
-0-

Technical Report 95–21 July 1995

Rijksuniversiteit te LeidenRijksuniversiteit te Leiden

Vakgroep Informatica

Encapsulated Hierarchical Graphs,

Graph Types, and Meta Types

G. Engels

A. Schürr

Department of Computer Science
Leiden University
P.O. Box 9512
2300 RA Leiden
The Netherlands

-1-

Encapsulated Hierarchical Graphs,
Graph Types, and Meta Types

Gregor Engels Andy Schürr
Department of Computer Science Lehrstuhl für Informatik III
Leiden University, P.O. Box 9512 RWTH Aachen, Ahornstr. 55

NL-2300 RA Leiden, The Netherlands D-52074 Aachen, Germany
email:engels@wi.leidenuniv.nl email:andy@i3.informatik.rwth-aachen.de

1. Introduction
After 25 years of research, graph grammars and graph transformation systems have reached
a certain degree of maturity. They were and are successfully used for writing rather complex
specifications of software engineering tools [5], visual database query languages [1], and the
like. Nevertheless, our experiences with writing these specifications show that currently used
graph data models and graph grammar specification languages have still serious deficiencies
with respect to “programming in the large” activities (cf. [15]):

(1) It is unacceptable that all data of a specified complex system have to be modelled as a
single flat graph. In contrast, ahierarchical graph data model would be useful, where
certain details of “encapsulated” (sub-)graphs may be hidden but subgraph boundary
crossing edges are still supported.

(2) There are real needs for a graph grammarmodule concept with support for import/ex-
port relationships as well as for inheritance such that big specifications may be con-
structed as assemblies of small reusable subspecifications with well-defined interfaces
between them.

(3) And even the already established idea of combining graph rewrite rules for specifying
dynamic system aspects and graph schemata for specifying static system aspects needs
further improvements. Additional means would be welcome for defining(meta-)sche-
mata of graph schemata and for specifying even schema modifying operations.

First proposals addressing these problems do exist, but they are either on a very abstract level
or offer only partial solutions. Ehrig and Engels introduce in [4] an abstract framework for a
module concept, which adapts the world of algebraic specification language module con-
cepts to the world of graphs and graph transformations. Kreowski and Kuske present in [11]
so-called graphtransformation units, which are essentially groups of related rewrite rules to-
gether with certain graph class descriptions and rule controlling application conditions. Both
papers address thereby topic (2) of our problem list above. Next,two-level graph grammars
of Göttler [7] offer means to adapt a given graph grammar specification towards a more spe-
cific scenario and are thereby related to topic (3) above.

Furthermore, various papers [3, 8, 9, 12, 18, 17, 20, 22] are already published dealing with
topic (1) above, the definition of ahierarchical graph data model. Unfortunately, these pa-
pers do not address the problem of information hiding or disallow even subgraph crossing
edges.

-2-

Therefore, we felt the necessity to study first concepts centered around hierarchical
graphs and graph types before being able to design a more concrete graph grammar module
concept. The result of these studies or more precisely our attempts to transfer already
known software engineering or database design concepts to the world of graphs and graph
grammars is aformal definition of a hierarchical graph data model which supports:

• Encapsulation(information hiding) as a means of hiding nodes and edges within
graphs from the outside world.

• Aggregation as a means of defining hierarchical graphs, where each node may possess
a complex state which is another graph.

• Classification as a means of defining static graph properties in the form of graph sche-
mata, schemata of graph schemata, and … .

• Refinement (inheritance) as a means of using already existing schema definitions and
extending them as needed for the description of more specific graph classes.

These concepts and their relationships will be studied within this paper. It has the following
outline: Section 2 introduces a running example and explains needed concepts on an informal
level. Section 3 afterwards offers all necessary formal definitions including some consisten-
cy proving theorems. Both sections discuss first encapsulation and aggregation, and proceed
then with classification as well as refinement. Section 4 finally, compares our approach with
related work and sketches how still missing concepts might be added later on, leading to a
graph grammar module concept for hierarchical and encapsulated graph objects.

2. Informal Presentation of Hierarchical Graph and Types

2.1 Hierarchical Graphs and Complex Nodes

In the sequel, we will introduce hierarchical graphs and the principle of information hid-
ing by discussing the following example: We have a world of companies which know each
other (or not) and which produce and trade articles. The whole situation is modelled as a hi-
erarchical graph, where each company is acomplex node, i.e. a graph in its own right. For
instance, a big company consists of “normal” departments and R&D departments as well as
of various kinds of produced or consumed articles.Relationships between companies as well
as between workers and products within companies, like “know each other” or “is produced
by” are represented by binary directed edges. This situation is illustrated in figure 1.

By employing theinformation hiding principle, the world of companies can be modelled
more appropriately:

• Any complex node in a graph has its own private state. Such a state is a so-called en-
capsulated graph whose nodes and edges may be declared as invisible for other com-
plex nodes within the surrounding graph, e.g. the R&D departmentR&D_Dep1 in big
companyB with all its researchers is invisible for companyA or C.

-3-

• Any complex node knows parts of its context in the surrounding graph, i.e. the depart-
mentA knows the atomic nodeP1in B, and it may even be the source or target of a
graph boundary crossing edge, e.g. a productP1’ of a companyA may be a copy of an-
other productP1 manufactured within a department of another companyB.

• Furthermore, complex nodes may have access to visible components of known context
nodes (an employeeW5 of a companyC produced a productP3 which belongs now to
another companyB and which is a visible artifact for both companies).

The last point of the list above is the most important one and needs a more detailed explana-
tion. Consider for instance the case of a companyA which copies the products of a company
B. Then, products of companyA might be invisible for companyB, but products of company
B are visible for companyA. The sample graph of Fig.1 has even acopy_of edge fromA’s
productP1’ to B’s productP1. This edge is visible for the complex nodeA but invisible for
the complex nodeB.

Figure 1 summarizes the overall situation. It shows a hierarchical graph with three com-
pany (sub-)graphs as its complex nodes. Company A has a completely hidden internal graph
structure, whereas companyB has a partially hidden structure (consisting of its R&D depart-
ment and its workerW1). CompanyC, finally, reveals all its internal details to companiesA

andB. This is a simplified view of the capabilities of our data model. In the general case,
companiesA andB may haveknowledge about different potentially visible partsof company
C. This knowledge may even be expanded and contracted during their life times.

2.2 Hierarchical Graph Types and Meta Types

Up to now, we have illustrated the usage of hierarchical graphs to model real-world situ-
ations. All these graphs are typed and have to be instances of a correspondinggraph type. As
it is common to use Entity-Relationship like diagrams, i.e., special forms of graphs, to define
conceptual database schemes, we reuse our notion of hierarchical graphs to define a graph
type. Consequently, this hierarchical graph (of a higher layer) is calledgraph schema and it

Fig. 1: A hierarchical graph with partially hidden graph contents.

Company A

P1’P2

W2

BigCompany B

Company C

W5

R&D Dep1
P1

Dep1

known by

copy of

produced by

in contact with

produced by

: Atomic Worker Node
: Atomic Product Node

: Hidden Contents

P4

produced by

W1

reports to

managed by W3

P3

produced by

W4

: Complex Node

-4-

defines instances, i.e. hierarchical graphs on an instance layer. Such a graph schema contains
complex nodes as the definitions of complex node types and atomic nodes as the definitions
of atomic node types. Edges between type nodes of a graph schema represent the permission
to create edge instances between node instances of corresponding types. An example is given
in figure 2, where the graph schema contains an edge “Company known_by → Compa-

ny”. This declaration allows to create edges between twoCompany nodes.
In order to increase the understandability as well as reusability of graph schemata, we in-

troduce additional means to structure a graph schema. First, complex nodes within a graph
schema of a hierarchical graph formsubschemata as they define hierarchical graphs as in-
stances of this complex node type. For example, the overall graph schema within Figure 2
contains the subschemataCompany, BigCompany, andDepartment.

Furthermore, these subschemata contain in turn complex node types definitions (subsche-
mata) as well as atomic node type definitions. Any contains relationship on the schema level
represents possible contains relationships on the instance level. ABigCompany instancemay
contain an arbitrary number ofDepartment instances andDepartment instances themselves
may containWorkers, Products, … . The word “may” indicates that we do neglect any kind
of cardinality constraints for reasons of simplicity, i.e. we are currently not able to express
facts like “aBigCompany contains at least twoDepartments”, “a Department contains one
managed by edge and at least tenWorkers”, … .

Please note that the notion of a subschema is comparable to the notion of anabstract data
type module, as known within the software engineering community, and to the notion of a
class, as used in the object-oriented terminology. Consequently, we can and will reuse the
structuring concepts from these two communities to interrelate subschemata.

Within the software engineering community, a module definition consists of anexport in-
terface defining the visible part of a module as well as of a hidden internal part. Two modules
may be interrelated by ausesrelationship. This means that there may be a link between an
instance of the using module to an instance of the used module. The subschemaDepartment

Fig. 2: A hierarchical graph schema with partially hidden contents.

