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Abstract

Goal of the GRIDS project is to provide a formally based, multi-dimensional software en-

gineering model - and tool - that integrates \partial" models of software processes, system

architectures, and views onto the system into one consistent project framework, in order to

enhance real-life, large-scale software development.

In this paper, we �rst introduce the static part of the so-called Three-Dimensional Model of

Software Engineering (3DM ), which captures and structures partial models, integrated project

frameworks, and other relevant project information. We further describe the dynamic part of the

3DM , which provides the necessary actions to generate, manipulate and maintain the entities

of the static part.

Using the programmed graph rewriting system PROGRES gives us a powerful means to

formally specify our conceptual model. We show how we apply PROGRES to formalize the

3DM , and present the prototype of a tool, generated from the formal speci�cation of the static

and dynamic parts of the 3DM .

Keywords: method engineering, meta-modeling, project frameworks, model integration,

graph rewriting systems

1 Introduction: From One-dimensional to Multi-dimensional

Software Engineering

Research in the �eld of software engineering is usually dealing with its complexity by investi-

gating the di�erent areas of concern separately. Conceptual models are developed for individual

aspects, such as e.g., software process modeling [AM92, BFG93, TDK94], (object-oriented) speci�-

cation techniques [Boo91, RBP

+

91, JCJO92], software architecture [FkNO92, PW92, GAO94], or

requirements engineering [Poh92].

Focusing on isolated areas of concern can lead to sophisticated theoretical models, and thereby

to more insights and deeper understanding about that certain area. But in real-life software de-

velopment projects, the practical use of such \partial" models, resulting from focussed research,

is often only very limited, because they often fail to capture the comprehensiveness of a software

project, when di�erent areas of concern interfere, and people with di�erent roles and di�erent tasks

interact. As consequence of this shortcoming of the partial models, their acceptance among software

engineering practitioners is often quite low [Pot93].
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At TNO Institute of Applied Geoscience
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, the experiences with shortcomings of existing software

engineering methods, dealing exclusively with single aspects of software engineering, triggered the

GRIDS
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project. Motivation of the project is to investigate how software development can be

enhanced by modeling di�erent areas of concern of software engineering within the same conceptual

approach, and to integrate them into a comprehensive software engineering framework that can be

adapted and used for a wide range of software projects.

Goal of GRIDS is to develop a formally based, multi-dimensional model that models and

integrates di�erent areas of concern of software development, and therefore can serve as basis to

describe - and prescribe - the di�erent tasks and products of real software projects consistently

from di�erent viewpoints.

To support this goal it is necessary to construct a project-supporting tool th that formal

multi-dimensional model as basis, but that hides complexity and formality to its users, the software

engineering practitioners.

In this paper we will introduce this multi-dimensional model (sec. 2), its underlying formalism

(sec. 3), give an overview of its static (sec. 4) and dynamic part (sec. 5), and give shortly attention

to the tool prototype (sec. 6).

2 3DM - a Multi-dimensional Software Engineering Model

The development of large-scale software is mastered by splitting it up into suitable units of decom-

position - or composition - in order to divide the various development tasks into logical units of

manageable size. Among all potential areas of concern that may and do trigger such a decomposi-

tion, three are generally fundamental for software development:

� The software process: Modeling the software process is essential to organize the tempo-

ral succession, iteration, and parallelism of development activities. In general, the software

process is characterized by its phases (steps) and their mutual dependencies which describe

the sequence and order of steps from an abstract, problem domain-oriented starting point to

a technical, solution-oriented end point.

� The views onto the system: During the course of a project, a system and its requirements

are described from di�erent views, the most common being the static, the functional, and the

behavioral view. Using di�erent views in the speci�cation documents of a project is indis-

pensable to get a complete picture of the software to develop. Choosing the right views (�rst)

has even become the focal point of many disputes concerning the best software engineering

methodology [SO92].

� The software architecture: A key property for the quality of a software system is its soft-

ware architecture. A good architecture makes the system more e�cient, easier to understand,

change, test and maintain, but has also inuence on the development process itself, because

the selection and organization of system components predetermines which parts of a system

can be reused or adapted (from previous projects or vendor software), and which parts have

to be developed from scratch. Therefore, it is important to deal with the architectural issues

of components and their dependencies on a high level from the beginning, and rigorously.

