uniform grid and hx(i) = cos(x1(i)) in case of a tensor product grid.

As is described in Section 3.1, the in�x @ operator can be used to index an expression.

This operator only takes integer index expressions. Hence, the value of an expression at a

neighboring half grid point cannot be indexed using the @ operator. To this end, the pre�x

nh and ph operators index an expression at the next and previous half grid point with respect

to x, y, or z. With respect to x, the de�nitions of these operators are:
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% A-grid advection of temp

grid i = 1:n, j = 1:m.

def dx0 = 1/(n-1).

def dy0 = 1/(m-1).

field u(x,y).

field v(x,y).

vector w = [u, v].

field t(x,y).

field dTdt(x,y).

prefix div.

div [A,B] := dx A + dy B.

dTdt = -div(w*t).

% C-grid advection of temp

grid i = 1:n, j = 1:m.

def dx0 = 1/(n-1).

def dx1 = 1/(n-1).

def dy0 = 1/(m-1).

def dy1 = 1/(m-1).

field u(x,y): stag(1,0).

field v(x,y): stag(0,1).

vector w = [u, v].

field t(x,y): stag(0,0).

field dTdt(x,y): stag(0,0).

prefix div.

div [A,B] := dx A + dy B.

dTdt = -div(w*t).

% E-grid advection of temp

grid i = 1:n, j = 1:m.

def dx0 = 1/(n-1).

def dx1 = 1/(n-1).

def dy0 = 1/(m-1).

def dy1 = 1/(m-1).

field u01(x,y): stag(0,1).

field u10(x,y): stag(1,0).

union u = [u01, u10].

field v01(x,y): stag(0,1).

field v10(x,y): stag(1,0).

union v = [v01, v10].

vector w = [u, v].

field t00(x,y): stag(0,0).

field t11(x,y): stag(1,1).

union t = [t00, t11].

field dTdt(x,y): stag(0,0).

prefix div.

div [A,B] := dx A + dy B.

dTdt = -div(w*t).

Figure 3: Very high level language model description for one time step of the two-dimensional ad-

vection of temperature in an incompressible medium discretized on a uniform Arakawa A-grid (left),

C-grid (middle), and E-grid (right).

def nhx0(U:stag(1,Y,Z)):stag(0,Y,Z) = U.

def nhx1(U:stag(0,Y,Z)):stag(1,Y,Z) = U@(i+1,j,k).

def phx0(U:stag(1,Y,Z)):stag(0,Y,Z) = U@(i-1,j,k).

def phx1(U:stag(0,Y,Z)):stag(1,Y,Z) = U.

union nhx(U) = [nhx0(U), nhx1(U)].

union phx(U) = [phx0(U), phx1(U)].

Now, for example, the equation

v

i;j;k

= u

i;j;k+1

1

2

can be written

v = nhz u @ (i,j,k+1).

The insertion of the sx, sy, and/or sz conversion operators can be prevented by using nosx,

nosy, and/or nosz, respectively. These operators are de�ned as

def nosx(U:stag(_,Y,Z)):stag(_,Y,Z) = U.

def nosy(U:stag(X,_,Z)):stag(X,_,Z) = U.

def nosz(U:stag(X,Y,_)):stag(X,Y,_) = U.

To conclude this section, we will discuss the discretization of the advection of temperature

problem from Section 2 on an A-, C-, and E-grid. Figure 3 depicts the model descriptions for

an A-, C-, and E-grid, respectively.

In Figure 3, grid i=1:n, j=1:m. declares an n�m grid indexed by i and j. The grid

is uniform in the x- and y-directions as is declared by the def's for dx0, dy0 (grid distances
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between whole grid points), and dx1, dy1 (grid distances between half grid points). The type

of a grid is determined by using :stag(�eldstaglist) quali�cations for �elds and by declaring

unions for sets of �elds. Note that Equation (4) can be speci�ed in the very high level language

for all the three types of grids without any changes.

The discretization by the Ctadel system of the problem formulated for the A-grid results

in

dTdt(i,j) = -dx2(u(i,j)*t(i,j))-dy2(v(i,j)*t(i,j))

which is presented to the user using the L

A

T

E

X package as

@T

@t

i;j

= ��

2x

(u

i;j

T

i;j

)� �

2y

(v

i;j

T

i;j

)

The discretization of the problem formulated for the C-grid results in

dTdt(i,j) = -dx0(u(i,j)*sx1(t(i,j)))-dy0(v(i,j)*sy1(t(i,j)))

with corresponding L

A

T

E

X output

@T

@t

i;j

= ��

�

x

(u

i;j

T

i;j

x

+

)� �

�

y

(v

i;j

T

i;j

y

+

);

Finally, the discretization of the problem formulated for the E-grid results in

dTdt(i,j) = -dx0(u10(i,j)*sx1(t00(i,j)))-dy0(v01(i,j)*sy1(t00(i,j)))

which is presented to the user as

@T

@t

i;j

= ��

�

x

(u10

i;j

T00

i;j

x

+

)� �

�

y

(v01

i;j

T00

i;j

y

+

):

Note that for the E-grid dTdt is unstaggered, and thus the model only provides tendencies

for the variable t on the unstaggered gridpoints t00.