Company

Product
Worker

copy of

: hidden

produced by

in contact with

managed by

known by

BigCompany

Product

copy of

produced by

in contact with

managed by

Department

Product
Worker

copy of

produced by

in contact with

managed by

Worker

: uses
: refines

R&D Dep

Departmentreports to

reports to

reports to

-5-

uses for instance theWorker type definition ofCompany to define areports_to relationship,
which connects aWorker of aDepartment to aWorker of aCompany (or aBigCompany or
a Department, which are both refinements ofCompany; see below). As a consequence,De-

partment andR&D_Dep1 within BigCompany as well asBigCompany itself need use rela-
tionships toCompany for their (inherited)reports_to relationships. Another example of a use
relationship exists between the subschemata BigCompany andDepartment. BigCompany

uses theDepartment definition to express the fact that instances ofBigCompany may contain
instances ofDepartment.

A structuring concept, well-known within the object-oriented terminology is the refine-
ment orinheritance concept. It facilitates the definition of structurally and/or behaviorally
similar objects. In this case, a graph schema is interrelated by arefinement relationship with
another graph schema, expressing thereby the fact that the refining schema contains all type
definitions of the refined schema as well as additional and or refined node and edge type def-
initions. For example,Department is a refinement ofCompany (it declares an additional
reports_to edge) andR&D Dep1 is a refinement ofDepartment in turn (it is a hidden decla-
ration inBigCompany, whereasDepartment is a visible declaration).

Within the description above we did not make a clear distinction betweenWorker in Com-

pany andWorker in BigCompany or between the separate definition ofDepartment and its
usage inBigCompany. But we will see later on that it is necessary from a theoretical point
of view to prefix all occurrences of atomic and complex node type definitions within a
complex node type definition c with the name of c. Therefore, we have to distinguish be-
tweenBigCompany.Department andDepartment itself or betweenBigCompany.Worker and
Department.Worker or BigCompany.Department.Worker. A BigCompany.Worker, for in-
stance, may or may not have additional properties in comparison to a simpleCompany.Work-

er, i.e. a refined complex node type (subtype) definition contains equivalent or refined copies
of its supertype.

Finally, we have to emphasize that graph schemata are indeed nothing else but hierarchi-
cal graphs with a superimposed special interpretation. As a consequence, we are forced to
deal with graph schemata of graph schemata, so-calledmeta schemata, and schemata of meta
schemata, … . This leads to the construction of a type universe with an infinite number of
layers. From a practical point of view, the first layer with ordinary graph objects and the sec-
ond layer with their type objects (graph schemata) are the most interesting ones. The third
layer of meta types (meta schemata) is important as soon asschema modifications or exten-
sionshave to be regarded.

3. Formal Definition of Hierarchical Graphs and Types
This section provides a formal definition ofschema consistent hierarchical graphs without
taking their accompanying graph transformations into account. Furthermore, it studies con-
ceptual relationships between graphs, which may be divided into three main categories and
are the subject of the following three subsections:

-6-

(1) A hierarchical graph, as for instance the hierarchical graph of section 1 (figure 1),con-
tains nodes which are either atomic or complex.Atomic nodes are the leaves of our
“contains” hierarchy and do not have an internal state of their own (attributes may be
taken into account later on).Complex nodes, on the other hand, have an internal state,
which is another hierarchical graph.

(2) Nodes, graphs, and later on node types and graph schemata mayrefine each other. A
complex node (type) refines another complex node (type) if and only if its internal
graph state is a refinement of the other node’s graph state.The definition of graph re-
finement itself is based on the definition of an injective functions between graphs.

(3) Finally, any node within a graph is aninstanceof another node of a “higher” layer,
called node type. Node types of atomic nodes are atomic nodes themselves; node types
of complex nodes are complex nodes, which have a graph schema as their internal
state.

3.1 Hierarchical Graphs and Complex Nodes

This subsection introduces the basic data model of hierarchical graphs with visible and hid-
den nodes and edges. These graphs contain labeled atomic as well as complex nodes and la-
beled directed edges between them. Their type definitions are higher level graphs, which will
be studied later on in subsection 3.2 and especially in 3.3.

The current version of the data model is based on three importantsimplifications which
have to be withdrawn in the future:

• Atomic nodes and their node types are assumed to be defined elsewhere (together with
appropriate refinement relationships between them).

• Attributes of nodes have to be modeled as atomic nodes within complex nodes.

• Edges are just ternary relations of the form (source id, edge label, target id), and they
have neither an internal state nor a type declaration which may be refined.

The following two definitions provide us with the basic means for constructing graphs:

Def. 3.1 Basic Alphabets

In the sequel, we will need the following symbol sets:

(1) NID is a given set ofnode identifiers.

(2) NL is a given set ofnode labels.

(3) EL is a given set ofedge labels. ❏

Def. 3.2 Atomic Nodes

A tuple n := (nid, nl) is anatomic node, in signs n∈ A, iff:

(1) nid(n) := nid∈ NID is the node’s unique identifier.

(2) nl(n) := nl∈ NL is the node’s label. ❏

Based on the definition of atomic nodes, we are now able to define flat encapsulated graphs
with hidden nodes and edges. Afterwards, we will introduce hierarchical graphs themselves.

-7-

Def. 3.3 Encapsulated Graphs

A tuple G := (KN, N, HN, KE, E, HE) is anencapsulated graph over a given set of nodes
N with visible and hidden nodes and edges as well as with knowledge about its context, in
signs G∈ G(N), iff:

(1) KN(G) := KN ⊆ N is the set ofknownnodes in G.

(2) N(G) := N⊆ KN is the set of allnodes, which belong to G.

(3) HN(G) := HN⊆ N is the set of all nodes in G which arehiddennodes for a forthcoming
outside world (as soon as we are going to nest graphs).

(4) KE(G) := KE⊆ KN × EL × KN is the set of allknownedges in G.

(5) E(G) := E⊆ (KN × EL × N) ∪ (N × EL × KN) is the set ofedges which belong to G;
either the source or the target of such an edge has to belong to G, too.

(6) HE(G) := HE⊆ E is the set of allhiddenedges in G.

Furthermore, we will use the following abbreviations for node and edge sets:

(7) CN(G) := KN \ N is the set of allcontextnodes for G, which are known in G but do not
belong to G.

(8) VN(G) := N \ HN is the set of allvisiblenodes of G.

(9) CE(G) := KE \ E is the set of allcontextedges of G, which are known in G but do not
belong to G.

(10) VE(G) := E \ HE⊆ ((KN \ HN) × EL × (KN \ HN)) is the set of allvisibleedges in G;
sources or targets of these edges may not be hidden nodes.

Instantiating the definition of encapsulated graphs with atomic nodes, we get the definition
of the set offlat encapsulated graphs, i.e.G(A). ❏

Figure 3 shows the relationships between different kinds of nodes of two graphs G and G’ in
the form of overlapping circles. Both graphs have sets of nodes which really belong to them
(VN ∪ HN = N). Additionally, they may have knowledge about nodes of other graphs within
the same context, a forthcoming hierarchical graph. The graph G knows a subset of all of
those nodes of G’, which are potentially visible for him. “Potentially visible” means that G
may or may not know all visible nodes of G’ (and vice versa). The following figure 4 displays
for instance a situation, where two graphsA andB know different subsets of the set of all
visible nodes of another graphC.

CN

Fig. 3: Different kinds of nodes of two encapsulated graphs.

HN CNVNHNVN

G G’

-8-

As we will see later on, visible nodes of G and G’ will become subsets of the nodes of a
“surrounding” hierarchical graph H. Furthermore, all context nodes of G and G’ have to be
known nodes in the hierarchical graph H (cf. def. 3.5). The same situation holds for edges,
which have to fulfill additional constraints concerning their source and target nodes.

The definition of such a graph is incomplete as long as the relationships between a graph
and its surrounding context within a larger graph are still undefined. This part of our hierar-
chical graph model will be revealed in definition 3.5 of complex nodes. Disregarding this
kind of incompleteness, points (1) through (4) and (6) through (9) above are rather straight-

-9-

forward. The requirements in point (5) and (10) for edges need more explanation. They are
even to a certain extent a matter of taste. They state that.

• an ordinary edge belongs to an ordinary graph if and only if its source or its target be-
longs to the graph, too,

• an edge is invisible for the outside world as long as its source or its target are hidden
nodes of the graph, and

Fig. 4: Different views of hierarchical graphs for different complex nodes.

Company A

BigCompany B

Company C

R&D Dep
P1

Dep1

known by

in contact with

produced by W4

W1

reports to

W3

P3

BigCompany B

Company C

W5
in contact with

produced by

P4

managed by W3

P3

Company A

P1’P2

W2

BigCompany B

Company C

W5

P1
Dep1

known by

copy of

produced by

produced by

P3

View of A:

View of B:

View of C:

produced by

-10-

• even an edge with source or target outside G belongs to the invisible part of G if its
target or source is a hidden node in G.