Software engineering methodologies like OMT [RBP

+

91] have recognized this and assigned

it an own phase (system design) in their software process, but there are also research e�orts

dealing exclusively with software architecture (e.g., [PW92, GAO94]).
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Cf. sec. 8 for more about this research department.

2

GRIDS is the acronym for GRaph-based Integrated Development of Software.
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The importance of all three of these areas of concern reected by the numerous approaches,

models, and speci�cation techniques currently being available and worked on by research groups,

and by the increasing number of speci�c tools o�ering support to commercial software developers.
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Figure 1: Traditional software engineering models deal with one particular area of concern at a time

However, those \partial" - one-dimensional - models help organizing real-life software develop-

ment only in a limited way, because constraints relating di�erent areas of concern are not modeled,

and hence, can't be easily enforced. Examples of such constraints, crossing areas of concern, are

e.g., \Which views are necessary to be speci�ed for a certain component, and which are not?" or

\When (in which phase) has a certain component to be speci�ed/introduced (i.e., from scratch, or

later)?" (cf. �g. 1).

To cope with these requirements to software engineering models, GRIDS concentrates on the

integration of the di�erent areas of concern into one comprehensive, multi-dimensional model.

The three areas of concern introduced above are considered as especially important for system

development, and used representatively as fundamental structuring mechanism for the construction

of the multi-dimensional model. Consequently, modeling the isolated areas of concern will not be

a purpose of its own anymore, but will become modeling the dimensions of the multi-dimensional

model. As we presently limit to three \dimensions", the resulting model will be called Three-

dimensional Model of Software Engineering (3DM) in the following.

The phases of the process, the components of the architecture, and the perspectives of the view

dimension are the constituents of the three dimensions, i.e., they are the \building blocks" for

the partial models that capture the three areas of concern involved.

Of course, software engineering comprises many more areas of concern, but main purpose of

GRIDS is to investigate integration issues of areas of concern in general, and on a formal basis.

Other areas of concern can be important or even crucial for certain systems and in certain situa-

tions, too (e.g., resource management, version management), but they do not contribute in 3DM

to the course of a project in a structuring way. Where important information concerning other

\dimensions" of software development, such as e.g., commitment of people to tasks, access rights

to documents, and other project-related information is also included in the 3DM , it is done in a

subordinate way, and doesn't contribute to the structure of 3DM models (cf. sec. 4).
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The analogy of a three-dimensional network is used to support the intuition of the 3DM .

Each node of the network represents a logical unit of development - called software engineering

fragment - which contains information about a (small) portion of the actual software development.

Each software engineering fragment is identi�ed by a unique combination of constituents of each

of the dimensions of the 3DM . These combinations of constituents determine, coordinate-like, the

exact position of the fragment within the context of the software development project. Edges,

connecting the nodes of the network, model relationships and constraints between the fragments

3

.

Figure 2 illustrates the analogy of the three-dimensional network containing related fragments.

The constituents of the dimensions are simpli�ed for the purpose of clarity. Fragment X represents

the behavioral view of the interface component in the analysis phase, while Y represents the sta-

tic structure of the control component during design. Between the two fragments, a relationship

Information Source For models the fact that (the speci�cation of) fragment X serves as informa-

tion source when working on (the speci�cation document of) fragment Y.

analysis design implementation
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       process

views onto
the system

system components
      

(static) structure

functionality

behavior

interface

process
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X
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Information_
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Figure 2: An example of software engineering fragments.

As motivated in the introduction, a major purpose of the model is pre- and describing the course

of actual software projects. This implies a certain kind of construction process of the network that

models a certain project, and furthermore the possibility of evolution of that network to adapt to

changes that occur during the course of the project. Modeling these dynamics of the network are

part of 3DM , too.

The relationships between the nodes of the network constrain also how (whether, in which

order, and under which circumstances, etc.) members of a software development team can access

the software engineering fragments to perform the tasks to which they have been committed. This

3

Even more intuitive is the analogy of the molecular grid structure of a crystal lattice from which the acronym

for the project was derived. The molecules (= fragments) - arbitrary complex units containing information - are the

basic logical units of the grid (= project framework), while electrons (= edges) bind the molecules, i.e., establish

relationships between them. Each crystal (= project framework) has its own particular shape, but all are built up

in a more or less regular - organized and clear - form, according to the higher principle of chemistry (= software

engineering).
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means that the work of the project team members can be modeled by prescribing, identifying, and

following paths through the 3DM network.