This example illustrated the basic idea of the employment of operator overloading tech-

niques for the automatic discretization of equations.

3.4 Algebraic Simpli�cation

Algebraic simpli�cation of the discretized model equations is extensively used in the �rst

phase of the translation. While a problem can be posed conveniently using the very high

level language constructs, the underlying computational complexity of the problem can be

vast. Much of this complexity can be reduced by application of algebraic simpli�cation. To

this end, the decision was made to build a dedicated algebraic simpli�er within the Ctadel

system. Soon it was realized that existing symbolic algebra packages such as Maple [4] and

Mathematica

tm

[24], were not very suitable for this task. Although these packages are power-

ful tools with respect to, for example, symbolic di�erentiation, they lack a suitable algebraic

simpli�er that can be easily extended. Furthermore, most existing algebraic simpli�ers pro-

duce expressions in canonical form which are easy to read but not very economical with respect

to arithmetic complexity. Basically, the implemented simpli�er adopts a hill climbing strategy

by applying as many simpli�cation rules as possible to an expression. For the simpli�cation

of an expression, an `expand-contract' strategy has been adopted. Firstly, the expression is

expanded by using the laws governing linear operators and the distributive law. Secondly, the
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expression is contracted by using the laws governing linear operators, the distributive law,

and by using Horner's form for polynomials. Furthermore, the Ctadel simpli�er is able to

extensively simplify expressions involving the built-in operators as well as trigonometric and

logarithmic functions. To this end, the simpli�er consults an extensible rule base each time

simpli�cation takes place. The rewriting rules in the rule-base are of the form tag; lhs ==>

rhs[, condition, condition,. . . ]. where the list of conditions is an optional conjunction of

logical conditions. For example:

lin; dx0(X) + dx0(Y) ==> dx0(X+Y).

alg; dx0(X) ==> 0, indepx(X).

alg; sum(I=A:B,X) ==> if(B>=A,(B-A+1)*X,0), indep(I,X).

trig; sin(X) * cos(X) ==> sin(2*X)/2.

log; log(X^Y) ==> Y*log(X).

The tag lin denotes that this rule is derived from the laws governing linear operators. alg

denote that these rules are always applicable. Here, indepx(A) checks that A is independent

of the x-dimension by checking for the occurrence of the index variable corresponding with

x. Similarly, indep(I,X) checks for the occurrence of the index I in X. The checking is per-

formed through interprocedural analysis of the body of operators contained in the expression.

trig and log denote rules that are to be applied for simpli�cation of expressions involving

trigonometric and logarithmic functions.

The employment of operator overloading techniques for automatic discretization falls short

in case of the discretization involving basic arithmetic binary operations between expressions

which are de�ned on di�erently staggered grid points. Consider an expression of the form

u*v*w where �elds u and w are staggered with respect to x and v is not. Then, if the *

operator is subject to overloading, i.e. the following declarations are given:

def *00(X: stag(0,Y,Z), Y: stag(0,Y,Z)): stag(0,Y,Z) = X * Y.

def *01(X: stag(0,Y,Z), Y: stag(1,Y,Z)): stag(0,Y,Z) = X * sx0(Y).

def *10(X: stag(1,Y,Z), Y: stag(0,Y,Z)): stag(0,Y,Z) = sx0(X) * Y.

...

union *ol(A,B) = [*00(A,B), *01(A,b), *10(A,B), ...].

we will obtain the discrete form sx0(u)*v*sx0(w). In contrast to this, if the expression had

been formulated as u*w*v, we would have obtained the discrete form sx0(u*w)*v. Both forms

are not identical numerically. In this respect, it should be mentioned that the product of two

(de)staggered expressions should be rewritten into the (de)staggered product of expressions.

The only solution to this problem is to prohibit the overloading of the multiplication operator

and to use the Ctadel algebraic simpli�er supplied with a set of appropriate rewriting rules

concerning the stagger, �nite di�erence, and quadrature operators. In this way, the discrete

expression sx0(u)*v*sx0(w) is rewritten by the Ctadel simpli�er into sx0(u*w)*v using

the commutative and associative laws of the * operator. Hence, the simpli�er rewrites dis-

crete expressions into more economical expressions that would have been obtained by hand.

