
Evolutionary Software Development: An Experience

Report on Technical and Strategic Requirements

Andreas Zamperoni Bart Gerritsen Bert Bril

Leiden University TNO Institute of Applied Geoscience

Dept. of Computer Science Information Systems Oil&Gas

P.O. Box 9512, 2300 RA Leiden P.O. Box 6012, 2600 JA Delft

The Netherlands The Netherlands

Tel.: ++31/71/27 7103 Tel.: ++31/15/69 7196

Fax.: ++31/71/27 6985 Fax.: ++31/15/56 4800

email: zamper@wi.leidenuniv.nl email: gerritsen@iag.tno.nl

Abstract

Traditional software engineering approaches are no longer suitable when dealing with the

development of innovative, complex software systems, such as e.g. applications of neural net-

works for geophysical subsurface modeling. At TNO, we succeeded to de�ne and to establish

a \hybrid" life cycle plan that integrates the developers' view of a creative, exible and unre-

stricted development process on the basis of evolutionary prototyping with the management's

needs for organization, controllability, and clearness of a software project.

We report the experiences we made when applying the evolutionary life cycle plan to mul-

tilateral software projects, and compare them with systems developed following the traditional

approach.

In this paper, we focus on the most crucial technical and strategic requirements for (con-

trolled) evolutionary software development. We discuss the issues of team structure, commit-

ment of, and communication with users, frequent testing, integration & version control, com-

ponent reusability, and management capabilities that become important considerations when

replacing a traditional sequential by an evolutionary life cycle plan.

Biographical: Andreas Zamperoni received a master degree in computer science from the Technical Uni-

versity of Braunschweig (Germany). Since 1992, he works on a PhD on Software Engineering Methodologies

at the Leiden University (The Netherlands), in the research group for Software Engineering and Information

Systems. At the same time, he works at TNO Institute of Applied Geoscience (Delft, The Netherlands),

where he investigates, evaluates, and enhances software development of geo-scienti�c software systems.

Bart Gerritsen received a master degree in mechanical engineering specializing in CAD from the Delft

Technical University (The Netherlands). He has been, among other, a senior system developer and project

leader at Cap Gemini. Since 1991, he is project leader and software quality assurance o�cer at TNO Institute

of Applied Geoscience (Delft, The Netherlands). He has also been a project leader of the TNO participation

at a 20+ man year international project funded by the EC.

Bert Bril received a master degree in geophysics from the Delft Technical University (The Netherlands).

He has worked as �eld geophysicist, and been a senior system developer and at Cap Gemini and Jason

Geosystems. Since 1992, he is senior system designer and technical project leader at TNO Institute of

Applied Geoscience (Delft, The Netherlands).

1

1 Introduction

Most traditional software engineering approaches start from the ideal assumption that software

development is a sequence of one-directional translations from an abstract problem description

to a running program that meets all necessary quality criteria. The inuence that these kind of

sequential - \waterfall" - life cycle models [Boe76] have exercised on software development

in recent years can not be neglected - they match the requirements of project management

of a veri�able development process concerning time, budget, progress, and quality. Therefore,

management usually seeks to keep control of the development process by imposing strict phasing

to ensure clear organization of the production process.

On the other side, developers prefer to use their \unrestricted creativity" in their search for

an \optimal" solution of the problem. They want to switch between the di�erent development

activities of analysis, design, and implementation, so that the system can evolve gradually and

incrementally, following a \creative chaos" life cycle model.

This diversity leads to a conict between the di�erent groups of people committed to a project

(cf. �g. 1), because though analysis, design, and implementation are distinct activities, they are

also tightly related!

analysis, design, implementation :
distinct, but tightly related activities!

unrestricted creativity
switch between dev. activ.

evolution of the system

"chaos" life cycle model

control over dev. process
strict phasing

timeliness of production

sequential (waterfall)
 life cycle model

Developers: Management:

controlled evolution of the system

integration of life cycle models
 into a unifying life cycle plan

Figure 1: Developers' and management's view of software development

Communication between users and developers is another important issue, and is tightly

related to the problem of capturing the sound system requirements. The reality of daily

development work indicates that the traditional sequential process is in many cases not the best

way to develop software. Sometimes users or customers have a certain, very speci�c perception of

the future system, but are unable to formulate this perception adequately. Especially for innovative

software projects, the requirements are not exactly known or can not be overlooked altogether at

2

project start. This problem is not solved optimally by waterfall life cycle models, where users are

only involved at the very beginning (during requirements speci�cation) and at the end (during �-

testing). This relatively late feedback is a great risk to the system being developed of not meeting

the expectations and wishes of the users. Even if an intermediate exchange of ideas is foreseen,

i.e., the speci�cation documents are discussed with users, the problem remains that formal, non-

executable system speci�cations are unsuitable for evaluation by (non-computer scientist) users.