We will present the di�erent parts of the 3DM - especially the static network (in sec. 4) and the

network dynamics (in section 5) in more detail, concentrating on the way they can be formalized

with graph rewriting systems. Therefore, we �rst introduce the formal system we use to specify

3DM . An extensive descriptions of the conceptual modeling of 3DM can be found in [Zam94].

3 Graph Rewriting Systems as Formal Speci�cation Language for

3DM

Using a network as analogy for the static structure of the 3DM suggests using graphs to formalize

the model. In the past, special types of graphs have been successfully applied to systematically cap-

ture the syntax and semantics of various, complex problem domains (e.g., [Eng92, Wes92, Rek94]).

We use attributed, node and edge labeled, directed graphs, and in particular, the graph rewriting

system PROGRES

4

[Sch91], because PROGRES o�ers a rich and powerful graph speci�cation

and manipulation language for the formalization of the conceptual 3DMmodel. Furthermore, the

developers of PROGRES provide a range of development and prototyping tools (cf. sec. 6).

In its static part, PROGRES is based on graphs which consist of labeled, attributed nodes

which are connected by binary, directed, and labeled edges. These graphs can be speci�ed by ER-

like graph schemes. The static structure of 3DM (3DM graphs) can be straightforwardly speci�ed

as PROGRES graph class (cf. �g. 3) PROGRES node classes can have (node-)subclasses (as e.g.,

CONSTITUENT and its subclasses VIEW, PHASE, and COMPONENT). Subclasses inherit the features and

constraints of their ancestors (multiple inheritance is possible), avoiding redundant de�nition of

node properties. An overview of the static structure of the 3DM will be presented in section 4.

PROGRES supports a sophisticated, rule-oriented and diagrammatic speci�cation of atomic

graph rewriting rules with complex preconditions, and imperative programming of composite

graph transformation processes by means of deterministic and non-deterministic control structures.

Describing the full range of graph rewriting concepts of PROGRES goes beyond the scope of this

paper, but examples of PROGRES graph transformation rules will be given and explained when

describing the dynamics of 3DM in section 5.

Additionally, PROGRES includes a number of tools, including a syntax-directed editor for vi-

sual and textual speci�cation of graph schemes and graph transformations, and facilities to execute

speci�cations, visualizing the resulting graphs and their evolutions. Furthermore, generation of

interactive prototypes from PROGRES speci�cations is supported. This allows the construction

of a tool prototype on top of the formal 3DM speci�cation (cf. sec. 6).

4 The static structure of 3DM

Figure 3 shows the three parts of the static structure of 3DM . Node classes are drawn as rectangles,

edge types as (labeled) solid arrows between two node classes. The dotted arrows depict inheritance

between node classes. For clarity reasons, only a part of the static structure and no node attributes

are displayed.

4

PROgrammed Graph REwriting Systems
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Figure 3: (A part of) the 3DM graph scheme

The partial models subscheme contains the node classes and edge types that are needed

to construct the partial models for the three constituting areas of concern. As explained in sec-

tion 2, these partial models concern software processes, (coarse-grain) system architectures, and

the collections of views onto the system.

The graph scheme for these partial models is kept generic and simple, providing subclasses of

a a generic constituent node class (CONSTITUENT), plus a collection of edge types to relate the

nodes within each partial model. The ...MODEL node classes are anchors for the collections of

constituents of one partial model, using the inherited Contains relationship (de�ned between the

superclasses PARTIAL MODEL and CONSTITUENT). Table 1 shows the elements of the subscheme of

partial models.

Although this subscheme supplies only simple set of elements to construct partial models, it

is possible to construct - with some adaption and abstraction - a large variety of instances of the

models for the three areas of concern. Figure 4 shows a (simpli�ed) model for an evolutionary
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Dimension: Constituent nodes (node classes): Relationships (edge types):

phases PHASE, PROCESS MODEL PreviousTo, IterateTo,

SubprocessOf, Contains

components COMPONENT, COMPONENT MODEL PartOf, Uses, Contains

views VIEW, VIEW MODEL InteractsWith, Contains

Table 1: Node classes and edge types of the partial models subscheme

software process, modeled as partial 3DM model.

