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Abstract

We investigated the error surfaces of two neural networks used for learning the XOR
function with gradient descent methods. We found that the error surface of the sim-
plest network with one hidden unit and the inputs connected to the output unit has no
local minima. All stationary points of the error surface are saddle points. The error
surface of the network with two hidden units without connections from the inputs to
the output unit has no local minima for finite weights. For infinite weights from the
inputs to the hidden units regions of local minima exist in the sense that all points in a
neighbourhood of such a point result in error values greater than or equal to the error
in the given point. Furthermore, it is shown that considering these local minima as a
basin, the water will flow out of such a basin, since boundary points of these regions
of local minima are saddle points. These results provide us with a better insight in
problems encountered by different learning algorithms, when training on these partic-
ular networks and also give a feeling for problems that can be encountered in more
complicated networks.

1   Introduction

A central theme in neural network research is to find the right network (architecture and
learning algorithm) for a problem. In our research [BKH93a, BKH93b] we are trying to
generate good architectures for neural networks using a genetic algorithm which works on
strings containing coded production rules of a graph grammar (L-systems). These produc-
tion rules result in an architecture and training of the architecture on a given problem
results in a fitness for the given string, which is used by the genetic algorithm. In order to
be able to decide objectively which architecture is better, a distinction is made between the
following aspects:

• representation,

• learning and

• generalization.

The representation aspect considers whether a network is able to represent a solution of
the problem. The learning aspect concerns the ability of a network to learn a solution of the
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problem. If the network is able to learn a solution the question arises, how fast, with what
probability and how accurate that solution will be learned. The last point is whether the
network is able to generalize, i.e. does the network give reasonable output for patterns that
were not part of the training set?

In order to learn more about these aspects we considered some simple networks for
boolean functions. This paper is concerned with two networks that can represent the XOR
function: the network with one hidden unit and connections from the inputs to the output
unit (see figure 1, left), and the network with two hidden units without connections from
the inputs to the output unit (see figure 1, right).

As training algorithm we consider gradient-based algorithms, e.g. backpropagation
with momentum. The error depends on the training pattern(s) and the weights. With a fixed
training set the error is a function of the weights: theerror surface. In the backpropagation
algorithm the error in the output is reduced by changing the weight vector in the direction
opposite to the gradient of the error with respect to the weights. So each weightwij  is
updated according to the following formula:∆wij(t) = −α ∂E/∂wij + β ∆wij(t−1), with
learning parameterα and momentum parameterβ. The effect is that the weights are
updated such that a point on the error surface is reached with a smaller error value. There
is a distinction between batch learning and on-line learning. During batch learning the
weights are updated after the whole training set is seen and the errors of the individual pat-
terns are summed to the total error. During on-line learning the weights are corrected after
each pattern, with respect to the error for the pattern just seen by the network.

In this paper we will concern ourselves only with the error surfaces of the networks in
figure 1 for the XOR problem and the consequences for the learning aspect. When we
assume that some kind of gradient-based learning algorithm is used, then the shape of the
error surface is very important. The ideal error surface has one minimum value (ideally
zero) corresponding to an acceptable solution and in each other point a nonzero gradient.
With such an error surface each gradient-based learning algorithm will approximate the
minimum in this way finding a reasonable solution. However if the error surface contains
so-called local minima, the learning algorithm can wind up in such a local minimum and
reach a suboptimal solution. From experiments by Rumelhart et al. [RuM86] it seems that
the simplest XOR network does not have such local minima in contrast to the XOR net-
work with two hidden units and without connections from the inputs to the output. Many
researchers [e.g. GST93, LiP91, RuM86] investigated the question whether or not an error
surface for a certain network, which has to solve a certain problem, has local minima, and,
if it has, how they should avoid them. Most researchers did numerical experiments, which
provided them with a strong intuitive feeling of the existence of local minima, but not with
a real proof. Lisboa and Perantonis [LiP91] give a local minimum, for example, for the

Figure 1. The XOR network with one hidden unit (left) and the XOR network with two
hidden units (right).