To cope with the conicting views on software development and the communication issue with

users, a controlled evolution of the system with frequent feedback to the users has to be

de�ned, i.e., an integration of the two life cycle models into a unifying life cycle plan

1

that satis�es

the needs of all groups of people involved.

At TNO

2

, we succeeded to de�ne and to establish a \hybrid" software process plan which

bridges the gap between the developers' needs for relatively unrestricted and \unordered" creativity

(progress-by-experience) and the management's need for organization, clearness and controllability

of the development process (progress-by-planning). With this approach, we were able to increase the

quality of our software development, capturing better the requirements of our customers, meeting

the request for more exibility of the development process by the developers, while at the same

time still controlling development time and technical risks of the �nal product.

Yet, such a modi�cation of the development strategy does not only require a solid re-de�nition

of the life cycle model, but also implies some important adjustment of the development in-

frastruture, i.e., an adaption of the technical and human environment of the production. The aim

of this paper is to discuss these infrastructural requirements in view of the experiences we made

with evolutionary software development.

Section 2 gives a concise overview of how an incremental and iterative life cycle can be consis-

tently integrated with the project management's sequential view of the software life cycle, using

evolutionary prototyping as basis. A comprehensive discussion of the \hybrid" life cycle plan

and its integration aspects can be found in [ZG94]. Experiences with several recent, multilateral

projects, carried out at TNO Institute of Applied Geoscience, are reported in section 3, and evalu-

ated concerning development time, risk management, and software quality. Technical and strategic

requirements related to the evolutionary life cycle plan, as e.g., team structure, communication

channels, system integration and version control (and other), are presented in section 4. Section 5

concludes this paper and gives an outlook on future work.

2 Evolutionary Prototyping and the Evolutionary Life Cycle Plan

As stated in the introduction, the communication between development team and (potential) users

is a key factor to the quality of the software system developed. This is even more crucial when the

aim of the development is not a standard application, but an innovative, complex, highly techni-

cal and specialized system, as e.g., the application of neural networks for geophysical subsurface

modeling. At TNO, these kind of innovative systems are called experimental systems, as they

interact with the domain-speci�c research and researchers of TNO.

1

We distinguish the notion of the conceptual, descriptive life cycle model , and of the applied prescriptive life cycle

plan [LRR93].

2

At the TNO Institute for Applied Geoscience, Delft, The Netherlands, we develop information systems and

simulation programs for oil & gas exploration and production (cf. section 3).

3

Evolutionary Prototyping

Prototyping o�ers a practicable solution to the problem of validating and capturing better

system requirements, hence constructing a more stable system [Bud84]. Throwaway prototyping

can deliver useful insights about certain limited details of a system, but usually not much e�ort is

taken to make those kind of prototypes qualitatively persistent in regard of software qualities as

e.g., e�ciency, completeness, etc. [GJM91].

Nowadays, in major projects, the investment in prototyping has become too expensive for

the organization to a�ord to throw the prototypes away. Furthermore, in innovative software

development, prototyping has to go beyond addressing single, isolated details of the projected

system (e.g. the user interface), but has become an essential means to stimulate imagination

and creativity of both the developers and the non-computer-scienti�c target users. In addition,

reusable components are becoming more and more available, enabling a rapid production of

reliable and functional prototypes.

So, at TNO, we decided to exploit the new potential of evolutionary prototyping. Prototyp-

ing has matured from o�ering very limited working models which helped to highlight or validate

certain limited aspects of a system to evolving, full- scale, and persistent repositories of

acquired knowledge, development solutions and decisions [BKKZ92].

As described above, the full set of requirements and possible solutions are often not known or

can not be overlooked before implementation begins. With a prototype that is constructed early

and evolves during the whole development, software concepts can be worked out and implemented

in subsequent cycles of realization, testing, and feedback from (early) users to the developers.

Concentrating on core functionality and on the new, highly risky parts to explore, the current

prototype represents at any time the ideas and visions with respect to conceptual solutions and the

system architecture.

Every evaluation cycle decreases the risks inherent to every software development, and enhances

the quality of the software product concerning technical risks (feasibility, performance, etc.) and

user acceptance (functionality, adequacy, comfort, etc.).