Figure 4: An detail of a partial 3DM model of an evolutionary software process

.

The partial models are project-independent , i.e., they can be reused or adapted for di�erent

projects. It is conceivable to keep and maintain a library of partial models, from which suitable

instances can be selected (and eventually adapted) for individual software projects.

The selected or newly de�ned partial models are then used to generate an integrated, project-

speci�c framework for the actual software project (cf. sec. 5).

The grid structure subscheme contains the node classes and edge types which are used to

structure and build the integrated project frameworks (cf. �g. 3). GRID) is the anchor for a set

of software engineering fragments (GRID NODE) and related to them by Comprises edges. Grid

nodes are identi�ed by a combination of constituents from each of the three dimensions to which
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they are linked by the three edge types ToView, ToPhase, and ToComponent. The grid nodes are

also mutually related by the same kinds of relationships that relate the constituents of the partial

models (e.g., GN PreviousTo

5

).

As logical unit, each software engineering fragment can be decomposed into an own sub-

framework (cf. (edge type RefinedTo). A sub-framework may be built from di�erent partial

models than its \parent" framework. This decomposition mechanism allows to \zoom in" on par-

ticular details - fragments - of the project, and to work on them according to di�erent partial

models than used for the rest of the project.

The satellite subscheme (cf. �g. 3) captures all information that does not contribute to the

\topological" structuring of the project-speci�c graphs. Node classes of the satellite subscheme

provide information about project- and team-speci�c resources and constraints (e.g., PERSON,

DOCUMENT, TOOL, SPEC(i�cation) TECHNIQUE) which is usually related to one or more software engi-

neering fragments. Using di�erent subclasses of the node class INFORMATION (e.g., REFERENCE INFO

about reference documents, manuals, etc., or COMMIT INFO about commitment of persons (in a

certain role) to fragments), this project- and developer-related information can be explicitly linked

to speci�c grid nodes.

5 The Dynamic Part of 3DM

The dynamic part of 3DM de�nes all actions with which 3DM graphs can be generated, manip-

ulated, navigated through, etc.. As mentioned in section 3, PROGRES distinguishes a number

of concepts to realize graph manipulation operations. Low level rewriting operation are called

productions in PROGRES, and can be used as building blocks for more complex manipulation

operations, called transactions. Before we describe the dynamic part of 3DM in more detail, we

give two short examples of manipulation operations, in order to illustrate how the dynamic part of

3DM - manipulation operations on the static structure, rules and constraints - can be formalized

with PROGRES.

The PROGRES production Commit Person (cf. �g. 5) speci�es how to commit a person to a

software engineering fragment, i.e., how to relate the node representing that person to a commitment

information node related to the grid node representing the fragment. The production has three

formal parameters: the commitment information node (commit info), the person node involved

(person), and the amount of resources requested from that person for that commitment

6

. The left

side of the production (the �rst of the two dotted rectangles) and the condition clause constrain

the action of committing a person to a software engineering fragment in a number of ways, by

de�ning a (unique) pattern that has to be matched in the current host graph. Numbers in the

graphical part of the production are used to identify the di�erent nodes:

1. The input parameter nodes commit info and person have to be present in the host graph,

and may not be already related by a Commits edge (crossed-out arrow).

2. There may not exist another node of type COMMIT INFO that is related to the same grid node

(node `3) and that commits the given person in the same role. This is ensured by the so-

called restriction \valid..." which points to node `4. It states that the attribute values

Requires role of the two commitment information nodes `4 and commit info (`1) have to

be the same. The negative node symbol (crossed-out node) demands that \there is no node

5

GN ... stands for Grid Node . . .