XOR network with two hidden units, with the weights from the hidden units to the output
unit equal to zero, while it is proved in [SpB95] that such a point is a saddle point andnot
a local minimum.

The global minimum, with zero error, is not a strict minimum for both networks, since a
higher dimensional region in the weight space exists with zero error. All points in a neigh-
bourhood of each point of this region have error values which arenot less than the error in
that point. In astrict minimum, however, it is necessary that all points in a neighbourhood
give error valueslarger than the error value in that point. Saddle points are stationary
points where for each neighbourhood both points with larger error values and with smaller
error values can be found. We proved that the global minimum contains the only points
with a gradient equal to zero for the error of all patterns individually. We call such a point
a stablestationary point. The other stationary points have a zero gradient for the error of a
fixed training set of patterns, but not for the error of the patterns individually, so on-line
learning can probably escape from these points.

For the network with one hidden unit we proved that all stationary points with error
unequal to zero are saddle points. The complete proof is given in [SpB94a].

For the network with two hidden units we proved that all stationary points with finite
weights and error unequal to zero are saddle points. For some of the weights from the
inputs to the outputs equal to plus or minus infinity we found regions of local minima.
These local minima are again not strict, so each neighbourhood of such a point contains
points with the same error value. The dimension of these regions with local minima is
greater than one and less than the dimension of the weight space. The “area” of the regions
is infinite, while their “volume” in weight space is zero. Furthermore these regions of local
minima all have boundary points which are saddle points, so it is possible to escape from
such a local minimum through a boundary point of the surrounding region of local
minima.

In these simple networks we observed two kinds of difficult points for a gradient based
learning algorithm:

• saddle points, which sometimes need information about third or even fourth order par-
tial derivatives to find the direction of decreasing error,

• regions of local minima with some infinite weights, which have boundary points that
are saddle points.

These observations can be used to explain why experiments with a higher numerical
precision less often get stuck into “local minima”, since the higher the numerical preci-
sion, the greater the change to escape from a difficult saddle point.

Also the result that on-line learning with a reasonably large learning parameter leads
best to avoiding such minima [GST93], can be explained, since movement in the neigh-
bourhood of a real local minimum can lead to reaching a boundary point and finding the
way down.

The rest of the paper consists of the following sections: Section 2 contains a description
of the XOR problem and the networks that are used to implement it. Section 3 contains a
sketch of the proof that the error surface of the network with one hidden unit has no local
minima. Section 4 exists of a sketch of the results for the network with two hidden units.
Especially some of the regions with local minima are given, while the other regions with
local minima can be derived from these regions by using transformations of the weights.
Finally, section 5 contains the conclusions. This paper contains only a rough sketch of the
proofs, elsewhere we give the complete proofs [SpB94a, SpB95].



2   The XOR problem and the two networks solving it

We studied the networks in figure 2: one with one hidden unit (left) and one with two hid-
den units (right). These networks consist of one threshold unitX0, with constant value 1,

two inputsX1 andX2, one or two hidden units and the output unitY. The network with one
hidden unit has seven weights which are labelledu0, u1, u2, w0, w1, w2 andv (see figure 2,
left), while the network with two hidden units has nine weights labelledu, w01, w02, w11,
w12, w21, w22, v1 andv2 (see figure 2, right). If each unit uses a sigmoid transfer function
f—the used transfer function isf (x) = 1/(1 + e–x)—then the output of the left network is, as
function of the inputs X1 and X2:

(2.1)

while the output of the right network is equal to:

(2.2)

Table 1 shows the patterns for the XOR problem which have to be learned. The errorE
of the network when training a training set containingaij  times the patternPij , aij > 0, i, j ∈
{0,1} is:

(2.3)

with y (X1, X2) given in equation (2.1) and equation (2.2), respectively.