The new role of prototyping and the intention to achieve more exibility in the choice of devel-

opment activities by a more exible software process have far-reaching consequences for a software

development project. The experiences made at TNO reveal the key issues connected to this change

of development strategy:

� a revised (evolutionary) life cycle plan and revised change management

� sophisticated (object-oriented) software engineering methodologies

� integration control and version control

� regular testing and evaluation, and short communication paths

� management of reusable components and standards

As the choice of adequate software engineering methodologies is abundant (and somehow an

individual process), we only mention Objectory [JCJO92] as \our" choice for early development

phases. Object-orientation, not only for the analysis which captures the intuitive organization

of the application, but also for design and implementation, o�er the concepts crucial for the con-

struction of an evolutionary prototype (modularization, reusability, encapsulation), and hence also

for the �nal system.

4

After briey introducing the life cycle plan underlying the evolutionary development

3

, we will

dedicate our main attention in this paper to the last three items on the list above in section 4.

An Evolutionary Life Cycle Plan

Design

Proto-
typing

SRS
PrototypeSDD

Detailed
Test Plan

 Alpha
Test Plan

 Beta
Test Plan

 Beta
Release

 Alpha
Release

 New
Release

Initiative
 Plan

Prepa-
ration

Concepts
 & Ideas

Finaliza-
tion Code

alpha/FAT
 Testing

beta/SAT
 Testing

Require-
 ment
Analysis

Evolution Phase

Preparation/
 Analysis
 Phase

Finalization
 Phase

Maintenance
 Plan

Maintenance

SPMP

SQAP

Global
 SRS

 Basic
Concepts

 Global
Test Plan

Global
 SDD

First version
 Prototype

Figure 2: Phase 1 of the \hybrid" software life cycle: Preparation/Analysis

4

At TNO, we established a life cycle plan that incorporates relatively unrestricted, but controlled

evolution of the software product and of its main speci�cation documents. Note that the base

document de�ning the life cycle plan is a software quality assurance plan (SQAP) [Ger93]

that conforms entirely to the ANSI/IEEE Std. 730-1984

5

. Interpretation of this standard is in

3

For a detailed description of the integration of the developers' and the management's view of the software

development process cf. [ZG94].

4

SPMP: Software Project Management Plan; SQAP: Software Quality Assurance Plan; SRS: Software Requirements

Speci�cation; SDD: System Design Document

5

IEEE Guide for Software Quality Assurance Plans [IEE84]

5

most cases consistent with the ANSI/IEEE Std. 983-1986

6

and other standards

7

. An overview of

the evolutionary development life cycle can be found in the �gures 2 and 3. In these �gures, the

iterative, incremental process and its related sequential management perspective are depicted.

The inner part of the cycle shows the development process from a technical, developer's

perspective. The network of nodes indicates tasks and activities to be carried out, while arrows

show their order and interconnection. In order to achieve the desired exibility of an incremental

approach, multiple transitions are possible at certain stages (cf. �gure 3).

The outer circle of project deliverables lists the desired order of delivery from the management

perspective. Management, software quality assurance, etc. can be seen as taking along this temporal

time line. For clarity, not all individual project deliverables are shown and explained in these

pictures.

Themain phases reect the subdivision of the life cycle into iterating and non-iterating parts:

preparation, evolution, and �nalization (plus operation/maintenance).

Triggered by the initiative plan, during preparation, the documents required at project start

are produced. The Basic (technical) Concepts, considered fundamental for the application, are

worked out. (Global) Requirements Analysis concentrates on the description of how the system

should look like. Together with a �rst (Global) System Design, they are implemented in a First

Version of the Prototype which reects the global system layout. The construction of the �rst

prototype concludes the �rst, non-iterative part of the software development process (cf. �g 2, gray

symbols).

The evolution phase is the core of the development. In that phase, the global system layout,

as laid out in the deliverables produced so far, is worked out in full detail. Focus is on those concepts

and technical issues that are expected to be most critical for the future system. Attention may

easily shift between Requirements Analysis, Design and Prototyping , indicated by the dark-gray

process symbols and the bidirectional arrows in �gure 3. By this iterative, incremental proceeding,

individual parts of the system can further be worked out in a number of cycles of which each may,

or may not , include all the three activities of requirements analysis, design, and prototyping. This

is an important di�erence to waterfall models with iteration, like the spiral model [Boe88], as they

impose an unambiguous order of activities, and iteration is seen as a repetition of a well-de�ned

sequence of activities done before.

By using evolving versions of the same prototype as means of communication with the users,

the discussion concerning the relative merits of alternative (design and implementation) concepts

and solutions can be narrowed down.