For example, the expression sy0(u(i,j))*dx0(sy0(a*v(i,j))+sy0(v(i,j))) is rewritten

into (a+1)*sy0(u(i,j)*dx0(v(i,j))). The amount of arithmetic involved in the latter

expression is less than that of the former.

Expressions involving the dx, dy, dz, qx, qy, and qz operators are extensively simpli�ed.

For example, the expression qz0(a,b,dx1(u(i,j)*v(i,j,k)) is rewritten into the equivalent

expression dx1(u(i,j)*qz0(a,b,v(i,j,k))) which is less complex considering the fact that

qz0 performs a summation in k. In addition, if-then-else expressions will be `migrated' as far
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do i = 1, n+1

do j = 1, m

p(i,j) = ...(u(i+1,j)-u(i,j))...

do i = 1, n

do j = 1, m

q(i,j) = ...(u(i-1,j-mj)-u(i,j-mj))...

do i = 1, n

do j = 1, m

r(i,j) = log(p(i+1,j)/h(i,j))

do j = 1, m

s(j) = ...log(h(1,j)/p(2,j))...

do i = 0, n

do j = min(0,-mj), max(m,m-mj)

t1(i,j) = u(i+1,j)-u(i,j)

do i = 1, n+1

do j = 1, m

p(i,j) = ...t1(i,j)...

do i = 1, n

do j = 1, m

q(i,j) = ...-t1(i-1,j-mj)...

do i = 1, n

do j = 1, m

r(i,j) = log(p(i+1,j)/h(i,j))

do j = 1, m

s(j) = ...-r(1,j)...

Figure 4: Example global common subexpression elimination, before (left) and after (right).

as possible to the front of an equation. During this process, nested if-then-else expressions

can be simpli�ed. For example, if(k=1,if(k=0,a,b),c) is rewritten into if(k=1,b,c).

The Ctadel simpli�er tries to combine as many terms as possible in order to reduce the

underlying arithmetic complexity. In some rare cases, however, it is necessary to protect a

subexpression from combining with other subexpressions. To this end, the built-in protect

operator can be used. Each occurrence of protect(expr) protects expr from combining with

subexpressions `outside'. For example, protect(u)*v where u and v are staggered �elds in

the x-direction, results in u

x

�

v

x

�

instead of u v

x

�

if the value of their product is required

on a non-staggered grid point. This introduces a mechanism to keep additional constraints

satis�ed. An example of such a constraint could be that the discretisation scheme does not

break conservation of energy. In [21] the reader �nds how such constraints may determine in

what order operators like di�erentiation and staggering have to be applied.

3.5 Global Common Subexpression Elimination

In the second translation phase of the Ctadel system, the elimination of common subexpres-

sions is performed on the equations that result from the discretization of the model equations.

The elimination of common subexpressions on a global scale may greatly reduce the num-

ber of arithmetic operations at a moderate cost of introducing temporary variables. Es-

pecially the application of �nite di�erence and (de)staggering operators inevitably leads to

arithmetic expressions involving many subterms of the form u

i�c

1

;j�c

2

;k�c

3

, where u is a three-

dimensional discretized �eld and c

1

, c

2

, c

3

2 IN. In general, the employment of �nite di�erence

methods complicates global common subexpression elimination since the index of a common

subexpression may di�er by a constant o�set. The Ctadel global common subexpression

eliminator is capable of �nding subexpressions of common value for which the computational

domains are shifted by a constant distance with respect to each other. That is, the subex-

pressions are identical, but the indices of the variables comprising the expression are o�set

by a (symbolic) constant. In addition, the eliminator will �nd common subexpressions on

rectangular subspaces of the computational domain such as common expressions for bound-

ary conditions. In these expressions, (symbolic) constants are assigned to one or more of the
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indices of the variables that occur in the expression. See for example the assignment of s in

Figure 4. The example shown in Figure 4 is coded in a Fortran-like notation while an internal

representation is used by the Ctadel system. From this example it can also be seen that in

the �nal code the array bounds for t1 and the loop bounds for the assignment to t1 have to

be derived symbolically from the loop bounds for p, q, r, and s.

New names for temporaries are chosen such that they do not clash with names of �elds.

The computational complexity of the implemented eliminator is O(n

2

), where n is the number

of basic arithmetic operators in the model.

3.6 Code Generation

The third and �nal translation phase of the Ctadel system comprises the generation of vec-

torizable Fortran 77 code. The structure of the code allows restructuring Fortran 77 compilers

to apply many optimizations. In addition, reasonably e�cient data-parallel Fortran 90 code

can be automatically obtained by using a parallelizing compiler.