Visible graph boundary crossing edges are the most interesting elements of encapsulated
graphs. They do not always have a uniquely defined owner: the graphs of their source and
target nodes as well as their smallest common surrounding graph parent may be their owners.
This has serious consequences for the definition of graph transformations on hierarchical
graphs (in a forthcoming second part of this paper). Having graph elements without uniquely
defined owners makes it difficult to maintain the principle of data abstraction that any graph
object should be responsible for its own internal state only. Figure 4 gives an example of the
“view of the world” for different (sub-)graphs of a hierarchical graph. It is consistent with
the following formal definitions of(Big-)Company graphs:

Example 3.4 Definition of (Big-)Company Graphs

The graphs A, B, and C of figure 4 are defined as follows (cf. also figure 1 and example 3.6
which contains the definitions for complex nodesDep1 andR&D_Dep1 in B):

(1) HN(A) := { P2, W2, P1’ },
N(A) := HN(A),
KN(A) := N(A) ∪ { A, C, W5, B, Dep1, P1, P3 },
HE(A) := { (P1’, produced_by, W2), (P1’, copy_of, P1) },
E(A) := HE(A),
KE(A) := E(A) ∪ { (A, known_by, B), (P3, produced_by, W5) }.

(2) HN(B) := { W1, R&D_Dep1, W4 },
Ν(B) := HN(B) ∪ { Dep1, P1, P3 },
ΚΝ(B) := Ν(B) ∪ { B, A, C, W3 },
HE(B) := { (P1, produced_by, W4), (W4, reports_to, W1) },
Ε(B) := HE(B) ,
ΚΕ(B) := Ε(B) ∪ { (A, known_by, B), (W3, in_contact_with, B) }.

(3) HN(C) := { },
N(C) := { W3, P4, W5 },
KN(C) := N(C) ∪ { C, B, P3 },
HE(C) := { },
E(C) := { (C, managed_by, W3), (P4, produced_by, W5), (P3, produced_by, W5) },
KE(C) := E(C) ∪ { (W3, in_contact_with, B) }. ❏

The translation of the picture of figure 4 into the set definitions above is rather straightfor-
ward except the treatment of graph boundary crossing edges:

• Theknown_by edge between graphsA andB may not belong to graphsA andB them-
selves, since both its source and target do not belong toA or B. But both graphs know
themselves and each other and are, therefore, aware of the existence of theknown_by

edge between them (cf. definition of surrounding hierarchical graph in example 3.6).

-11-

• Thein_contact_with edge between nodeW3 in C andB may not belong to graphB (for
the same reasons as the known_by edge neither belongs toA nor toB) but it may or
may not belong to graphC (its sourceW3 belongs toC).

• For similar reasons, theproduced_by edge betweenP3 in B andW5 in C might belong
to B or toC or to their common surrounding graph (or to all of them). But the definition
of graphB says thatB has no knowledge about the potentially visible nodeW5 in C.
Therefore,B may neither know nor own theproduced_by edge. On the other hand,
graphC knows P3 in B and is, therefore, a legal owner of this edge.

• Finally, thecopy_of edge betweenP1’ in A andP1 in B has to belong toA as a hidden
edge; its sourceP1’ is a hidden node inA which is neither visible forB nor for the sur-
rounding hierarchical graph.

Using the definition of encapsulated graphs with support for information hiding, we are now
able to introduce hierarchical graphs, which supportaggregation of subgraphs.

Def. 3.5 Hierarchical Graphs and Complex Nodes

A triple c := (nid, G, nl) is acomplex node, in signs c∈ C, which contains ahierarchical
graph G as its internal state, in signs G∈ G(C) , if and only if it belongs to the smallest set
of elements which fulfill the following conditions:

(1) nid(c) := nid∈ NID is a unique node identifier.

(2) nl(c) := nl∈ NL is the node’s label.

(3) The set of atomic nodesA is embedded in the set of complex nodesC as follows:
∀ n ∈ A ⊆ C : G(n) := (∅, ∅, ∅, ∅, ∅, ∅), i.e. the missing graph component is the
empty flat encapsulated graph.

(4) G(c) := G∈ G(C) is the node’s internal state, a hierarchical graph, which may eventu-
ally be a flat (or empty) encapsulated graph.

(5) ∀ n ∈ N(G(c)): CN(G(n))⊆ KN(G(c)) ∧ CE(G(n))⊆ KE(G(c)), i.e. all context ele-
ments of nodes in c are known in c.

(6) ∀ n ∈ N(G(c)): VN(G(n))⊆ N(G(c)) ∧ VE(G(n)) ⊆ E(G(c)), i.e. all visible elements
of nodes which belong to c are known in c and belong to c, too.

(7) ∀ n ∈ HN(G(c)): VN(G(n))⊆ HN(G(c))∧ VE(G(n))⊆ HE(G(c)), i.e. all visible ele-
ments of hidden nodes in c belong as hidden elements to c.

(8) ∀ n∈ N(G(c)): KE(G(c))∩ (KN(G(n))× EL × KN(G((n)))⊆ KE(G(n)), i.e. all known
edges in c, whose sources and targets are known in a subnode n of c, are known in n,
too. ❏

The definition above of hierarchical graphs and complex nodes is essentiallyrecursive. A
complex node contains a hierarchical graph which in turn contains or knows complex nodes.
The only restriction, we will get later on, is that “contains” relationships between complex
nodes and their subnodes form a finite tree (cf. def. 3.7.) Starting with atomic nodes as the
most primitive complex nodes guarantees that the defined setC is not empty.

-12-

The definition’s requirements (1) through (4) are rather straightforward and should be
self-explanatory. The additional restrictions (5) through (8) of definition 3.5 need some ex-
planations. They guarantee thatknowledge about context elements and especially about vis-
ible graph boundary crossing edges is propagated to all involved partners (owners) up and
down the hierarchy of nested graphs:

• Constraint (5) requires for instance that graphH of example 3.6 knows or even owns
all context nodesA, B, C, … of graphA in example 3.4.

• Constraint (6) requires for instance that all visible nodes ofB, i.e.Dep1, P1, andP3,
belong to H, too.

• Constraint (7) requires for instance that the above mentioned nodesDep1, P1, andP3

are hidden nodes inH, becauseB itself is a hidden node ofH.

• And constraint (8) requires thatA knows theproduced_by edge ofH from P3 to W5,
and that bothB andC know thein_contact_with edge between them.

Furthermore, our constraints guarantee that a complex node makes almost no distinctions be-
tween its direct subnodes and the visible subnodes of its subnodes. In this way, a complex
node gets the allowance to create edges between its direct or indirect visible subnodes as re-
quired. Finally, we have to emphasize that the definition above does not exclude the case,
where a complex node knows itself, such that edges may connect child nodes with their own
parent nodes in a graph hierarchy (e.g.managed_by edge in figure 1 inC).

Example 3.6 Hierarchical Graphs

The hierarchical graph H of figure 1 is defined as follows, such that its internal structure is
hidden from the view of any forthcoming outside world:

(1) HN(H) := { A, B, Dep1, P1, P3, C, W3, P4, W5 },
KN(H) := N(H) := HN(H),
HE(H) := { (C, managed_by, W3), (P4, produced_by, W5),

(P3, produced_by, W5), (A, known_by, B), (W3, in_contact_with, B) },
KE(H) := E(H) := HE(H).

Its complex nodesA, B, andC are already defined in example 3.4. But we have still to pro-
vide the promised definitions of two complex nodes withinB:

(2) HN(Dep1) := { },
N(Dep1) := { P1 },
KN(Dep1) := N(Dep1) ∪ { Dep1, R&D_Dep1, W4},
E(Dep1) := HE(Dep1) := { },
KE(Dep1) := { (P1, produced_by, W4) }.

(3) HN(R&D_Dep1) := { },
N(R&D_Dep1) := { W4},
KN(R&D_Dep1) := N(R&D_Dep1) ∪ { R&D_Dep1, Dep1, W1 },

-13-

HE(R&D_Dep1) := { },
E(R&D_Dep1) := { (W4, reports_to, W1) },
KE(R&D_Dep1) := E(R&D_Dep1). ❏

Based on the definition of hierarchical graphs and complex nodes, we are now able to study
conceptual relationships between nodes and graphs. The first one simply states that knowing
nodes may be interpreted as “using” them. The second one restricts our hierarchical graph
data model in such a way that ownership relationships between nodes form a forest, i.e. a set
of finite trees. The root of each tree has to be a complex node with empty context.

Def. 3.7 Uses and Contains Relationships

Let c∈ C be a complex node and x∈ C ∪ C × EL × C be a node or edge:

(1) cuses x :⇔ x ∈ CE(G(c))∨ x ∈ CN(G(c)) \ { c },
i.e. x is a known context element in c unequal to c itself1.