6

For the purpose of this example, \resource" is only an abstract integer, but in 3DM , it will be possible de�ne

values as man-hours, or full-time equivalents as \resource".
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production Commit_Person
      ( commit_info : COMMIT_INFO ; person : PERSON ; resources : integer ) =

      ::=

condition (‘2.Personal_res >= (resources + all (‘2.<-Commits-.Required_res)));
                ‘1.Requires_role in ‘2.Potential_roles;

transfer 1’.Required_res := resources;
end;

‘3 : GRID_NODE

‘2 = person

RelatedTo

Commits
‘1 = commit_info

Commits

RelatedTo
‘4 : COMMIT_INFO

valid ( self.Requires_role = ‘1.Requires_role)

3’ = ‘3

2’ = ‘2

RelatedTo

Commits
1’ = ‘1

Figure 5: The PROGRES production Commit Person

where the condition is valid". Therefore, the semantics of that construct is that it is not

allowed to commit the same person several times to one software engineering fragment in the

same role.

3. The role required by the commitment (`1.Requires role) has to be one of the (potential)

roles of the requested person (...in `2.Potential roles).

4. The sum of the resources employed by the requested person plus the resources requested

for the new commitment (resources + all ...) has to be less or equal to the personal

resources of the person (`2.Personal res). The sum of resources committed to other software

engineering fragments is calculated by making use of the path expression (`2. Commits-)

from the person node backwards to other commitment information nodes.

If all constraints are ful�lled, then the sub-graph matching the left side of the production is

replaced by the sub-graph de�ned on the right side. In this case, only the requested -Commits!

edge is added, and the requested amount of resources stored in the appropriate node attribute

(transfer 1'.Requires res ...).

To realize more complex graph manipulations, PROGRES provides transactions which include

imperative control structures (e.g., loops, if-then-else), and allow to de�ne atomic sequences of

graph transformations. Figure 6 shows an example of a transaction involving the production

Commit Person, presented above.

DEFINE COMMIT INFO creates a commitment information node and attaches it to the desired

grid node (input parameter grid node). First, a node of type COMMIT INFO is generated using

9



transaction DEFINE_COMMIT_INFO
         ( grid_node : GRID_NODE ; person : PERSON [0:1] ; req_role : Role ;
            resources : integer )                                            =

use local_com_info : COMMIT_INFO
do

              Define_CommitInfo
              ( grid_node, description, req_role, resources, out local_com_info )
            & choose

when ( def ( person ))
then

                    Commit_Person ( local_com_info, def elem ( person ), resources )
else

skip
end

end
end;

Figure 6: The PROGRES transaction DEFINE COMMIT INFO

the production Define CommitInfo (not shown). Define CommitInfo searches for the software

engineering fragment (grid node) in the host graph to which the new commitment information

node has to be attached. If the requested node is not found, the production fails, i.e., no re-

writing will take place, and consequently the whole transaction fails. Otherwise, a new node of

type COMMIT INFO is generated, and local development information is transferred to the respective

attributes of the commitment information node.

The sequence of operations within a transaction is separated by \&"s. The assignment of a

person to a commitment information node is not obligatory (...PERSON [0:1]), the responsible

person might be assigned later. If a person has been speci�ed (when def ( person )), then

Commit Person relates person and commitment information in the way described above. Otherwise

this step is skipped.

Analogue to the static part of 3DM , its dynamic part is classi�ed into several categories, too.

A coarse overview of how the 3DM is applied to structure and guide a software project from a

technical point of view reveals these categories.

A project-speci�c framework is set up by actions grouped together into the category of prepa-

ration actions. A �rst step is to specify the partial models for the three dimensions of 3DM , as well

as all project-speci�c information and constraints known at the starting point of the project (and

captured by the \satellite part" of 3DM ). To de�ne partial models structures and constrains the

project concerning the three areas of concern. Partial models and project parameters are usually

described in early project documents, as e.g., the software project management plan (SPMP) or the

software quality assurance plan (SQAP). These base documents can be used as source/reference

when modeling the partial models for processes, architectures, and views that can be obtained:

� by adopting \standard" (text book) models

� by designing (new) partial models which suit the individual development situation

� by reusing suitable partial models from previous software projects

in 3DM - usually by a software quality assurance o�cer or the technical project leader.