At the end of this evolution, the code of the incrementally developed prototype is completed

and brought into a state of �nalization, meeting the quality criteria de�ned in the software

quality assurance plan (SQAP). Acceptance is ensured by (�- & �-) Testing , and preparations

for Maintenance are taken (cf. �g. 3, light-gray symbols).

Note that in this software process, change management is de�ned as a change of the \Basic

Concepts" document after the preparation/analysis phase (phase 1), or a change of the \Software

Requirements Speci�cation" or the \System Design Document" after the evolution phase.

The purpose of this brief overview of the life cycle plan was to place its evolutionary part in

the context of the whole software life cycle. In the next section, we will illustrate the impact of the

evolutionary life cycle for projects developed at TNO.

6

IEEE Guide for Software Quality Assurance Planning [IEE86]

7

These standards are collected in [IEE89].

6

3

Finalization
 Phase

2

2

3

Design

Proto-
typing

SRS
PrototypeSDD

Detailed
Test Plan

 Alpha
Test Plan

 Beta
Test Plan

 Beta
Release

 Alpha
Release

 New
Release

Initiative
 Plan

Prepa-
ration

Concepts
 & Ideas

Finaliza-
tion Code

alpha/FAT
 Testing

beta/SAT
 Testing

Require-
 ment
Analysis

Evolution Phase

Preparation/
 Analysis
 Phase

Finalization
 Phase

Maintenance
 Plan

Maintenance

SPMP

SQAP

Global
 SRS

 Basic
Concepts

 Global
Test Plan

Global
 SDD

First version
 Prototype

Figure 3: Phase 2 and 3 of the \hybrid" software life cycle: Evolution Phase and Finalization Phase

7

3 Experiences with the Evolutionary Approach

In recent years, TNO Institute of Applied Geoscience has developed a number of software

systems to manage exploration & production (E&P) data. Many of these applications are unique

regarding their innovative, scienti�c nature, and the knowledge TNO has gathered in this �eld

is reected by the numerous cooperations with international petroleum and software companies,

universities, and standardization organizations.

TNO's activities fall into three categories: research & development projects, consultancy &

(pure) production projects, and knowledge transfer. While the latter two pose no, or only low risk

of not succeeding, research & development projects have a higher risk of failure, due to their

innovative nature of realizing in a software system the results of geo-scienti�c research. These kind

of projects lead to so-called experimental software systems, a term that reects that these

systems implement the results of geo-scienti�c research (performed e.g. at TNO), and at the same

time support and enable that research. As the success and the impact of the resulting systems

7

usually can not be predicted, these projects are therefore often contracted to TNO. Our institute

combines the application-speci�c, i.e., geophysical, knowledge with the information-technological

skills to cope with the high risks of these projects. It was the particularity of the research &

development projects, combining research with the production of operative software systems, that

triggered the elaboration of a di�erent life cycle plan.

To evaluate the impact of the new development strategy, we compared TNO research & de-

velopment projects carried out with the evolutionary approach presented so far, with TNO (pure

production) projects developed according to the traditional waterfall life cycle model. All the

projects included distributed, i.e., multi-site, software development and dealt with either infor-

mation systems for reservoir data management, or with reservoir characterization by

seismic interpretation. Table 1 lists a summary of some of the most important project parame-

ters for all projects examined

8

.

Project parameter: Value:

total duration 18 - 30 months

total man-hours 3100 - 9600

overall costs (k US$) � 1300

team size 4 - 15

platform, tools SUN, DEC, SGI, Cray YMP-EL, POSIX, OSF/Motif,

XFaceMaker, Uniface, Oracle DBMS, Lotus 1-2-3, XV (im-

age display), SU (Seismic Unix), WingZ (spreadsheet), As-

prine/Migraine (PD neural network)

languages C, C++, Uniface4GL, WingZ-Hyperscript, SQL

development tools Uniface, X-NIAM, (ER tool), Software trough Pictures

(StP), XFaceMaker, Centerline, RCS/CVS, proprietary

tools

Table 1: Project parameters for the projects examined

Because of the particular development situation at TNO, sketched above, no reference or \stan-

dard" projects or systems were available. Furthermore, it was very di�cult to \measure" risk

decrease otherwise than to judge on the statements and assessments of users and developers.

As a �rst approach, we examined the amount of time allocated to the di�erent development

activities. The absolute numbers were \normalized" to give the percentages of total project man-

hours dedicated to the di�erent activities, because though projects were comparable in size and

complexity, they were not exactly the same. Usually, the research & development projects were

larger, more complex, and more innovative.

Figure 4 gives an overview of the relative amount of time used for the various development

activities for the di�erent types of projects. The exact numbers for the di�erent projects have been

published in [ZG94].