Prior to the generation of code, the bounds for the rectangular computational domain for

each (temporary) variable are derived symbolically to guarantee the assignment of correct

values to the variables. In addition, the derivation of the bounds helps the user to manually

extend the generated code such that periodic boundary conditions can be enforced: values

of �elds at the boundaries should be copied in a wrap-around fashion using do-loops. In the

future, this will be done automatically by the system if the model is formulated in the high

level language with directives for periodic boundary conditions.

In the �nal code, the (partial) sums, products, etc. are implemented using do-loops and

conditional expressions are implemented using if-then-else statements.

4 Results

In this section, preliminary results of the Ctadel code generation for two physical models

are presented. The �rst model consists of the time-dependent Euler equations for inviscid,

compressible 
ow. The second model is described by one of the primitive equations of the

hirlam weather forecast system [15].

4.1 Time-Dependent Euler Equations

This problem is used to compare di�erent strategies for the global common subexpression

eliminator in the generation of code. The time-dependent Euler equations for an inviscid,

compressible 
ow in a two-dimensional geometry can be written in conservation law form in

an (x; y) cartesian coordinate system as

@w

@t

+

@F(w)

@x

+

@G(w)

@y

= 0; (12)

where

w =

2

6

6

4

�

� u

� v

�E

3

7

7

5

; F(w) =

2

6

6

4

� u

�u

2

� u v

u(�E + p)

3

7

7

5

; G(w) =

2

6

6

4

� v

� u v

� v

2

v(�E + p)

3

7

7

5

;
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� is the mass density, p the pressure, E the total energy, and (u; v) are the (x; y) components

of the 
ow velocity, respectively. The above system of equations is closed via the equation of

state

p = �(
 � 1)(E �

1

2

(u

2

+ v

2

)); (13)

where 
 is the ratio of speci�c heats of the medium.

By application of the product law,

@uv

@t

= u

@v

@t

+ v

@u

@t

, Equation (12) can be written in

explicit form

@�

@t

= �

@u

@x

�

@v

@y

d(w

0

) = ��

�1

�

@f(w

0

)

@x

+

@g(w

0

)

@y

�

�

@�

@t

w

0

; (14)

where

w

0

=

2

4

u

v

E

3

5

; d(w

0

) =

2

6

4

@u

@t

@v

@t

@E

@t

3

7

5
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0
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2

4

� u

2

+ p

� u v

u (�E + p)

3

5

; g(w

0

) =

2

4

� u v

� v

2

+ p

v (�E + p)

3

5

:

Since the vectors f(w

0

) and g(w

0

) have already subexpressions in common, this problem serves

as a good test for the global common subexpression eliminator.

A complete description of the Ctadel automatic code generation for this example can be

found in Appendix A.1. In Table 3, di�erent strategies for common subexpression elimination

are compared by structural inspection of the codes. The total number of arithmetic operators

and the total number of assignments to (temporary) variables are shown. Each operator and

assignment is evaluated on the complete two-dimensional domain. In the second strategy,

common subexpression elimination is employed after expanding the discrete operators (exact

post-matching). In the third strategy, common subexpression elimination is employed on the

discretized equations before the discrete operators are expanded (exact pre-matching). In our

experience, this is the strategy often exploited by human programmers. The last strategy in

the list corresponds with the Ctadel's eliminator. In addition to the previous strategies, this

eliminator matches also expressions containing �elds with indices having constant o�sets, as

is described in Section 3.5.

From Table 3 it can be concluded that the implemented strategy for global common

subexpression elimination is the best for this example with respect to the number of arithmetic

operations. Furthermore, the strategy requires a relatively small number of assignments.

#unary #add #mul total #assign

c.s.e. strategy mins and sub and div #op's

no c.s.e. 3 49 39 91 5

c.s.e. with exact post-matching 3 43 34 80 17

c.s.e. with exact pre-matching 3 43 29 75 31

c.s.e. with index-o�set matching 3 38 22 63 20

Table 3: A static comparison of the generated codes for the Euler equations with di�erent strategies

for global common subexpression elimination (c.s.e.).
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4.2 hirlam Primitive Equations

This problem is used to compare the performance of the hand-written hirlam reference code

and the code generated by the Ctadel system on various types of hardware platforms.

The hirlam system is a production code used at several European meteorological insti-

tutes to produce weather forecasts up to 36 hours. The Ctadel code generator is able to

generate e�cient code for the hirlam model equations of the dynamic tendencies, the so-

called Primitive Equations [12]. In this report, we will restrict ourselves to present results

of the code generation for only one of these primitive equations, namely the surface pressure

tendency.