Figure 7 shows an example of a preparation action, de�ned as PROGRES production. With De-

fine ProcessIterateTo, two phases of the process dimension can be related by an -IterateTo!

edge. This allows iterating (back) from one phase (phase) to another phase (predecessor) in the

software process de�ned by this model. A number of constraints is checked before allowing the

addition of the new edge:
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production Define_ProcessIterateTo
      ( phase, predecessor : PROCESS ; proc_model : PROCESS_MODEL ) =

      ::=

folding { ‘1, ‘2 };
end;

‘2 = predecessor

-PreviousTo-> +IterateTo

‘1 = phase
Contains

def -PreviousTo->

Contains

‘3 = proc_model

2’ = ‘2

Contains

Contains

3’ = ‘3

IterateTo

1’ = ‘1

Figure 7: The PROGRES production Define ProcessIterateTo

1. Both phases have to be part of the same partial model (-Contains! edges from the same

process model anchor proc model).

2. The two phases are not already connected by an -IterateTo! edge (crossed-out -IterateTo!

edge symbol).

3. The two phases are not connected by a non-trivial path of -PreviousTo! edges. If such a

path existed, adding an -IterateTo! edge would allow to iterate back to a phase that is

also (transitive) successor of the source node of the -IterateTo! edge. The sequence of

at least one -PreviousTo! edges is speci�ed by the path symbol (the thick arrow) labeled

-PreviousTo! +, its non-existence by crossing it out.

4. At least one -PreviousTo! edge has to start from the phase to which iteration should be

allowed (predecessor), in order to prevent iteration to a \dead end". This is speci�ed by

the restriction def -PreviousTo!.

5. The folding clause allows the two phases to be identical, i.e., to match one node in the 3DM

host graph, allowing to direct iteration to the same fragment.

After de�ning at least three partial models (one for each dimension), a draft project framework

is automatically generated . Figure 8 shows the result of the construction process of a project

framework from partial models. In order to illustrate this process clearly, the whole example is

kept simple and abstract. The basic principle of framework generation is to create a software

engineering fragment (i.e., a grid node) for every possible triplet of combinations involving one

constituent per dimension. Following strictly that principle would generate a perfectly regular

three-dimensional grid (cf. �g. 8, small drawing on the right).
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Figure 8: Relating partial models and generation of an draft project framework

But this straightforward approach would yield (too) many, probably superuous, fragments

7

.

Therefore, the generation of software engineering fragments is steered manually by an interme-

diate step in which views are explicitly related to certain components and/or to certain phases

by the person who is responsible for the technical set-up of the project. -RelevantFor! and

-RelevantIn! edges are de�ned to indicate the relevance of a view for either a certain (set of)

component(s) and/or a certain (set of) phase(s) (cf. �g. 8, upper part).

Then, only those software engineering fragments are generated for which at least one of the two

constituents of the arbitrary combination of a component and a phase is related to a view. This

limits the number of software engineering fragments generated at project start, and thereby avoids

necessary deletion of insigni�cant fragments during the course of the project. Figure 8 (lower

part) shows the resulting draft project framework , generated from the partial models de�ned in

the upper part. After generating the fragments, also the relationships between constituents of the

7

Partial models of only 5 phases, 3 views, and 5 components would result in a project framework with 75 software

engineering fragments.
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partial models are taken over from the partial models to the draft project framework. Relation-

ships between two constituents of the partial models are \copied" to all pairs of grid nodes which

incorporate these two constituents in their structuring information.

To complete the set-up for the actual project, the project-speci�c information, constraints,

resources, etc., that have been stored in the \satellite" part of the 3DM structure, is explicitly

linked to the appropriate software engineering fragments.

Once the project-speci�c graph has been generated, and development has started, manipu-

lation actions enable manipulation of the project graph to reect and to adapt to the actual

development situation, while preserving its consistency.

Most common is to add, change, or delete \satellite nodes" (e.g., speci�cation documents,

persons, roles). But also the grid structure of the project can be changed, itself. The introduction

of new components, phases, or views, that have not been part of the partial modeling and therefore

also not reected by the draft project framework initially generated, makes it necessary to alter

the structure of the project speci�c graph in a controlled way. Figure 9 shows the PROGRES

speci�cation of a graph manipulation that merges two grid nodes.

production Merge_NeighbourNodes ( node1, node2 : GRID_NODE ) =

         ::=

condition (‘1.Status # Final) and (‘2.Status # Final);
                   (‘1.Status # Checked_out) and (‘2.Status # Checked_out);

embedding redirect -ToPhase-> from ‘2 to 1’;
redirect -ToComponent-> from ‘2 to 1’;
redirect -ToView-> from ‘2 to 1’;
redirect <-RelatedTo- from ‘2 to 1’;
redirect -GN_PreviousTo-> from ‘2 to 1’;
redirect <-GN_PreviousTo- from ‘2 to 1’;