Table 1: Patterns for the XOR problem

Pattern X1 X2 desired output

P00 0 0 0.1

P01 0 1 0.9

P10 1 0 0.9

P11 1 1 0.1

v
u0

u2

w0
w1 w2

X0=1 X1 X2

Y

H

u1

Figure 2. The XOR network with one hidden unit (left) and the XOR network with two
hidden units (right). Here all weights including the threshold are shown.
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3   Sketch of the proof of the results for the simplest XOR
network

The complete proof of the results for the network with one hidden unit and connections
between the inputs and the output unit can be found in [SpB94a]. In the proof we distin-
guish two kinds of minima for the errorE:

• Minima that remain stable during on-line learning independent of the chosen training
sequence; these minima have the property that no pattern will lead to an error that can
be decreased by a local chance of the weights. These minima are calledstable minima.

• Minima that depend on the given training set. For batch learning these are minima, but
during on-line learning the weights will continue to change in their neighbourhood,
since they are not minima for all patterns separately. These minima are calledunstable
minima.

A similar distinction is made between stable and unstable stationary points.
The proof exists of the following steps:

• It is proved that the minimum with error zero can occur for finite values of the weights.
• It is proved that points with error zero are the unique stable minima.
• All unstable stationary points are investigated and are proved to be saddle points.

A typical saddle point is given in figure 3. This figure shows that indeed the error sur-
face behaves as a saddle point in a neighbourhood of the point with all weights zero.

4   Sketch of the proof of the results for the XOR network
with two hidden units

The complete proof of the results for the network with two hidden units can be found in
[SpB95]. The proof exists of the following steps:
• It is proved that the minimum with error zero can occur for finite values of the weights.
• It is proved that points with error zero are the unique stable minima. This proof is

straightforward for finite weights and more complicated if some of the weights to the
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Figure 3. The error surface of the network with one hidden unit in the neighbourhood of
u0 = u1 = u2 = w0 = w1 = w2 = v = 0. This picture is obtained by varyingw0, w1 andw2
equally from –0.5 to 0.5 andv from –0.0005 to 0.0005.



output unit are infinite such that the output is saturated to 0 or 1 for one or more of the
patterns.

• All unstable stationary points with finite weights are investigated and are proved to be
saddle points. So especially the point with all weights equal to zero is proved to be a
saddle point in contrast to a paper of Blum [Blu89] who “proved” that this point was a
local minimum. In [SpB94b] it is shown where Blum made the wrong conclusion. Fig-
ure 4 shows that this point is a saddle point indeed.

• The unstable stationary points, with some of the weights infinite, are investigated. Here
we found the following local minima:

Local minima with two patterns learned

If the patternsP00 andP01 (see table 1) are learned exactly and the output is equal to 0.5
for the other two patterns, the following 4-dimensional regions of local minima exist.

Let us denote the following relations by the symbolsQ1, Q2, S1 andS2, respectively:

Q1: v1 ≥ f –1(0.9) andw21 > 0, Q2: v1 ≤ f –1(0.1) andw21 < 0,

S1: v2 ≥ f –1(0.9) andw22 > 0, S2: v2 ≤ f –1(0.1) andw22 < 0.

The local minima occur for values of the weights which obey the following equalities
and inequalities:

, (4.1)

(4.2)

and either:

• u+v1+v2 = 0,w01+w11 = w01+w11+w21 = ∞, w02+w12 = w02+w12+w22 = ∞ and

((Q1 andS2) or (Q2 andS1)), or
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Figure 4. The error surface of the network with two hidden units around the point with all
weights equal to zero. The values of the weights are varied such that∆w11 = ∆w12 = ∆w21 =
∆w22 varies from -0.5 to 0.5, while∆v1 = ∆v2 varies from -0.005 to 0.005.
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• u+v1 = 0,w01+w11 = w01+w11+w21 = ∞, w02+w12 = w02+w12+w22 = –∞ and

((Q1 andS1) or (Q2 andS2)), or

• u+v2 = 0,w01+w11 = w01+w11+w21 = –∞, w02+w12 = w02+w12+w22 = ∞ and

((Q1 andS1) or (Q2 andS2)), or

• u = 0,w01+w11 = w01+w11+w21 = –∞, w02+w12 = w02+w12+w22 = –∞ and

((Q1 andS2) or (Q2 andS1)).