In the primitive equations of the hirlam dynamics, the equation of the surface pressure

tendency in vertical � coordinate is written as

@p

s

@t

= �

Z

1

0

r �

�

w

@p

@�

�

d�; (15)

where p = A + B p

s

is the pressure formulated in the hybrid vertical coordinate �, p

s

is the

surface pressure, w = [u; v]

T

is the horizontal wind vector, r�

�

w

@p

@�

�

denotes the divergence

of the wind. The divergence in spherical coordinates is de�ned as

r � [F;G]

T
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1

a h
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y

�
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(F h
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@

@y

(Gh

x

)

�

:

Here, a is the radius of the earth and h

x

and h

y

are metric coe�cients. The hirlam primitive

equations are discretized using central di�erences on an Arakawa C-grid. The discretization

of Equation (15) by hand, see [15], using midpoint quadrature with a vertical z coordinate,

results in
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where �

z

p = p

k+1

� p

k

.

The code generation process for Equation (15) by the Ctadel system is discussed in Ap-

pendix A.2. In this appendix it is shown that the Ctadel system produces exactly the same

discretization. Table 4 shows the performance of the hand-written Fortran 77 and Ctadel

generated Fortran 77 code for the numerical solution of Equation (15) in a 30� 30� 16 grid.

The performance of the Fortran 77 codes was measured on a SGI Indy (f77 -O3 -ddopt),

an HP 9000/720 system (f77 +O3), a Convex C4 system (fc -O2, one CPU), and a CRAY

C90 system (cf77 -Ovector3, one CPU). The performance of the data-parallel Fortran 90

#
oating point oper. total elapsed time (ms)

add SGI HP MasPar CRAY Convex CRAY

& sub mul total Indy 720 MP-1 T3D C4 C90

hand-written code 75,750 52,290 128,040 10.5 9.1 3.17 1.12 1.44 0.39

generated code 86,430 62,175 148,605 9.7 12.4 3.48 1.38 0.57 0.44

gen., k-loops fused 86,430 62,175 148,605 8.7 7.5 3.17 1.36 0.58 0.45

Table 4: Performance of the hand-written and generated codes for the hirlam surface pressure

tendency with a 30� 30� 16 grid.
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codes was measured on a MasPar MP-1 system (mpfortran -Omax, 1024 PEs, SIMD archi-

tecture) [17] and on a CRAY T3D (cf77 -Oscalar3 -X64, 64PEs, MIMD architecture) [5].

The Fortran 90 codes were obtained with the MasPar Vast-2 compiler [18] which translates

Fortran 77 to Fortran 90 code.

We will brie
y discuss the preliminary performance results shown in Table 4. A detailed

performance analysis of the results falls outside the scope of this report. From Table 4 it can

be concluded that for most platforms the generated code with fused k-loops is more e�cient

than the hand-written code, which is especially true for the Fortran 77 codes executed on

the workstations. The hand-written code is more e�cient for the CRAY C90 architecture.

The reason is that this code was optimized for CRAY C90 architectures. The CRAY T3D

Fortran 90 compiler is still immature. Therefore, small di�erences between the codes can

have signi�cant e�ects on performance. The performance of the codes on the Convex C4 and

CRAY C90 demontrate that the same code can di�er signi�cantly in e�ciency on di�erent

vector architectures. Here again, subtle di�erences between the codes can have signi�cant

e�ects on performance. Loop fusion was performed by hand, a simple optimization which

most Fortran compilers did not perform. Therefore, the next future extension of Ctadel will

consist of an additional phase for loop fusion.

5 Conclusions and Further Work

In this report, we have presented the Ctadel system, a prototype translation system for the

automatic generation of e�cient Fortran 77 code from a very high level language description of

a scienti�c model. The system employs �nite di�erence methods and staggered grids to obtain

a numerical solution. Preliminary results show that the generation of e�cient code is well

feasible within the presented approach. The e�ciency of the generated code by the system is

a result of incorporating algebraic simpli�cation and extensive global common subexpression

elimination.

By developing a prototype system, we were able to share preliminary experiences of (po-

tential) users. Firstly, these experiences where invaluable with respect to the design of the

very high level language for the description of models. The high level language provides a

means for the speci�cation of a problem in a natural way; its power of expressiveness is close

to the declarative mathematical formulation of the model. The language also provides an

abstraction level that hides the discretization and implementation of a model. Secondly, the

knowledge of experts on the discretization of models is incorporated into the system. The

automatic discretization of continuous model equations by the system is as close as possible

to the discretization by hand. Ideally, the discretization should be the same. However, in

general, this is not possible for every case due to the fact that complex domain knowledge,

e.g. conservation of energy, cannot be taken into account. However, the current default dis-

cretization performed by the Ctadel system is deterministic, e�cient, and easy to verify by

the user. In addition, the system allows the user to insert appropriate discretization operators

into the model equations in order to override the insertion of operators by the system for the

default discretization. Finally, the e�ciency of the code generated by the system for some

example models was checked against existing hand-written code. The results are most en-

couraging and showed that for most hardware platforms the e�ciency of the generated code

was at least equal to the hand-written code.