                   ...
end;

path NeighbourTo : GRID_NODE -> GRID_NODE =
         [ -GN_PreviousTo-> | <-GN_PreviousTo-
         | -GN_IterateTo-> | <-GN_IterateTo-
         ...

end;

‘2 = node2

Comprises
Comprises

‘3 : GRID

NeighbourTo
‘1 = node1

1’ = ‘1

Comprises

3’ = ‘3

Figure 9: The PROGRES production Merge NeighbourNodes

The two grid nodes node1 and node2 can be merged if they are direct neighbors, i.e., if they are
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connected by one of the edges listed in the path NeighbourTo. This constraint is imposed on the

merging process to prevent merging arbitrary, completely unrelated nodes of the project framework.

Allowing only to merge neighbored nodes preserves the clearly laid-out structure of the grid, and

ensures that only related fragments (and with them, the development tasks) are combined into one

logical unit. Furthermore, the revision status of the two nodes to merge may not be Final (in

that case, fragments and information attached should not be changed anymore) or Checked out

(currently edited by a team member).

If the conditions for merging are ful�lled, all outgoing and incoming edges (including the de-

velopment information linked to by -RelatedTo! edges) of grid node node2 are redirected to the

remaining grid node node1 (embedding... clause), while grid node node2 is deleted (it doesn't

appear on the right side of the production).

As long as concerning individual software engineering fragments, evolution of the project graph

and manipulation of the \satellite" information is due to individual developers. But merging,

deleting, or adding fragments, i.e., changing the structure of the project graph, are tasks that have

to be performed by project members with a higher responsibility (e.g., by the technical project

manager, by a software quality assurance o�cer, or by a method engineer).

The last two categories of actions will only be mentioned briey. They are also part of the

formally speci�ed dynamics of 3DM .

As stated in section 2, the activities of an individual team member are captured by the sequence

of software engineering fragments he works on. Navigation actions relate the project team

members to software engineering fragments, i.e., person nodes representing them to the respective

grid nodes (by -WorksOn! edges - cf. �g. 3). Navigation actions determine the activities of the

software developers by constraining the selection of fragments depending on the structure and

status of the actual project graph and its nodes.

Finally, information retrieval actions are used to query information about the project graph,

without changing it. These actions serve two purposes:

1. as part of navigation and manipulation actions, they are used to determine the validity of

preconditions and the context of graph-changing transaction,

2. to obtain project information to be used outside the scope of GRIDS for project management

purposes.

Examples for actions of this category are the retrieval of the set of grid nodes related to a certain

person node, in order to determine the software engineering fragments that team member currently

works on, or the generation of an overview of grid node statuses to determine the progress of the

project.

6 Tool Support

As mentioned in the introduction, large-scale software development requires tool support. This

holds also for a project framework based on a formal speci�cation. The users, i.e., the members of

the development team, want to specify and use integrated project frameworks, based on the 3DM ,

in an easy way, exploiting the bene�ts of correct and consistent speci�cation without having to deal

with the details of the underlying formalism and the formal model of the 3DM .

PROGRES provides two possibilities to execute a given speci�cation. The �rst one is integrated

in the PROGRES environment itself, and is based on direct interpretation of the speci�cation.
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The main purpose of this �rst possibility to execute speci�cations is for debugging and testing the

speci�cation under development The lack of performance and a sophisticated user interface prevent

this option to be used as tool support for software projects.

The second possibility is to translate speci�cations into equivalent Modula-2 or C code, and to

compile the generated source code together with the graph DBMS GRAS and the user interface

toolkit TCL/TK. Apart from the sophisticated performance, the resulting rapid prototype o�ers

more advantages and features that are essential for the project-supporting tool envisioned.

� While the formal speci�cation of 3DM is very large and complex, only a small subset of the

speci�cation, the so-called top-level transactions, is supposed to be accessible by its users,

the software developers. When generating the rapid prototype, it is possible to make those

top-level transactions available to the users, and encapsulate the rest of the speci�cation items

(comparable to public and private methods in object-oriented programming).