It is possible to escape from all these local minima through points withw21 = 0 orw22 = 0.
Similar local minima are found starting from the above mentioned, by applying trans-

formations of the weights, resulting in local minima with two other patterns exactly
learned.

Proof of the first local minimum

The first local minimum is found ifw01+w11 = w01+w11+w21 = w02+w12 = w02+w12+w22=
∞. Let Aij  be the input of the output unit corresponding to patternPij . Then we have:

(4.3)

The corresponding error level is 0.16. Elimination ofu results in:

(4.4)

Sincef (x) is positive andA00 andA01 have opposite sign,v1 andv2 will have opposite sign
and will not be equal to zero in this case. Sincef (x) ∈ [0,1] it follows that eitherv1 ≥

 andv2 ≤ f –1(0.1) orv1 ≤ f –1(0.1) andv2 ≥ f –1(0.9). In order that the equations
(4.4) have a solution forv1 andv2 the following condition must be fulfilled:

(4.5)

Sincew01+w11 = w02+w12 = +∞, we make the substitution:

 and

If w01+w11 → ∞ thenp1 ↓ 0 and ifw02+w12 → ∞ thenp2 ↓ 0. Computation of the partial
derivatives of the errorE with respect top1 andp2 for p1 andp2 equal to zero, choosing
w01, w21, w02 andw22 independent ofp1 andp2, results in:

(4.6)

A00 u v1f w01( ) v2f w02( )+ + f 1– 0.1( )= =
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A10 A11 u v1 v2+ + 0= = =
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f 1– 0.9( )
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p1 e
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∂E
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Since bothp1 andp2 are greater then or equal to zero it is clear that if one of the derivatives
in equation (4.6) is negative, then the error will decrease ifp1 or p2 moves away from zero
(andw01+w11 or w02+w12 moves away from infinity, correspondingly). Thus then the sta-
tionary point is not a local minimum.
If both derivatives in equation (4.6) are positive, increasingp1 and/orp2 will lead to an
increase of the error, but whenp1 andp2 are equal to zero, it is clear from equations (4.3)
and (4.4) that decreasing the error can be done only by alteringu+v1+v2, such that the error
corresponding toA10 andA11 decreases, and altering the other weights in order to keep the
error corresponding toA00 andA01 equal to zero. But the error corresponding toA10 and
A11 as a function ofx = u+v1+v2 is equal to:

(4.7)

with derivatives forx = 0:

(4.8)

and

(4.9)

So each variation ofu+v1+v2 will increase the error with respect toA10 andA11. So in this
case a local minimum is found! The sign of the derivatives in (4.6) is determined by the
signs ofv1, v2, w21 andw22. Both derivatives are positive if (Q1 andS2) or (Q2 andS1).
The dimension of the region in which this minimum value is attained follows from (4.3),
(4.4) and (4.5): ifw01, w02, w21 andw22 are chosen such that the inequality (4.5) holds,
thenu, v1 andv2 are determined by (4.3) and (4.4). So the dimension of this region of local
minima is 4.

Local minima with one pattern learned

Also local minima exist with one pattern learned exactly. The following conclusion gives
one of the results if the patternP00 is exactly learned. Results for the case with one of the
other patterns exactly learned follow from the conclusions forP00 by transformations of
the weights.