Management activity hours are not explicitly stated, but included in the numbers for the re-

spective development phases. Furthermore, for the projects following an evolutionary life cycle

plan, only the main evolution cycles between so-called sponsor meetings, where the (prototypes of

8

Although the range of \values" in table 1 is rather large, we actually compared pairs of very similar sequential

and evolutionary projects.

8

10

20

30

40

50

60

70

80

90

100
% man-hours of total
 project man-hours

 Projects with
evolutionary life cycle

Finalization

0

10

20

30

40

50

60

70

80

90

100

 Projects with
waterfall life cycle

Analysis

Design

Implementation

Testing

A D P

A D P

PDA

 Preparation
Main evolution
 cycles:

26.5 %

32.4 %

 13.8 %

Testing

 Preparation
0

70

6030

402535

15

10

15

Figure 4: Overview of development activities for projects with \waterfall" and evolutionary life cycle

the) system were presented to a larger public, are depicted. The �ne-grain two-weekly cycles are

not shown.

In projects with the sequential life cycle, a �rst version of the system was available only in

the implementation phase, after about 80% of the total project time, with the �rst complete

version being ready only after more than 87% of the total project time. As consequence, feedback

about adequacy and performance of the system occured only at a very late project stage, while

the risk of the project was still relatively high. Once, this lead even to a complete redesign and

reimplementation after �-testing had revealed major shortcommings of the system developed.

At a comparable point in time (at approx. 80% of project time), projects following the evolu-

tionary life cycle model were still in their �nalization phase, but feedback had been given already

several times, i.e., at least three times (at 21.4%, at 53.8%, and at 80.3% of the total project time)

if only the main cycles between sponsor meetings are taken into consideration.

Figure 4 shows also very clearly how the percentage of activities shifts during the three evolution

cycles from mainly requirements analysis (A) to mainly prototyping (P). The small numbers at the

bottom of each box give the percentage of the activity within the respective main evolution cycle.

Table 2 gives an overview of the total percentage of time allocated for requirements analysis,

design, and coding activities. Design activities have a considerably bigger share of the total project

man-hours in projects with the evolutionary approach (18.1% compared to 10.8% for sequential

projects). This isn't primarily an indication for more complex systems, but mainly due to the fact

that evolutionary prototyping requires a better-designed system architecture which does not only

9

Sequential life cycle Evolutionary life cycle

9.2% Preparation 7.6%

25.9% Analysis 24.2%

10.8% Design 18.1%

Prototyping 31.2%

41.2% Coding (total) 42.7%

12.9% Testing 7.4%

Table 2: Overall distribution of relative man-hours used for development activities

aim at an optimal �nal product, but also facilitates reconstruction and change of its subcomponents

during development. On the other side, due to prototyping, �- and �-testing of the �nal product

require much less time (7.4%, compared to 12.9% for sequential projects).

The overall distribution of project man-hours (table 2) shows also that the e�ort put into the

main development activities (analysis, design, coding) is approximately equal for the two types of

projects. The big di�erence is how these e�orts are distributed, i.e., how the total e�ort put into

the core development activities is \fragmented" in the evolutionary software process.

Assets

It truly is di�cult to compare the absolute numbers of the projects to come to a conclusion

like \we saved this amount of time and that amount of money with our evolutionary approach."

After all, the new life cycle plan was established because we had to cope with new, experimental

software systems that can not be drawn up against other.

What comes closest to an absolute estimation is a cautious statement that with the new ap-

proach \we were able to develop more complex systems with the same order of magnitude of resources

we used before". Much more important though, is that the evolutionary life cycle plan helped us

to decrease technical risks and the risk of not meeting the users' requirements and wishes earlier

and faster.

Each version of the prototype and the feedback from testing and users translates directly in

a decrease of risk, as sketched in �gure 5, where the risk curves for traditional, sequentially

phased projects and for the evolutionary development strategy are compared. As consequence, this

approach to system development can increase the con�dence of users and developers in the quality

of the future product.

Apart from the general, more advantageous risk curve for the evolutionary approach, two details

concerning this curve are noticeable. In the beginning, risk decreases slower because analysis and

design activities are not as detailed as for the sequential approach. But this changes with every

prototype that is introduced. At the end, the hazard of failure generally is lower for systems

developed via the evolutionary approach, simply because, although spread over the whole life cycle,

the total of feedback and evaluation of the current development e�orts is higher than in traditional

projects.