In a future implementation of the Ctadel system, new rules may be needed that assist
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the simpli�er in simplifying expressions involving new operators added to the system by the

user. However, many problems may occur if the user is allowed to extend the rule base by his

own new set of rules. In the worst case, inconsistencies and non-termination of the simpli�er

may occur. To avoid problems and still allow new rules to be added to the system, user

de�ned operators may be quali�ed with keywords linear and dependent(x) to automatically

generate and add rules for a new linear, x-dependent operator.

We believe that the techniques implemented in the global common subexpression elimi-

nator are quite powerful and adequate for most situations. However, other techniques may

be employed as well in a future implementation. For example, the current eliminator will

not recognize that a

2

b and a b c have the expression a b in common. Techniques that can

handle such expressions are developed for the scope package of reduce [14]. Although the

capabilities of scope are impressive, it optimizes only inline code. Furthermore, the scope

eliminator does not recognize common subexpressions containing arrays with indices that

di�er by a constant o�set.

Although arithmetic complexity of the code to solve a model remains fundamental and

should be as low as possible by employing the techniques presented in this report, extra

computations may not incur the penalty that they would have on parallel and vector archi-

tectures [19]. Therefore, future research will be aimed at extending the system with algorithms

for alignment of grids and data on a processor mesh, data replication, domain decomposi-

tion, and message coalescing, in order to generate various types of e�cient parallel codes

using the data-parallel and message-passing parallel programming paradigms. Furthermore,

for vector architectures the two- and three- dimensional generated loops can be collapsed to

one-dimensional loops to obtain e�ciently vectorizable code while keeping numerical results

the same.
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A Ctadel Code Generation for the Examples

The translation of the examples in Section 4, time-dependent Euler equations and hirlam

surface pressure tendency, will be described in A.1 and A.2, respectively.

A.1 Code Generation for the Time-Dependent Euler Equations

The following model description describes the time-dependent Euler Equations (14). An

E-grid is chosen for the �nite di�erence discretization.

% Euler equations for inviscid, compressible flow in two-dimensional geometry

grid i=1:n, j=1:m. % two-dimensional cartesian grid

def dx0 = 1. % ...with unit gridpoint distances

def dx1 = 1.

def dy0 = 1.

def dy1 = 1.

def gamma = 1.4. % ratio of specific heats

field rho(x,y): stag(0,0). % mass density of the fluid

field u(x,y): stag(0,0). % fluid flow velocity in x-direction

field v(x,y): stag(0,0). % fluid flow velocity in y-direction

field e(x,y): stag(0,0). % energy

latex e = ["E"].

field p(x,y): stag(0,0).

p = rho*(gamma-1)*(e-(u^2+v^2)/2). % pressure equation

field drho(x,y): stag(1,1). % tendency of mass density

field du(x,y): stag(1,1). % tendency of velocity in x-direction

field dv(x,y): stag(1,1). % tendency of velocity in y-direction

field de(x,y): stag(1,1). % tendency of energy

latex drho = ["\frac{\partial\rho}{\partial t}"].

latex du = ["\frac{\partial u}{\partial t}"].

latex dv = ["\frac{\partial v}{\partial t}"].

latex de = ["\frac{\partial E}{\partial t}"].
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vector w = [ u,

v,

e ].

vector dw = [ du,

dv,

de ].

vector fw = [ rho*u^2+p,

rho*u*v,

u*(rho*e+p) ].

vector gw = [ rho*u*v,

rho*v^2+p,

v*(rho*e+p) ].

drho = -dx(rho*u)-dy(rho*v). % tendency equations

dw = -rho^(-1)*(dx fw + dy gw) - drho*w.

The discretization by Ctadel results in the following system of discretized equations
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Then, Ctadel expands the stagger and �nite di�erence operators, simpli�es the result and