Conclusion If P00 is learned exactly and the other patterns are not, then regions with
local minima with error0.213333 will be found if w01+w11 = w01+w21 = w01+w11+w21 =
w02+w12 = w02+w22= w02+w12+w22 = ∞ and if the following equations hold:

• u+v1 f (w01)+v2 f (w02) = f –1(0.1), and u+v1+v2 = f –1(1.9/3)

and if one of the following conditions is fulfilled:

• w01= w12 = w22 = ∞, w11, w21 and w02 are finite and either

• v1 > 0,v2 > 0 and  > 0 or

• v1 < 0,v2 > 0and  < 0

or

E
1
2
--- f x( ) 0.9–( ) 2 1

2
--- f x( ) 0.1–( ) 2+=

x∂
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x 0=

f x( ) 0.9–( ) f′ x( ) f x( ) 0.1–( ) f′ x( )+
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• w11= w21= w02= ∞, w01, w12 and w22 are finite and either

• v1 > 0,v2 > 0and  > 0 or

• v1 > 0,v2 < 0and  < 0

or

• w11= w21= w12= w22 = ∞, w01and w02 are finite and v1 > 0 and v2 > 0.

Similar conclusions exist with respect to the existence of local minima for the cases
• w01+w11 = w01+w21 = w01+w11+w21 = ±∞ and w02+w12 = w02+w22 = w02+w12+w22

= and
• w01+w11 = w01+w21 = w01+w11+w21 = w02+w12 = w02+w22 = w02+w12+w22 = –∞.
The boundary points of all these regions with local minima are saddle points.

In [SpB95] it is shown that 4 of the 5 examples given by Lisboa and Perantonis [LiP91]
correspond to one of the regions of local minima found in this research. The fifth example
was not a correct example of a local minimum, since the given point is a saddle point. The
first example given by Lisboa and Perantonis is:

The patterns P00 and P10 are learned exactly, the output of the other patterns is equal to
0.5, while the weights are equal to: u =5.05670, v1 = –2.78335, v2 = –5.05670, w01 =
1.41913, w11 = –5.52058, w21 = –13.69016, w02 = 4.73579, w12 = –4.50867 and w22 =
12.27468.

This point is a numerical approximation of a point withw01+w21 = w01+w11+w21 = –∞,
w02+w22 = w02+w12+w22 = ∞, v1 ≤ f –1(0.1), w11 < 0, v2 ≤ f –1(0.1), w12 < 0 and further
restrictions on the weights such that the patterns indeed give the given output values. Also
the local minimum given by Rumelhart and McClelland [RuM86] corresponds to a region
of local minima found in [SpB95].

5   Conclusion

Our main conclusion is that the error surface of the network with one hidden unit for the
XOR problem has no local minima. So for this network from each point in weight space a
path with decreasing error exists leading to a point with error 0. Regions of saddle points
exist where some algorithms can get stuck or be retarded.

The error surface of the network with two hidden units has no local minima for finite
values of the weights. Regions of local minima exist for some of the weights from the
inputs to the hidden units having infinite values, but these regions have boundary points
which are saddle points. So for this network from each point in weight space a non-
increasing path exist to a point with error 0, while from each point outside a local mini-
mum—so especially from each point with finite weights—a strictly decreasing path exists
to a point with error zero.

In this paper we gave the results of our investigation of the error surfaces of two simple
neural networks. To investigate such error surfaces thoroughly is important in order be
able to explain the behaviour of learning algorithms dealing with such surfaces. Many
researchers who study learning algorithms start testing their algorithms on the XOR or n-
bit parity problem (Prechelt [Pre94]). Not knowing why exactly some learning algorithms
wind up in a point with positive error, while other algorithms do not or less often, they give
vague explanations and, for example, say that a shallow local minimum is found which is
abandoned by an algorithm with a higher momentum term. Since in this paper we showed

e
w12–

e
w22–

2e
w12– w22–

–+

e
w12–

e
w22–

2e
w12– w22–
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the existence of regions of local minima with boundary points which are saddle points, it is
interesting to investigate what kind of learning algorithms easily can escape from such
local minima. A suggestion could be some learning algorithm that works like pouring
water in a local minimum and sees what direction the water flows.
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