4 Technical and Strategic Requirements

The most signi�cant di�erence between the traditional sequential life cycle models and the evo-

lutionary approach are that the blurred boundaries between the development activities

10

Risk

Time %

max

Preparation+Analysis
Sequential
Life Cycle : Design Implementation Testing

Evolutionary
Life Cycle :

Preparation+
1st prototype Evolution

Fina
liza
tion

Test.

low

project start

release

1st prototype

2nd prototype
3rd prototype

alpha-test

beta-test

20 40 60 80 100

Figure 5: The risk curves for sequential and evolutionary development compared.

analysis, design, and implementation. In the evolution phase, the decision which activity to per-

form, i.e., on which kind of speci�cation document to work, becomes exible, even if none of the

relevant deliverables has been worked out in full detail.

The direct consequence of the undetermined order of speci�cation activities in the evolutionary

software process is that the traditional speci�cation documents software requirements speci�cation

(SRS) and system design document (SDD) are no longer stable anchor points of development

prior to the beginning of a consecutive activity. Requirements speci�cation and design document

evolve together with the prototype, and reach stability only at the end of the evolution phase.

Hence, the evolving prototype acquires two crucial roles, becoming:

� the means of communication with users and domain experts, i.e., the mediator to reach

agreement with the users and meet their expectations, and

� the central project repository about acquired speci�cation knowledge, design decisions,

and development solutions, and therefore also the primary source for evaluation of develop-

ment progress.

This fundamental change of requirements to the project documents and the system to be built

has to be compensated by an adaption of the technical (integration & version control, test plan,

reusable components) and human (team structure, communication channels) environment, as

discussed in the following.

4.1 Integration Control: Integration Manager and Controlled Environment

Aim of integration control is to coordinate the prototyping activities of the developers at the di�er-

ent sites, and to regularly and frequently provide running versions of the system, i.e., prototypes,

that can be tested and evaluated. Therefore, the special task of an integration manager is de-

�ned (cf. �g. 6). This task has to be �lled by a senior programmer , as one of his roles within the

development team, or as full-time job, depending on the project complexity.

11

 Line
Manager

QA
Officer

Project
Leader

Project
Leader

 Integration
 Manager

Developer Developer Developer...

Figure 6: The position of integration manager within a development team

The integration manager is responsible for regularly \collecting" the di�erent system \patches"

(modules, classes, etc.) into an integration environment, exclusively administered by him. At TNO,

this integration environment is called controlled environment, because it acts as �lter between

those team members committed to development and those in charge of evaluation of the prototypes.

As the integration manager constructs the running versions of the prototype, he is an active

decision maker about design decisions, but not responsible or in charge of correcting the

components he receives. In case of errors that prevent a proper integration, the integration manager

gives direct feedback to the respective developer. In case of conicts, the project manager might

have to be called in.

The task of an integration manager is product-oriented, i.e., to ensure the technical quality of

the system prototypes, including the management of \meta"-information about the procedure to

construct the system. This pro�le discriminates him from the Quality Assurance (QA) O�cer

(cf. �g. 6), whose responsibilities are procedure-oriented , assuring the quality of the production

processes.

Figure 7 gives an overview of the course of events and the communication during the

evolution phase. The integration manager collects the di�erent parts, produced individually by

the developers, and integrates them to a running version of the prototype. This version of the

prototype is then tested and evaluated by an appropriate group of users and/or domain experts (cf.

sec. 4.3 for a discussion about appropriateness of \testers"). Feedback is given to the developers,

via the integration manager, if not possible otherwise. The developers change the parts for which

they are responsible, thereby initiating a new \integration-evaluation-feedback" loop. A change of

the code is eventually related to a change of parts of the speci�cation documents, but this issue

is not further discussed here, as responsibility for integration and consistency of the speci�cation

documents can be planned individually (per document and per project).

Two aspects concerning this proceeding are very important. Firstly, integration and evaluation

have to take place as often as possible in order to guarantee continuity of the evolution process.

At TNO, a period of 14-20 days between two consecutive versions of a prototype and their evaluation

is scheduled (and maintained). This might look like an over-proportional increase of additional

tasks during development, but the more often a system is being evaluated, the smaller the (new)

12

...

Integration
Controller

test,
validate

Prototype

Users

ZY

X

integrate

feedback

Z’Y’

X’

integrate

Prototype’

test,
validate

feedback

 Production
Environments

 Controlled
Environment

Developers

X Y Z

X Y Z

feedback

X’ Y’ Z’

develop

X’ Y’ Z’

feedback

 Working
Environments

n+1

n

develop

Domain
Experts

...

n+2

Figure 7: Overview of the evaluation cycles

increments really to be tested are. This means that the total amount of testing activity doesn't

increase when the frequency of the tests augments.Committing people to test a new system during

development has even more advantages, as discussed in section 4.3.