(2) c contains x :⇔ x ∈ E(G(c))∨ (x ∈ N(G(c)) \ { c } ∧ ¬ ∃ n ∈ N(G(c)): x∈ N(G(n))) ,
i.e. x has to be an edge in c or a direct subnode of c unequal to c itself2.

(3) contains+ (contains*) is the transitive (reflexive) closure of “contains”.

These relationships between a complex node and other nodes and edges are restricted as fol-
lows:

(4) ∀ c ∈ C : { n ∈ C | ccontains+ n } is a finite set.

(5) ∀ n, c, c’∈ C : (c contains n ∧ c’ contains n) ⇒ (c = c’),
i.e any node has at most one uniquely defined “least upper” owner node.

(6) ¬ ∃ c ∈ C : ccontains+ c, i.e. nodes may not contain themselves.

(7) ∀ c ∈ C : (¬ ∃ c’ ∈ C : c’ contains c) ⇒ (CN(G(c)) =∅ ∧ CE(G(c)) =∅),
i.e. root nodes of hierarchical graphs have an always empty context.

The definition that a graph Guses orcontains nodes and edges may be obtained by replacing
any occurrence of “G(c)” by “G” in (1) to (3) above and by deleting “\ { c }” occurrences.❏

The definition above states that a complex node either uses or contains its known nodes and
edges. Two complex nodes may be aware of each other(cyclic use relationships as in exam-
ple 3.8 are permitted), but they may not contain each other. The restriction to acyclic “con-
tains” relationships and the accompanying finiteness requirement makes not only sense from
a practical point of view, but it is also needed within the proof of proposition 3.11.

1. A complex node may or may not be an element of its own context node set. In the first case, it is
possible to create edges between the node and its children, in the second case not.

2. We have to allow that complex nodes and especially complex node types contain themselves. Oth-
erwise, recursive type definitions wouldn’t be possible in subsection 3.3. Furthermore, the condi-
tion takes into account that the set N(G(c)) contains also visible nodes of subnodes of c; they have
to be excluded for a proper definition of “contains” (cf. def. 3.5, requirement (6)).

-14-

Example 3.8 Use and Contains Relationships between Departments, Companies, …

Within this example and all following examples we will assume that the hierarchical graph
definitions of example 3.4 and 3.6 are extended to complex node definitions by merely add-
ing missing node identifier and label fields. Then

(1) H containsA, B, C, (A, known_by, B), (W3, in_contact_with, B).

(2) B containsDep1, R&D_Dep1, W1, (P1, produced_by, W4).

(3) B usesA, C, W3, (A, known_by, B), (W3, in_contact_with, B).

(4) Dep1 containsP1.

(5) Dep1 usesR&D_Dep1, W4, (P1, produced_by, W4.

(6) R&D_Dep1 containsW4, (W4, reports_to, W1).

(7) R&D_Dep1 usesDep1, W1. ❏

3.2 Refinement of Complex Nodes and Hierarchical Graphs

This subsection studies two conceptual relationships between hierarchical graphs which are
related to the usualsubgraph andgraph isomorphism definitions of other graph data models.
The first one,refinement,is a very general concept, which comprises the usual subgraph re-
lationship between flat or hierarchical graphs.As a consequence, the concept of isomorphic
or betterequivalent hierarchical graphs is based on refinement: two graphs or complex nodes
are equivalent if they refine each other. Both the refinement as well as the equivalence rela-
tionship will be introduced under the simplifying assumption that labels of nodes may not be
changed. Later on, in subsection 3.3, we will interpret node labels as type identifiers and al-
low that a node refines another node if its node type is a refinement of the other node’s type.

Def. 3.9 Refinement and Equivalence of Atomic Nodes

We assume the existence of arefinement relationship refines as well as of anequivalence
relationship ≅ with the following properties:

(1) ∀ n, n’ ∈ A : (n’ refines n) ⇒ (nl(n’) = nl(n)),
i.e. refinement preserves node labels.

(2) ∀ n ∈ A : n refines n,
i.e. every node refines itself.

(3) ∀ n, n’, n” ∈ A : (n refines n’ ∧ n’ refines n”) ⇒ n refines n”,
i.e. the refinement relationship is transitive.

(4) ∀ n, n’ ∈ A : (n’ ≅ n) ⇔ (n’ refines n ∧ n refines n’),
i.e. the fact that two nodes are equivalent implies that they refine each other and vice
versa. ❏

Def. 3.10 Refinement of Complex Nodes and Hierarchical Graphs

Let c, c’∈ C be two complex nodes such that KN(G(c)) and KN(G(c’)) are nonempty sets of
nodes. The node c’refines c, iff:

-15-

(1) nl(c’) = nl(c),
i.e. the label of a refined node is preserved.

(2) ∃ injective function f: KN(G(c))→ KN(G(c’)),
i.e. any node in c has to be mapped onto a unique node in its refinement c’.

(3) ∀ n ∈ CN(G(c)): f(n) = n ∧ f(n) ∈ CN(G(c’)),
i.e. refinement of the contents of a node does not include refinement of its context el-
ements (but the known context may be extended).

(4) ∀ n ∈ N(G(c)) : (f(n)refines n ∧ f(n) ∈ N(G(c’))) ∨ (n = c∧ f(c) = c’),
i.e. nodes within c may be replaced by refined versions of themselves within c’ and re-
cursion has to be preserved, i.e.

c ∈ N(G(c)) implies f(c) = c’∈ N(G(c’).

(5) ∀ n ∈ VN(G(c)): f(n) ∈ VN(G(c’)),
i.e. refinement preserves visibility of nodes.

(6) ∀ (n1, e, n2) ∈ CE(G(c)) : (f(n1), e, f(n2)) ∈ CE(G(c’)),
i.e. all context edges have be preserved.

(7) ∀ (n1, e, n2) ∈ E(G(c)) : (f(n1), e, f(n2)) ∈ E(G(c’)),
i.e. own edges have to be preserved, too.

(8) ∀ (n1, e, n2) ∈ VE(G(c)) : (f(n1), e, f(n2)) ∈ VE(G(c’)),
i.e. even visibility of edges has to be preserved.

Omitting requirement (1) above and replacing all occurrences of G(c) and G(c’) by G and G’
we obtain a related definition of refinement between hierarchical graphs G and G’.❏

The definition of refinement of hierarchical graphs (complex nodes) is rather complicated. It
includes the usual definitions of monomorphic subgraphs as a special case. It is more liberal
such that

• descendent nodes need not be preserved but may be replaced by refinements in turn,

• and the visibility “attribute” of a subnode or an edge may be changed from hidden to
visible.

Furthermore, the sets of known, visible, and hidden own nodes and edges may be extended
arbitrarily, as a refining graph may contain more nodes and edges than the refined graph.

Figure 5 shows a refinement example. It displays a nodeC in its upper part and a possible
refinementC’ in its lower part. The latter one has an additional (atomic) subnodeW4, a re-
fined complex subnode (Dep1’ with an additional nodeW3 replacesDep1), more edges, and
it makes its previously hidden nodeW1 visible.C1’ has also an extended knowledge about
the inner details of its neighbor B with respect to the complex nodeDep2. TheDep2 node is
a visible node ofB which is not in the known context of C but exists nevertheless as a poten-
tially visible node. It is, therefore, depicted as a dashed node in the upper part of figure 5 and
as a solid node in its lower part.

-16-

Proposition 3.11 Soundness of Refinement Relationship

The refinement relationship between complex nodes is reflexive as well as transitive, i.e.
∀ c ∈ C : c refinesc ∧ ∀ c, c’, c” ∈ C : (c refines c’ ∧ c’ refines c”) ⇒ c refines c” .

Furthermore, refinement for hierarchical graphs is reflexive and transitive, too.3

Proof. The first part of the proof, which shows that every complex node refines itself, i.e.

∀ c ∈ C : c refinesc ,

is rather obvious. We simply have to use the identity function
f: KN(G(c)) → KN(G(c)) with f(n) = n

in order to view c as a refinement of itself. In that case, all requirements of def. 3.10 are triv-
ially fulfilled.

The second part of the proof shows that
∀ c, c’, c” ∈ C : (c refines c’ ∧ c’ refines c”) ⇒ c refines c”

It requiresinduction over the (finite)tree depth of complex nodes with respect to contains
relationships. Atomic nodes have a tree depth 0, complex nodes with flat graphs as their in-
ternal state a tree depth 1, and so forth. We know already that refinement is transitive for
atomic nodes (cf. def. 3.9).Therefore, we can assume that refinement is transitive for all
nodes with tree depthsmaller equalthan i-1. Based on this assumption we can prove that re-
finement is transitive for all nodes with tree depthsmaller equal i. Thereby, we are able to
construct a refinement function f from c to c” by concatenating given refinement functions
from c to c’ and from c to c” such that the constraints of definition 3.10 are fulfilled:

3. Both properties depend on each other, since hierarchical graphs contain complex nodes , and com-
plex nodes consist of hierarchical graphs.

Fig. 5: Complex nodes and their refinements.