Figure 10: A snapshot of the 3DM rapid prototype

� The main window of the user interface displays the actual host graph for the project, i.e., the

current instance of the 3DM graph class. The user can, at any time, work with graphically

displayed project frameworks, taking advantage of the visualization of the graph as (three-

dimensional) grid structure.

Figure 10 shows a snapshot of the user interface of the rapid prototype. In the Graph Browser

window, the current project graph is displayed. The sequence of 3DM transactions that led
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to that graph is displayed in the TDM window. Three partial models have been speci�ed,

and now the transaction DEFINE VIEW RELEVANT IN PROCESS has been selected from the pull-

down menu Transactions in the TDM window. The pop-up window on the lower left is used

to enter the necessary parameters for the transaction, in this case a set of node identi�ers

that can be either typed in or selected by clicking on the appropriate nodes in the Graph

Browser window.

� To control visibility of and access to the di�erent parts of the project framework, it is conve-

nient and possible to de�ne con�gurations on the project graph. In that case, not the whole

graph is displayed, but only the instances of a certain, prede�ned selection of node classes,

e.g., only the partial models, or only the project grid structure without satellite nodes.

Other features are currently added to the generation mechanism of the prototype. These in-

clude for example di�erent layout algorithms for displaying the host graph, and a context-sensitive

selection of alternatives o�ered to the user. On the one hand, after clicking on a (set of) node(s),

only those transactions will be o�ered which �t to the selected nodes as input parameters. On the

other hand, after selecting a transaction, it will be possible to have all those nodes highlighted that

�t as parameters of the selected transaction.

7 Related Work

A number of approaches try to enhance development of large, heterogeneous software systems by

integrating di�erent aspects of software engineering.

Approaches like MetaEdit [SLTM91], PPP [GLW91], ToolBuilder [Ald91] or Fusion [CAB

+

94]

aim at giving the developers more freedom in their choice of speci�cation techniques by integrating

techniques from di�erent software engineering methodologies, in order to o�er alternatives when

the speci�cation techniques of one methodology fail to cope with

the requirements of the actual software project. Meta-models are used to uniformly and formally

describe the di�erent techniques, and tools are o�ered to support the (meta-)developers to tailor

their individual methodology. But this is only a �rst step of integration, as it only deals with one

area of concern, i.e., the views onto the system.

Method base [SIWyS93] goes one step beyond, o�ering a formal meta-model (based on Object-

Z) that integrates speci�cation techniques (views dimension) and speci�cation process (process

dimension).

ViewPoints [NF92] �nally integrates �ve di�erent areas of concern: \style" (speci�cation tech-

niques), \work plan" (description of activities), \problem domain", \speci�cation" (document), and

\work record" (development history and state). The resulting concept of \loosely coupled, locally

managed objects, encapsulating representation knowledge, development knowledge and speci�cation

knowledge of a particular problem domain" is very similar to the one of 3DM 's software engineering

fragments. The notion of \actions" to generate and manipulate the framework is known, too. While

also o�ering a tool prototype (TheViewer), ViewPoints is not based on a formal speci�cation (yet).

8 Conclusion

In recent years, TNO Institute of Applied Geoscience has developed a number of very successful

software systems to manage exploration & production (E&P) data. Experiences have shown that

on the one hand it is very di�cult (and doesn't lead to good software systems) to organize software

development by de�ning rigid standard models prior to project start, and then trying to stick
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to them, especially when dealing with innovative, experimental software systems [ZG94]. On the

other hand, a lack of thorough conceptual modeling, not only of the system, but also of the process,

inevitably leads to a lack of necessary clearness and consistency during the course of the project.

This usually results in a qualitatively inferior system at the price of an exceeding project schedule.

The GRIDS project takes these two extremes into account, and o�ers a formally based, multi-

dimensional software engineering model, the 3DM , that integrates di�erent areas of concern of

software development. While the important areas of concern - process, components and views -

can be modelled individually and independently, they are integrated into consistent frameworks for

the actual projects. While tailorable, reusable (in its partial models), and adaptable (to changes in

the actual development situation), 3DM leads to a clearer structuring of the development e�orts,

its logical units and their dependencies, and therefore also to a better understanding of software

development in general.
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