Secondly, strict physical separation of the environments, i.e., of the (distributed) working

environments of the developers, the controlled environment, and the (distributed) environment(s)

in which the prototypes are tested (e.g., the production environment(s)), has to be maintained.

This ensures that the current status of the evolving system is always unambiguously determinable,

and that construction and evaluation of the system can take place independently.

4.2 Technical Support: Version Control and Early Test Plans

As the evolutionary prototype is the core and repository of development knowledge, the controlled

environment, where the prototypes are integrated and administrated, requires sophisticated tech-

13

nical support and management. Main task over time is version control to be able to discuss

and compare di�erent versions of the prototype, and to be able to roll back to previous versions of

the prototype and to follow other branches of the prototype version tree if that is regarded to be

necessary.

Development tools

prototypesource code

Users

Developer

Integration
Controller

SCCS Controlled
Environment

 Working
Environment(s)

 Production
Environment

integrate

W1 W2 Wn

SCCS, RCS/CVS

pmake

Case Studies

Test tools

...

read

read/write

send

launch

source code
executable(s)

system data
prototypes

prototype

Figure 8: The di�erent environments and their tools

Developers within their development environment have to read-access the prototype(s) in the

controlled environment to be able to harmonize their work with the complete system. In the

production (testing) environment, sophisticated testing tools have to support the evaluation of

the prototypes. The situation, together with the types of tools and of code is depicted in �gure 8.

Apart from technical support, another prerequisite for evolutionary prototyping is the early

elaboration of a test plan (cf. �g 2). It is not su�cient to collect only potential sets of

synthetic test data. It is also necessary to de�ne larger-scale, \real-life" test scenarios and even

case studies. During the course of evolution, it will gradually become possible to test not only

isolated components or aspects, but soon also the whole system and its functionality. The size and

complexity of the test cases have to match this growth of the system.

4.3 Team Structure: Developers, Management, Users and Experts

In �gure 7, one group of people mentioned before can be detected that normally interferes with the

project only at the beginning, when requirements are collected, and at the end, when the system is �-

tested: the users and the domain experts (which often are the same persons for technical, scienti�c

applications). Commitment of users and short communication channels between users

and the development team are important prerequisites for an e�ective application of evolutionary

prototyping, too.

The communication channels between users and developers are bi-directional . Of course, feed-

back about the current version of the prototype has to be given to the developers by the users. But

it is also necessary that the integration manager prepares testing information for the designated

14

testers about which increment of the system has been added or changed in the current prototype

to direct their testing in the right direction, minimizing and focusing their e�orts.

Another aspect of user involvement is the selection of the appropriate types of users for

evaluation of an actual version of the prototype. This selection depends from the state of completion

of the system. Obviously, not every potential user should be burdened with testing partial or

unstable prototypes. Especially in the early stages of evolution, when the technically most critical

parts are prototyped, \prototypical users" may be recruited within the development team, e.g., the

integration manager himself. Eventually, as functionality and stability of the prototype increase,

the circle of testers can be broadened.

As consequence of committing users to test, hence to \use" the future system already during

development , not only the risk of acceptance decreases. If future users are identical to the test users,

this causes a signi�cant decrease of the learning expenses concerning the introduction of the

�nal system at the users' site, because the users have already been accustomed to the system during

its development. Even if the future users are di�erent from the prototypical ones, the experience

of the test users during the evaluation cycles can be used when training other users. Consequence

is an abridged overall \development+introduction" cycle. An additional edge arises from

the fact that the case studies performed during development (for testing) can immediately be used

to illustrate and promote the �nal system.

Management pro�le requires also adjustment. (At least some) technical and domain-

speci�c knowledge is necessary to cope with the important tasks of the:

� identi�cation of the most risky parts of the application (technically, or regarding user

acceptance) in the preparation phase, as these are the starting point of prototyping,

� monitoring of the progress in the evolution cycles, as completion of speci�cation docu-

ments can't be used for measurement and change management has changed considerably (cf.

sec. 2).

4.4 Reusable Components and Standards

Although reusability is a general quality of software development, the use of reusable compo-

nents is an especially important prerequisite for e�ective, meaningful prototyping. As described

in section 2, main concern of the prototyping e�orts can be technical aspects as well as user ac-

ceptance (e.g., user interface). Hence, reusable components should be available for all areas of

system speci�cation and construction. We consider product-oriented standards in the same scope

as reusable components, because they represent reusable conceptual components. Both facilitate

development e�orts by avoiding redundant (speci�cation or production) work.