BigCompany C BigCompany B

known by

W2

in contact with

BigCompany C’

Dep1’

BigCompany B

W2

known by

in contact with

View of C (upon B):

View of refined C’ (upon B):

Dep2

W1

W4
W1

known by

Dep2

Dep1

W3

-17-

(1) nl(c) = nl(c’) = nl(c”).

(2) With f1: KN(G(c)) → KN(G(c’)), f2: KN(G(c’)) → KN(G(c”)) being the refinement
functions from c to c’ and from c’ to c” we will use

f := f1° f2 with (f1° f2)(x) := f2(f1(x))
as the refinement function from c to c”.

(3) ∀ n ∈ CN(G(c)): f1(n) ∈ CN(G(c’)) ∧ f2(f1(n)) ∈ CN(G(c”))
⇒ f(n) = f2(f1(n)) = n∈ CN(G(c”)).

(4) ∀ n ∈ N(G(c)): n, f1(n), f2(f1(n)) have a tree depth smaller equal i-1. Therefore,
n refines f1(n) ∧ f1(n) refines f2(f1(n)) ⇒ n refines f(n) = f2(f1(n)) ∈ N(G(c”))

∨ (c = n)⇒ (f1(n) = c’) ⇒ (f2(f1(n)) = c”).

(5) n ∈ VN(G(c)) ⇒ f1(n) ∈ VN(G(c’)) ⇒ f(n) = f2(f1(n)) ∈ VN(G(c”)).

(6) (n1, e, n2) ∈ CE(G(c))⇒ (f1(n1), e, f1(n2)) ∈ CE(G(c’))
⇒ (f(n1), e, f(n2)) = (f2(f1(n1)), e, f2(f1(n2))) ∈ CE(G(c”)).

(7) (n1, e, n2) ∈ E(G(c))⇒ (f1(n1), e, f1(n2)) ∈ E(G(c’))
⇒ (f(n1), e, f(n2)) = (f2(f1(n1)), e, f2(f1(n2))) ∈ E(G(c”)).

(8) (n1, e, n2) ∈ VE(G(c))⇒ (f1(n1), e, f1(n2)) ∈ VE(G(c’))
⇒ (f(n1), e, f(n2)) = (f2(f1(n1)), e, f2(f1(n2))) ∈ VE(G(c”)).

The proof that refinement is reflexive and transitive for hierarchical graphs follows directly
from the proof for complex nodes. ❏

We have shown above that refinement is reflexive and transitive and that it is very similar to
the well-known concept of monomorphisms between “flat” graphs. Therefore, refinement
should be used to defineequivalence classes of hierarchical graphs which play about the
same role as isomorphism classes for “flat” graph data models4.

Def. 3.12 Equivalence of Complex Nodes and Hierarchical Graphs

Two nodes c, c’ ∈ C areequivalent if they refine each other via the same function f:
c ≅ c’ :⇔ c refinesc’ via a function f∧ c’ refinesc via f -1 .

And twographs G, G’ ∈ G(C) areequivalent if they refine each other:
G ≅ G’ :⇔ G refinesG’ via a function f∧ G’ refinesG via f -1 . ❏

Proposition 3.13 Soundness of Equivalence Relationship

Two equivalent nodes c, c’∈ C differ only with respect to theactual identifiers of themselves
and their direct and indirect subnodes. Similarly, two equivalent graphs differ only with re-
spect to the identifiers of their nodes.

Proof. We have to use the same kind of induction as in proposition 3.11. Starting with known
properties about atomic nodes (cf. def. 3.9) it is easy to show

4. We do not use the terms “graph (mono-)morphism” or “graph isomorphism” over here, since we
are not concerned with categories of hierarchical graphs and graph morphisms between them.

-18-

• that any subnode n in KN(G(c)) has an equivalent or even identical corresponding sub-
node n’ in KN(G(c’)) and vice versa, such that n and n’ differ at most with respect to
their identifiers (induction about tree depth),

• that corresponding subnodes of c and c’ are either both known context nodes or visible
own nodes or hidden own nodes,

• and that any known, visible and hidden own edge of c has a corresponding edge in c’
of the same category (and vice versa). ❏

3.3 Graph Schemata and Schema Consistent Graphs

Within this subsection we will study relationships between graphs and graph schemata as
well as between complex nodes and their types. It is convenient to modelgraph schemata
themselves as graphs, which have again graphs as their graph schemata. In order to avoid the
pitfalls of the “the typeType is an instance of itself” assumption [13], we have to introduce
a layered universe of nodes and graphs. The lowest layer contains all ordinary nodes and
graphs, the next layer all node types and graph schemata, the following layer all types of node
types and meta schemata, and so forth. These layers together with ainstance of relationship
across layers a third kind of hierarchical relationships between (complex) nodes and their
graphs. In the sequel, we will define the instance of relationship precisely and discuss how
it is related to the other basic (hierarchical) relationships, aggregation and refinement.

For this purpose, the original alphabets of node identifiers and node labels have to be re-
placed by a single layered set of node identifiers such that each node has the identifier of its
node type as its label.

Def. 3.14 Layered Basic Alphabets

In the sequel, we will need the following symbol sets instead of those of def. 3.1:

(1) NID := is a layered set ofnode identifiers.

(2) NL := NID \ ID0 is the corresponding layered set ofnode types (labels).

(3) EL is still an unlayered set ofedge types(labels). ❏

Def. 3.15 Layered Atomic Nodes and their Types

A tuple n := (nid, tid) is anatomic node (type) of alayer Ak ⊂ A iff:

(1) nid(n) := nid∈ IDk is the node’s unique identifier.

(2) tid(n) := tid∈ IDk+1 is the node’s type,
i.e. the identifier of an atomic node of the next higher layer.

In the sequel, we will use the expression

(3) t = type(n) ∈ Ak+1 :⇔ nid(t) = tid(n)

for referencing that node t of the next upper layer which is the type of a given node n.❏

Using the definition of layered atomic instead of atomic nodes we have to repeat def. 3.5 of
hierarchical graphs in order to get a definition of layered hierarchical graphs.

IDk
k 0=()

∞
∪

-19-

Def. 3.16 Layered Hierarchical Graphs and Complex Nodes

A triple c := (nid, G, tid) is acomplex node of alayer Ck ⊂ C which contains ahierarchical
graph G of layer k as its internal state, in signs G∈ G(Ck) ⊂ G(C), if and only if it belongs
to the smallest set of elements which fulfill the following conditions:

(1) nid(c) := nid∈ IDk is a unique node identifier of layer k.

(2) tid(c) := tid∈ IDk+1 is the complex node’s type of layer k+1, and a functiontype is de-
fined in a similar manner as for atomic nodes: t =type(c) ∈ Ck+1 :⇔ nid(t) = tid(c).

(3) The set of atomic nodesAk is embedded in the set of complex nodesCk as follows:
∀ n ∈ Ak ⊆ Ck : G(n) := (∅, ∅, ∅, ∅, ∅, ∅), the empty flat encapsulated graph.

(4) G(c) := G∈ G(Ck) is the node’s internal state, a hierarchical graph of layer k, which
may eventually be a flat (or empty) encapsulated graph.

The remaining conditions (5) through (8) of def. 3.5 need not be changed. ❏

Based on the layered universe of hierarchical graphs and (complex) nodes, adapted versions
of use, contains, refinement, and equivalence relationships must be introduced by simply re-
placing any occurrence ofA by Ak , of C by Ck , and ofnl (for node label) bytype(within
their old definitions). These adapted definitions and their accompanying propositions are not
repeated over here, but will be used from now on to define graph schemata and schema con-
sistent graphs as well as new relationships between them.

Def. 3.17 Graph Schemata and Schema Consistent Graphs

A hierarchical graph S of a layer k+1 serves as aschema for another graph G of layer k, i.e.
it is a consistent graph with respect to the given schema, iff:

(1) ∀ n ∈ KN(G) ∃ t ∈ KN(S): type(n) refines t,
i.e. any known node has a node type which is at least a refinement of a known type
within the corresponding schema (partial knowledge about outside world).

(2) ∀ n ∈ KN(G) \ HN(G)∃ t ∈ KN(S) \ HN(S):type(n) refines t,
i.e. visible (context) nodes may not have invisible type definitions in S.

(3) ∀ n : (Gcontains n) ⇒ ∃ t : (Scontains t) ∧ (type(n) = t)∧ (G(t) isschema of G(n)),
i.e. nodes belonging to G must have types belonging to S.

(4) ∀ (n1, e, n2) ∈ KE(G)
∃ (t1, e, t2) ∈ ΚE(S): (type(n1) refines t1) ∧ (type(n2) refines t2),

i.e. any known edge must have a known declaration in the schema S, such that its actual
source and target types are refinements of the given types in S.

(5) ∀ (n1, e, n2) ∈ KE(G) \ HE(G)
∃ (t1, e, t2) ∈ KE(S) \ HE(S): (type(n1) refines t1) ∧ (type(n2) refines t2),

i.e a visible (context) edge of G should have a visible (context) definition in S.