�nally eliminates common subexpressions. The result is the following set of assignments
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The t's are temporaries introduced by the common subexpression eliminator. The irregular

numbering of these temporaries is a consequence of the internal representation of the model

by the system. The code generated by the system is

subroutine tstep(n, m, e, rho, u, v, p, drho, du, dv, de)

integer n, m

real e(1 : n + 1, 1 : m + 1)

real rho(1 : n + 1, 1 : m + 1)

real u(1 : n + 1, 1 : m + 1)

real v(1 : n + 1, 1 : m + 1)

real p(1 : n + 1, 1 : m + 1)

real drho(1 : n, 1 : m)

real du(1 : n, 1 : m)

real dv(1 : n, 1 : m)

real de(1 : n, 1 : m)

real t7(1 : n + 1, 0 : m)

real t8(1 : n + 1, 0 : m)

real t9(0 : n, 0 : m)

real t10(0 : n, 0 : m)

real t15(1 : n + 1, 0 : m)

real t16(0 : n, 0 : m)

real t22(1 : n, 1 : m)

real t24(1 : n + 1, 0 : m)

real t25(0 : n, 0 : m)

real t26(1 : n, 1 : m)

real t27(1 : n, 1 : m)

real t29(1 : n, 1 : m)

real t35(1 : n + 1, 0 : m)

real t36(1 : n + 1, 0 : m)

real t37(0 : n, 0 : m)

do i=1,n

do j=1,m

t29(i, j) = 2 / (rho(i, j) + rho(i, j + 1) + rho(i + 1, j) +

. rho(i + 1, j + 1))

enddo

enddo

do i=1,n + 1

do j=1,m + 1

p(i, j) = 0.4 * (e(i, j) - 0.5 * (u(i, j) ** 2 + v(i, j) ** 2)) *

. rho(i, j)
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enddo

enddo

do i=1,n + 1

do j=0,m

t35(i, j) = e(i, j + 1) * rho(i, j + 1) + p(i, j + 1)

enddo

enddo

do i=1,n + 1

do j=0,m

t7(i, j) = v(i, j + 1) - u(i, j + 1)

enddo

enddo

do i=1,n + 1

do j=0,m

t8(i, j) = t7(i, j) * rho(i, j + 1)

enddo

enddo

do i=0,n

do j=0,m

t9(i, j) = u(i + 1, j + 1) + v(i + 1, j + 1)

enddo

enddo

do i=0,n

do j=0,m

t10(i, j) = t9(i, j) * rho(i + 1, j + 1)

enddo

enddo

do i=1,n

do j=1,m

drho(i, j) = - 0.5 * (t8(i, j) + t10(i, j) - t8(i + 1, j - 1) -

. t10(i - 1, j - 1))

enddo

enddo

do i=1,n + 1

do j=0,m

t15(i, j) = t8(i, j) * u(i, j + 1)

enddo

enddo

do i=0,n

do j=0,m

t16(i, j) = t10(i, j) * u(i + 1, j + 1)

enddo

enddo

do i=1,n

do j=1,m

t22(i, j) = 0.25 * drho(i, j)

enddo

enddo

do i=1,n + 1

do j=0,m

t24(i, j) = t8(i, j) * v(i, j + 1)

enddo

enddo

do i=0,n

do j=0,m

t25(i, j) = t10(i, j) * v(i + 1, j + 1)

enddo
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enddo

do i=1,n

do j=1,m

t26(i, j) = p(i + 1, j + 1) - p(i, j)

enddo

enddo

do i=1,n

do j=1,m

t27(i, j) = p(i + 1, j) - p(i, j + 1)

enddo

enddo

do i=1,n

do j=1,m

dv(i, j) = - t22(i, j) * (v(i, j) + v(i, j + 1) + v(i + 1, j) + v(

. i + 1, j + 1)) - t29(i, j) * (t26(i, j) + t24(i, j) + t25(i, j) -

. t27(i, j) - t24(i + 1, j - 1) - t25(i - 1, j - 1))

enddo

enddo

do i=1,n

do j=1,m

du(i, j) = - t22(i, j) * (u(i, j) + u(i, j + 1) + u(i + 1, j) + u(

. i + 1, j + 1)) - t29(i, j) * (t27(i, j) + t26(i, j) + t15(i, j) +

. t16(i, j) - t15(i + 1, j - 1) - t16(i - 1, j - 1))

enddo

enddo

do i=1,n + 1

do j=0,m

t36(i, j) = t35(i, j) * t7(i, j)

enddo

enddo

do i=0,n

do j=0,m

t37(i, j) = t35(i + 1, j) * t9(i, j)

enddo

enddo

do i=1,n

do j=1,m

de(i, j) = - t22(i, j) * (e(i, j) + e(i, j + 1) + e(i + 1, j) + e(

. i + 1, j + 1)) - t29(i, j) * (t36(i, j) + t37(i, j) - t36(i + 1,

. j - 1) - t37(i - 1, j - 1))

enddo

enddo

end

Note that in the �nal code no attempt has been made to reuse temporary variables. This

issue will be resolved in a future implementation of the Ctadel system.