We distinguish (and apply) three di�erent groups of reusable components:

1. generic components, as e.g. help facilities, error handling, image displaying, user interface

widgets

2. domain-speci�c components, as e.g. domain-speci�c class libraries (e.g., oil exploration

& production (E& P) widgets), POSC

9

standard data bases and data de�nitions, standard

data access libraries

3. application-speci�c components, as e.g., reused proprietary components, Seismic Unix

(SU) for seismic data processing, 3D-modeling tools (e.g., GoCad)

9

POSC is the acronym of the standardization organization Petrotechnical Open Software Corporation.

15

These groups cover the whole range of reusable conceptual, design, and implementation compo-

nents (and product-oriented standards). Although the most useful components for a straightforward

construction of prototypes are the design components (classes), because of their implementation

speci�city they are also unfortunately the most problematic ones to reuse.

5 Conclusions

The bene�ts of our approach to integrate the developers' and the management's perspective of the

software life cycle based on evolutionary prototyping have been con�rmed by the outcome of the

projects surveyed. This holds for the positive results as the sophisticated capturing of requirements

and wishes of the users, as well as for the early detection of risks and shortcomings.

In this paper, we focussed on presenting the most crucial technical and strategic issues to

support (controlled) evolutionary software development. Team structure, commitment of, and

communication with users, integration & version control, management capabilities, and component

reuse become important issues when replacing a traditional sequential by an evolutionary life cycle

plan.

To be able to measure quantitatively and more precisely the impact of the evolutionary life cycle

model, two steps have to be taken, indicating the areas of our future work. Other metrics (as

e.g. comparing the number of change proposals) as indication for the success of the evolutionary

strategy have to be de�ned and applied, and more projects have to be evaluated to achieve more

statistical certainty and to be able to neglect the individuality of each (experimental) software

development.

Furthermore, work is done currently to formalize and to integrate the approach presented here

into a more comprehensive methodology which integrates also other aspects of software engineering,

such as system architectures and speci�cation techniques [Zam94].

References

[BKKZ92] Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Z�ullighoven, editors.

Prototyping: An Apporach to Evolutionary System Development. Springer, 1992.

[Boe76] B. W. Boehm. Software Engineering. IEEE Transactions on Computers, C25(12):1226{

1241, 1976.

[Boe88] B. W. Boehm. A Spiral Model of Software Development and Enhancement. IEEE

Computer, 12(5):61{72, 1988.

[Bud84] R. Budde, editor. Approaches to Prototyping. Springer, 1984.

[Ger93] Bart Gerritsen. Software Quality Assurance Plan. Technical Report OS 93-52-C, TNO

Institute for Applied Geoscience, 1993.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engi-

neering. Prentice-Hall, Inc., 1991.

[IEE84] IEEE. ANSI/IEEE Standard for Software QUality Assurance Plans, 1984. ANSI/IEEE

Std 730-1984.

16

[IEE86] IEEE. ANSI/IEEE Guide for Software QUality Assurance Planning, 1986. ANSI/IEEE

Std 983-1986.

[IEE89] IEEE: The Software Engineering Standards - Third Edition, 1989.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar

�

Overgaard. Object-

Oriented Software Engineering. Addison-Wesley, 1992.

[LRR93] Perdita L�ohr-Richter and Georg Reichwein. Object-Oriented Life Cycle Models. Tech-

nical Report 93-05, Technical University of Braunschweig, 1993.

[Zam94] Andreas Zamperoni. Integration of the Di�erent Elements of Object-Oriented Software

Engineering into a Conceptual Framework: The 3D-model. Technical Report 94-18,

Leiden University, Dept. of Comp. Science, 1994. (also available by anonymous ftp from

ftp.wi.leidenuniv.nl in /pub/cs-techreports as tr94-18.ps.gz).

[ZG94] Andreas Zamperoni and Bart Gerritsen. Integrating the Developers' and the Man-

agerial Perspective of an Incremental Development Life Cycle. In Proc. of the 12th

Annual Paci�c Northwest Software Quality Conference, Portland, USA, pages 227{242,

October 1994. Also as Technical Report 94-22, Leiden University, Dept. of Comp. Sci-

ence, The Netherlands (Available by anonymous ftp from ftp.wi.leidenuniv.nl in

/pub/cs-techreports as tr94-22.ps.gz).

Acknowledgements:

We would like to thank the project members and leaders Paul de Groot, Simon Pen and Ipo

Ritsema for providing us the useful statistics about the four projects mentioned. Their meticulous

man-hour counting won't be forgotten.

17