(6) ∀ (n1, e, n2): (G contains (n1, e, n2))
⇒ ∃ (t1, e, t2): (Scontains (t1, e, t2)) ∧ (type(n1) refines t1) ∧ (type(n2) refines t2),
i.e. any edge in G must have a corresponding declaration in the schema S.❏

-20-

The definition above simply requires that a graph contains (knows) only nodes and edges
which have own (known) type definitions in its schema. Furthermore, we exclude the case,
where a visible graph element has a hidden definition in the schema. That is the underlying
principle of information hiding: you cannot access elements of data structure or operations
on data structures as long as you are not aware of the existence of the corresponding defini-
tions. But note that the requirements above do not prohibit that a graph contains hidden ele-
ments with visible definitions in the schema. These elements may move from the hidden part
of a graph to its visible part (and vice versa).

Conditions (2) and (5) are rather restrictive. They do not permit that a graph contains
nodes, whose type definitions are not part of its schema but imported into the schema. This
has the consequence thatCompany, BigCompany, Department, andR&D_Dep have all their
ownWorker andProduct type definitions. As already discussed within subsection 2.2, these
type definitions may be equivalent to each other (except the fact that they are nodes within
complex nodes of different types) or they may be refinements of each other. The following
example defines the graph schemata for our running example, omitting all needed definitions
of atomic node types and refines as well as equivalence relationships between them.

Example 3.18 Definition of Graph Schemata

The graphs of example 3.4 and 3.6 are schema consistent with the following definitions of
schema graphs withRoot being the schema definition of the overall graphH of example 3.6.
Furthermore,R&D_Dep.Researcher is assumed to be a refinement ofDepartment.Worker as
well asR&DDep.Prototype is assumed to be a refinement ofDepartment.Prototype:

(1) HN(Company) := { },
VN(Company) := { Company.Worker, Company.Product },
CN(Company) := { Company },
HE(Company) := { (Company.Product, copy_of, Company.Product) },
VE(Company) := { (Company.Product, produced_by, Company.Worker),

(Company, managed_by, Company.Worker),
(Company.Worker, in_contact_with, Company) },

CE(Company) := { (Company, known_by, Company) }.

(2) HN(Department) := { },
VN(Department) := { Department.Worker, Department.Product },
CN(Department) := { Department, Company, Company.Worker },
HE(Department) := { (Department.Product, copy_of, Department.Product) },
VE(Department) := { (Department.Product, produced_by, Department.Worker),

(Department, managed_by, Department.Worker),
(Department.Worker, in_contact_with, Department),
(Department.Worker, reports_to, Company.Worker) },

CE(Department) := { (Company, known_by, Company),
(Company, managed_by, Company.Worker),
(Company.Worker, in_contact_with, Company) }.

-21-

(3) The definition ofBigCompany.Department is equivalent to the definition ofDepart-

ment (and, therefore, not repeated over here), except the fact that all occurrences ofDe-

partment above must be replaced byBigCompany.Department.

(4) HN(R&D_Dep) := { },
VN(R&D_Dep) := { R&D_Dep.Researcher, R&D_Dep.Prototype },
CN(R&D_Dep) := { R&D_Dep, Company, Company.Worker },
HE(R&D_Dep) := { (R&D_Dep.Prototype, copy_of, R&D_Dep.Prototype) },
VE(R&D_Dep) := { (R&D_Dep.Prototype, produced_by, R&D_Dep.Researcher),

(R&D_Dep, managed_by, R&D_Dep.Researcher),
(R&D_Dep.Researcher, in_contact_with, R&D_Dep),
(R&D_Dep.Researcher, reports_to, Company.Worker) },

CE(R&D_Dep) := { (Company, known_by, Company),
(Company, managed_by, Company.Worker),
(Company.Worker, in_contact_with, Company) }.

(5) HN(BigCompany) := { R&D_Dep } ∪ VN(R&D_Dep),
VN(BigCompany) := { BigCompany.Worker, BigCompany.Product,

BigCompany.Department }
∪ VN(BigCompany.Department),

CN(BigCompany) := { BigCompany, Company, Company.Worker, Department}
∪ VN(Department),

HE(BigCompany) := { (BigCompany.Product, copy_of, BigCompany.Product) }
∪ VE(R&D_Dep),

VE(BigCompany) := { (BigCompany.Product, produced_by, BigCompany.Worker),
(BigCompany, managed_by, BigCompany.Worker)
(BigCompany.Worker, in_contact_with, BigCompany) }

∪ VE(BigCompany.Department),
CE(BigCompany) := { (Company, known_by, Company),

(Company, managed_by, Company.Worker),
(Company.Worker, in_contact_with, Company) }

∪ VE(Department).

(6) HN(Root) := { Company, BigCompany, Department }
∪ VN(Company) ∪ VN(Department) ∪ VN(BigCompany),

VN(Root) := { },
CN(Root) := { },
HE(Root) := { (Company, known_by, Company) }

∪ VE(Company) ∪ VE(Department) ∪ VE(BigCompany),
VE(Root) := { },
CE(Root) := { }. ❏

Based on the definition of schema consistent graphs, we are now able to provide the reader
with the definition of ainstance_of relationship between (complex) nodes and their (com-
plex) node types.

-22-

Def. 3.19 Instances of Node Types

Let c∈ Ck and t∈ Ck+1 be a complex node and a complex node type.

c instance_of t :⇔ t = type(c) ∧ G(t) is a graph schema for G(c). ❏

The definition above has the consequence that nodes areproper instances of uniquely defined
types as long as their graph contents is consistent with the type’s graph schema contents.
Please notice that we do not believe that it is always possible to transform a schema consis-
tent graph into another schema consistent graph with a single rewrite step. Therefore, tem-
porary inconsistencies should be permitted, wheretype(c) = t, but not cinstance_of t.

Our experiences show that it is rather difficult to develop a proper graph schema for a
class of hierarchical graphs and to check by hand whether a given graph is indeed consistent
with its schema definition. The main problems are the subtle interactions between use and
refinement relationships and graph boundary crossing edges on the instance as well on the
type level. These problems are studied within the following example:

Example 3.20 Instance of Relationships

The hierarchical graphB of example 3.4 (with added type information)

HN(B) := { W1:BigCompany.Worker, R&D_Dep1:R&D_Dep,
W4:R&D_Dep.Researcher },

VΝ(B) := { Dep1:BigCompany.Department, P1:BigCompany.Department.Product,
P3:BigCompany.Product } ,

CΝ(B) := { B:BigCompany, A:Company, C:Company, W3:Company.Worker },
HE(B) := { (P1, produced_by, W4), (W4, reports_to, W1) },
VΕ(B) := { },
CΕ(B) := { (A, known_by, B), (W3, in_contact_with, B) }.

is consistent with its schema definition in example 3.18

HN(BigCompany) := { R&D_Dep } ∪ VN(R&D_Dep),
VN(BigCompany) := { BigCompany.Worker, BigCompany.Product,

BigCompany.Department }
∪ VN(BigCompany.Department),

CN(BigCompany) := { BigCompany, Company, Company.Worker, Department }
∪ VN(Department),

HE(BigCompany) := { (BigCompany.Product, copy_of, BigCompany.Product) }
∪ VE(R&D_Dep),

VE(BigCompany) := { (BigCompany.Product, produced_by, BigCompany.Worker),
(BigCompany, managed_by, BigCompany.Worker)
(BigCompany.Worker, in_contact_with, BigCompany) }

∪ VE(BigCompany.Department),
CE(BigCompany) := { (Company, known_by, Company),

(Company, managed_by, Company.Worker),
(Company.Worker, in_contact_with, Company) }

∪ VE(Department).

-23-

Considering the 6 constraints of def. 3.17 we have to check that:

(1) All nodes of HN(B) have type definitions in HN(BigCompany) ∪ VN(BigCompany):
BigCompany.Worker ∈ VN(BigCompany),
R&D_Dep ∈ HN(BigCompany),
R&D_Dep.Researcher ∈ VN(R&D_Dep) ⊂ HN(BigCompany).

(2) All nodes of VN(B) have type definitions in VN(BigCompany):
BigCompany.Department, BigCompany.Worker ∈ VN(BigCompany),
BigCompany.Department.Product ∈ VN(Department) ⊂ VN(BigCompany).

(3) All nodes of CN(B) have types which are refinements of types in VN(BigCompany) ∪
CN(BigCompany):
BigCompany, Company, Company.Worker ∈ CN(BigCompany).

(4) All edges of HE(B) have type definitions in HE(BigCompany) ∪ VE(BigCompany)
such that the types of their source/target nodes are refinements of the source/target type
in their type definitions:
(W4:R&D_Dep.Researcher, reports_to, W1:BigCompany.Worker) is compatible with
(R&D_Dep.Researcher, reports_to, Company.Worker) ∈ VE(R&D_Dep) and
VN(R&D_Dep) ⊂ HE(BigCompany) under the additional (reasonable) assumption that
BigCompany.Worker refinesCompany.Worker,
(P1:BigCompany.Department.Product, produced_by, W4:R&D_Dep.Researcher) is
matched by(BigCompany.Product, produced_by, BigCompany.Worker) ∈ VE(Big-

Company) under the assumption thatBigCompany.Department.Product refinesBig-

Company.Product and thatR&D_Dep.Researcher refinesBigCompany.Worker5.