A.2 Code Generation for the hirlam Surface Pressure Tendency

The surface pressure tendency of the hirlam model, Equation (15), is described by the

following model description

% HIRLAM dynamics surface pressure tendency

grid i=1:nlon, j=1:nlat, k=0:nlev. % three-dimensional grid

def dx0 = 1/rdlam. % gridpoint distance in x-direction

def dx1 = 1/rdlam. % ditto for half grid

def dy0 = 1/rdth. % gridpoint distance in y-direction

31



def dy1 = 1/rdth. % ditto for half grid

def dz0 = 1. % unit gridpoint distance in z-direction

def dz1 = 1. % ...for formulation in hybrid vertcal coordinates

def ra = 1/6.371e6. % 1/earth radius

field ps(x,y): stag(0,0). % surface pressure

field u(x,y,z): stag(1,0,1). % wind velocity in x-direction

field v(x,y,z): stag(0,1,1). % wind velocity in y-direction

vector w = [u,v]. % wind vector

field a(z): stag(0). % weight functions between vertical levels

field b(z): stag(0).

field hxv(x,y): stag(0,1). % metric coefficient along x-coordinate

field hyu(x,y): stag(1,0). % metric coefficient along y-coordinate

field rhxu(x,y): stag(0,0). % 1/metric coefficient along x-coordinate

field rhyv(x,y): stag(0,0). % 1/metric coefficient along y-coordinate

field dps(x,y): stag(0,0).

prefix div. % divergence in spherical coordinates

div [U,V] := 1/ahxhy*(dx(U*hyu)+dy(V*hxv)).

ahxhy := 1/(ra*rhxu*rhyv). % utility function

p := a + b*ps. % pressure as a function of ps and hybrid coordinates

latex ps = ["{p_s}"]. % LaTeX descriptions for report generation

latex a = ["A"].

latex b = ["B"].

latex dz U = ["\Delta_z",U].

latex dz0 U = ["\Delta_z^-",U].

latex dz1 U = ["\Delta_z^+",U].

latex div X = ["\nabla\cdot",X].

latex dps = ["\frac{\partial p_s}{\partial t}"].

dps = -qz(0, nlev, div(w*dz p))). % equation for surface pressure tendency

The discretization by Ctadel results in
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. After eliminating common subex-

pressions, the system produces the following set of assignments which is quite similar to the

hand-written form
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The code generated by the system is
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subroutine tstep(nlon, nlat, nlev, rdlam, rdth, a, b, ps, u, v,

hxv, hyu, rhxu, rhyv, dps)

integer nlon, nlat, nlev

real rdlam

real rdth

real a(0 : nlev)

real b(0 : nlev)

real ps(0 : nlon + 1, 0 : nlat + 1)

real u(0 : nlon, 1 : nlat, 0 : nlev - 1)

real v(1 : nlon, 0 : nlat, 0 : nlev - 1)

real hxv(1 : nlon, 0 : nlat)

real hyu(0 : nlon, 1 : nlat)

real rhxu(1 : nlon, 1 : nlat)

real rhyv(1 : nlon, 1 : nlat)

real dps(1 : nlon, 1 : nlat)

real t6(0 : nlon, 1 : nlat)

real t7(0 : nlon, 1 : nlat)

real t11(0 : nlev - 1)

real t13(0 : nlev - 1)

real t16(1 : nlon, 0 : nlat)

real t17(1 : nlon, 0 : nlat)

do k=0,nlev - 1

t11(k) = 0.5 * (b(k + 1) - b(k))

enddo

do k=0,nlev - 1

t13(k) = a(k + 1) - a(k)

enddo

do i=1,nlon

do j=0,nlat

t16(i, j) = 0.0

enddo

enddo

do k=0,nlev - 1

do i=1,nlon

do j=0,nlat

t16(i, j) = t16(i, j) + (t13(k) + t11(k) * (ps(i, j)

. + ps(i, j + 1))) * v(i, j, k)

enddo

enddo

enddo

do i=0,nlon

do j=1,nlat

t6(i, j) = 0.0

enddo

enddo

do k=0,nlev - 1

do i=0,nlon

do j=1,nlat

t6(i, j) = t6(i, j) + (t13(k) + t11(k) * (ps(i, j)

. + ps(i + 1, j))) * u(i, j, k)

enddo

enddo

enddo

do i=0,nlon

do j=1,nlat

t7(i, j) = hyu(i, j) * t6(i, j)

enddo
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enddo

do i=1,nlon

do j=0,nlat

t17(i, j) = hxv(i, j) * t16(i, j)

enddo

enddo

do i=1,nlon

do j=1,nlat

dps(i, j) = - 156961.230576 * (rdlam * (t7(i, j) - t7(i - 1, j))

. + rdth * (t17(i, j) - t17(i, j - 1))) * rhxu(i, j) * rhyv(i, j)

enddo

enddo

end
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