(5) All edges of VE(B) have compatible edge type definitions in VE(BigCompany):
VE(B) is the empty set.

(6) All edges of CE(B) have compatible edge type definitions in VE(BigCompany) ∪
CE(BigCompany):
(A:Company, known_by, B:BigCompany) is compatible with the edge type definition
(Company, known_by, Company) ∈ CE(BigCompany), due to the fact that we know
thatBigCompany refinesCompany, and
(W3:Company.Worker, in_contact_with, B:BigCompany) is compatible with the type
definition (Company.Worker, in_contact_with, Company) ∈ CE(BigCompany), but
not with (BigCompany.Worker, in_contact_with, BigCompany) ∈ VE(BigCompany).

To summarize, the main problem for “type checking” hierarchical graphs are graph boundary
crossing edges. Their “foreign” sources/targets must have types, which are refinements of
known types. This requires either very elaborate refinement relationships between (atomic)
node types or the import (usage) of additionally needed types from other type definitions (by
extending the known context of the regarded complex type definition) as well as additional
edge type definitions with imported types as source/target types. ❏

5. Otherwise, an additional edge type definition would be necessary with compatible source and target
node types.

-24-

A still neglected problem with the definitions above is that (complex) nodes of each layer
reference (complex) nodes of the next upper layer as their types. As a consequence, aninfi-
nite number of layersmust be defined before nodes of the bottom layer may be constructed.
In order to circumvent this problem, only a finite number of layers must be defined by users
of the graph data model. All remaining layers get adefault definition as follows:

Def. 3.21 Default Completion of Layers

All those layers of our universe of complex nodes, types, meta types etc. which are of no
practical relevance have the following definition:Ck := { tk } with a single (meta) type tk:

(1) nid(tk) := idk ∈ IDk is an appropriately chosen identifier.

(2) tid(tk) := idk+1 = nid(tk+1), the identifier of the default (meta) type of the next layer.

(3) G(tk) := ({ tk }, { t k }, ∅, Εk, Εk, ∅) with Ek := { tk } × EL × { tk } . ❏

Proposition 3.22 Soundness of Default Layer Construction

The default types tk, tk+1, … are indeed proper complex nodes with respect to definition 3.16.

Proof. The first two requirements of definition 3.16 are guaranteed by steps (1) and (2) of
definition 3.21. The third requirement deals with atomic nodes and their embedding into the
set of complex nodes and is, therefore, not important for the proof. Requirement (4) of defi-
nition 3.16 is fulfilled, since G(tk) ∈ G({t k}) = G(Ck). The following requirement (5) (from
def. 3.5) is true, since tk is the only node in N(G(tk)) and CN(G(tk)) = ∅, CE(G(tk)) = ∅. In
a similar way, all remaining conditions (6) through (8) (from def. 3.5) may be checked using
the fact that VN(G(tk)) = N(G(tk)), VE(G(tk)) = E(G(tk)), HN(G(tk)) = ∅, and HE(G(tk)) = ∅.

Finally, the “minimal size” requirement forCk is also fulfilled:Ck has to be at least a sin-
gleton set due to the fact that any node has a type on the next higher layer. Finally, it is easy
to check that all conditions of definition 3.7 concerning contains relationships are valid,
too. ❏

The proposition above neglects the question whether the definition of these default layers al-
lows the construction of arbitrary hierarchical graphs on the highest user defined layer.
Therefore, we have to show

• that any node tk is consistent with its type definition tk+1 of the next higher layer,

• and that any constructible complex node c of the highest user defined layer is consis-
tent with the single type definition of the lowest default layer.

Proposition 3.23 Usefulness of Default Layer Construction

Let Ck = { tk } be the lowest default layer of definition 3.21. Then

(1) ∀ c ∈ Ck-1 : c instance_of tk .

(2) ∀ i ≥ k : ti instance_of ti+1 .

Proof. We have to show for any constructible complex node c of layer k-1 that G(c) is a sche-
ma consistent graph with respect to G(tk). Furthermore, we have to show that G(ti) is schema
consistent with G(ti+1) for any i≥ k.

-25-

In order to prove the proposition’s first part, the six conditions of definition 3.17 must be
checked:

(1) ∀ n ∈ KN(G(c)): type(n) = tk ∈ KN(G(tk)), with tk being the only type on layer k.

(2) ∀n ∈ KN(G(c)) \ HN(G(c)):type(n) = tk ∈ KN(G(tk)) \ HN(G(tk)).

(3) ∀ n ∈ N(G(c)): type(n) = tk ∈ N(G(tk)).

(4) ∀ (n1, e, n2) ∈ KE(G(c)):
(type(n1), e,type(n2)) = (tk, e, tk) ∈ { tk } × EL × { tk } = KE(G(tk)).

(5) ∀ (n1, e, n2) ∈ KE(G(c)) \ HE(G(c)):
(type(n1), e,type(n2)) = (tk, e, tk) ∈ { tk } × EL × { tk } = KE(G(tk)) \ HE(G(tk)).

(6) ∀ (n1, e, n2) ∈ E(G(c)):
(type(n1), e,type(n2)) = (tk, e, tk) ∈ { tk } × EL × { tk } = E(G(tk)).

The proof of the proposition’s second part is analogous to the proof of its first part. Any oc-
currence of “c” above must be replaced by “ti” and any occurrence of “tk” by “t i+1”. ❏

The proposition above shows that the construction of default layers is consistent with the def-
inition of graph schemata and especially that the lowest default layer does not impose any
restrictions onto the construction of hierarchical graphs and complex nodes on the first user
defined layer.

4. Useful Extensions and Related Work
Up to now, the underlying data model of flat graphs was a very primitive one. Thereby, we
were able to keep definitions manageable and focus our interest on the new hierarchy and
layering concepts. It is the purpose of this subsection to discuss a number of useful and
straightforwardextensions on an informal level, especially concerning more complex forms
of edges.

But before discussing the more complex subject of extended edge definitions, we would
like to suggest one possibility how to incorporatenode attributes into our data model. It is
based on the following definition of attribute values, types, and meta types:

• V0 := set of all possible attribute values,

• V1 := set of attribute types withV1 = type(V0),

• Vk := set of meta attribute types of layer k withVK = type(Vk-1).

Furthermore, the definition 3.16 of encapsulated graphs of layer k has to be extended such
that edges may not only have known nodes as their targets but also attribute values or types
of layer k. In that way, ordinary edges from nodes to values ofV0 are nothing else but node
attributes, edges from node types to values ofV1 are attribute declarations, and so forth.

The resulting data model has some similarities with the underlying data model of Hyper-
log [18]6 and it is very similar to that one of the knowledge representation language Telos
[14]. In Telos, both nodes and attribute values are modelled as so-called “tokens”, and binary

6. Hyperlog models graph schemata as graphs, too, but as far as we know, it does not support meta
schemata or graph boundary crossing edges.

-26-

relationships between tokens play the role of edges and attributes over here. Furthermore,
even our concept of an infinite number of type layers was influenced by the Telos concept
of an infinite number ofclass layers. These layers do not only introduce classes of classes of
… of tokens, but allow even the definition of (meta) classes (categories) of binary relation-
ships. An equivalent extension of our graph data model has about the following form:

• The definition 3.1 (see also def. 3.14) of edge labels must be replaced by a layered set
of edge identifiers as follows: EID := .

• The modeling of edges as ternary relations must be replaced by modeling them as qua-
ternary relations of the following form:

(edge-id, source-node-id, edge-type-id, target-node-id).

An edge (id, s, tid, t) on layer k is then a legal instance of an edge (tid, st, mid, tt) on layer
k+1, iff: type(s) = st∧ type(t) = tt(cf. def. 3.17 of graph schemata).

Such an extended hierarchical data model distinguishes evenparallel edges of the same
type between two given nodes by means of their unique identifiers. Having introduced edge
identifiers, the question arises whether edges should be first-class objects like nodes such
that they are subjects for aggregation, refinement, and attribution. Up to now, we believe that
edges should be kept as simple as possible. Otherwise, the distinction between nodes and
edges vanishes step by step up to the point that n-ary edges between n-ary edges are allowed.
In that case, new “connectors” have to be introduced which bind a given n-ary edge to all its
corresponding partners. These connectors, sometimes also called “roles” (in ER data mod-
els), have then about the same purpose as primitive edges of the currently proposed data
model and are, therefore, again second class objects without attributes, types, etc.

Nevertheless, there exists a number of graph data models which allow for edges between
edges or which support aggregation of edges, like those of AGG [12] and EDGE [16]. There
exists even the graph data model of Hy+ [3], which makes almost no distinction between or-
dinary edges and contains relationships. As a consequence, this data model supports multiple
simultaneously existing aggregation hierarchies, which makes the definition of suitable en-
capsulation or data abstraction concepts almost impossible.

To summarize, there exist many graph data models in literature, with some of them being
more than 15 years old [20]. Comparing them with the data model presented here, the main
differences are that

• almost all of them except Telos [14] and Hyperlog [18] do not support a uniform
treatment of graphs and graph schemata,

• many of them prohibit graph boundary crossing edges or do not reason about proper-
ties of graph boundary crossing edges in detail,

• and all but “pin graph” like models [9] neglect the importance of distinguishing be-
tween internal hidden nodes and externally visible nodes which may be referenced by
the outside world.

Furthermore, it has to be noticed that object-oriented data models do have a lot of similarities
with our graph data model. They support aggregation, inheritance, associations (binary or n-
ary relationships) as well as data abstraction. Their major weaknesses are that they do not

EIDk
k 0=()

∞
∪

-27-

support meta modeling and that they come without any formal definitions. Approaches like
OMT [21], Fusion [2], ADM3 [6] or Objectory [10] do not offer precise answers to the fol-
lowing questions, which were studied over here:

• How do inheritance and aggregation interact with each other in the case, where a re-
fined aggregate type contains more specific entries than its supertype (from a rigid type
theoretic point of view this often occurring situation violates the principles of subtyp-
ing and cannot be modeled)?

• How do visibility graphs (related to our use relationship between complex nodes) in-
teract with aggregation and inheritance?

• What about associations between subobjects which belong to different objects; to
which extent are they allowed and do not violate the principle of information hiding?

• And what about the semantics of so-called modules or subsystems and their relation-
ships to aggregation?

Furthermore, all above mentioned approaches except ADM3 [6] disregard the princi-
ple of information hiding on the level of complex objects and subsystems. And even ADM3
with its support for subsystems with well-defined interfaces and hidden internal details does
not study the interactions between information hiding, complex object boundary crossing as-
sociations, and inheritance.

Nevertheless, we have to admit thatour data model is incomplete in comparison to object-
oriented data models as long as integrity constraints, queries, and especially update opera-
tions on encapsulated hierarchical graphs are not taken into account. Update operations on
hierarchical graphs should be defined as graph rewrite rules, which preserve all inherently
existing integrity constraints of hierarchical graphs as well as all application specific schema
consistency constraints. It is future work to develop such a new kind of graph rewrite rules,
define their intended semantics as binary relations over hierarchical graphs (as suggested in
[4] and [11]) and to extend the principle of refinement/subtyping to graph rewrite rules.

This means that we have to develop a new concept ofgraph object types which are com-
plex node types together with a set of consistency preserving rewrite rules. Refinement in
this extended setting means then that a more specific graph object type may have additionally
associated rewrite rules or rewrite rules with a refined definition, i.e. structural subtyping
presented over here is extended to behavioral subtyping.

It is our hope that the new data model of hierarchical graphs together with a forthcoming re-
finement concept for graph rewrite rules may be combined with a recently developed concept
of graph transformations on distributed graphs, where different graphs share common sub-
graphs via so-called interface graphs [24]. A first attempt of incorporating the idea of infor-
mation hiding into the framework of distributed graph transformations is subject of ongoing
research activities [24].

-28-

References
[1] Andries M., Engels G.:Syntax and Semantics of Hybrid Database Languages, in: Eh-

rig H., Schneider H.-J.: Proc. Dagstuhl-Seminar 9301 on Graph Transformations in
Computer Science, LNCS 776, Berlin: Springer Verlag (1994)

[2] Coleman D., Arnold P. et al.:Object-Oriented Development: The Fusion Method,
Prentice Hall International Editions, Prentice Hall (1994)

[3] Consens M., Mendelzon A.:Hy+: A Hygraph-based Query and Visualization System,
in: Buneman P., Jajodia S. (eds.): Proc. 1993 ACM SIGMOD Conf. on Management
of Data, SIGMOD RECORD, vol. 22, no. 2, acm Press (1993), 511-516

[4] Ehrig H., Engels G.:Pragmatic and Semantic Aspects of a Module Concept for Graph
Transformation Systems, Technical Report 93-34, Dept. of Computer Science, Leiden
University (1993)

[5] Engels G., Lewerentz C., Nagl M., Schäfer W., Schürr A.:Building Integrated Soft-
ware Development Environments Part I: Tool Specification, in: acm Transactions on
Software Engineering and Methodology, vol. 1, no. 2, New York: acm Press (1992),
135-167

[6] Firesmith D.G.:Object-Oriented Requirements Analysis and Logical Design: A Soft-
ware Engineering Approach, John Wiley & Sons (1993)

[7] Göttler H., Himmelreich B.:Modelling of Transactions in Object-Oriented Databases
by Two-level Graph Grammars, in: Abstract Proc. 5th Int. Workshop on Graph Gram-
mars and their Application to Computer Science, 151-156

[8] Himsolt M.: Hierarchical Graphs for Graph Grammars, in: Abstract Proc. 5th Int.
Workshop on Graph Grammars and their Application to Computer Science, 67-70

[9] Höfting F., Lengauer Th., Wanke E.:Processing of Hierarchically Defined Graphs
and Graph Families, in: Monien B., Ottmann Th. (eds.): Data Structures and Efficient
Algorithms, LNCS 594, Springer Verlag (1992), 45-69

[10] Jacobson I.:Object-Oriented Software Engineering: A Use Case Driven Approach, re-
vised fourth printing, Addison-Wesley (1994)

[11] Kreowski H.J., Kuske S.:On the Interleaving Semantics of Transformation Units - A
Step into GRACE, in: Abstract Proc. 5th Int. Workshop on Graph Grammars and their
Application to Computer Science, 400-405

[12] Löwe M., Beyer M.:AGG - An Implementation of Algebraic Graph Rewriting, in:
Proc. 5th Int. Conf. on Rewriting Techniques and Applications, LNCS 690, Springer
Verlag (1993), 451-456

[13] Meyer A.R., Reinhold M.B.:‘Type’ is Not a Type: Preliminary Report, in: Proc. 13th
ACM Symp. POPL ’86, 287-295

[14] Mylopoulos J., Borgida A., Jarke M., Koubarakis M.:Telos: Representing Knowledge
About Information Systems, in: ACM Transactions on Information Systems, vol. 8, no.
4, acm Press (1990), 325-362

-29-

[15] Nagl M., Schürr A.:Graph Grammar Specification Problems from Practice, in: Ab-
stract Proc. 5th Int. Workshop on Graph Grammars and their Application to Computer
Science, 139-144

[16] Newbery Paulisch F.:The Design of an Extendible Graph Editor, LNCS 704, Springer
Verlag (1993)

[17] Parisi-Presicce F., Piersanti G.:Multilevel Graph Grammars, in: Proc. 20th Int. Work-
ship on Graph-Theoretic Concepts in Computer Science, WG ’94, LNCS 903, Spring-
er Verlag (1995), 51-64

[18] Poulovassilis A., Levene M.:A Nested-Graph Model for the Representation and Ma-
nipulation of Complex Objects, in: ACM Transactions on Information Systems, vol.
12, no. 1, acm Press (1994) 35-68

[19] Pratt T.W.:Pair Grammars, Graph Languages and String-to-Graph Translations, in:
Journal of Computer and System Sciences, vol. 5, Academic Press (1971),560-595

[20] Pratt T.W.:Definition of Programming Language Semantics Using Grammars for Hi-
erarchical Graphs, in: Claus V., Ehrig H., Rozenberg G. (eds.): Proc. Int. Workshop
on Graph-Grammars and Their Application to Computer Science and Biology,
LNCS 73, Springer Verlag (1979), 390-400

[21] Rumbaugh J., Blaha M. et al.:Object-Oriented Modeling and Design, Prentice Hall
(1991)

[22] Schneider H.J.:On Categorical Graph Grammars Integrating Structural Transforma-
tions and Operations on Labels, in: Theoretical Computer Science (TCS) 109, Elsevier
Science Publ. B.V. (1993), 257-274

[23] Schürr A.:Specification of Graph Translators with Triple Graph Grammars, in: Tin-
hofer G. (ed.): Proc. WG 94, Int. Workshop on Graph-Theoretic Concepts in Comput-
er Science, LNCS 903, Springer Verlag (1995), 151-163

[24] Schürr A., Taentzer G.:DIEGO, another Step towards a Module Concept for Graph
Transformations, in: Montanari U. et al. (ed.): Proc. Joint COMPUGRAPH/SEMA-
GRAPH Workshop on Graph Rewriting and Computation, Electronic Notes in Theo-
retical Computer Science (ENTCS), Elsevier Science Publ. (1995)

[25] Taentzer G.:Hierarchically Distributed Graph Transformations, in: Abstract Proc. 5th
Int. Workshop on Graph Grammars and their Application to Computer Science, 430-
435

