A Graph Grammar Approach to Graphical Parsing

A. Schurr

Lehrstuhl fur Informatik 1ll, RWTH Aachen
Ahornstr. 55, D-52074 Aachen, Germany
email: andy@i3.informatik.rwth-aachen.de

J. Rekers

Department of Computer Science, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
email: rekers@wi.leidenuniv.nl

Abstract editor, it may offer a far greater freedom to the user, as the

We present a new graph grammar based approach for defin€ditor then only needs to require that the final diagram is syn-
ing the syntax of visual languages and for generating visualt@ctically correct, instead of requiring that every intermediate
language parsers. Its main advantagein comparison to diagram is syntactically correct. Furthermore, graphical pars-
other visual language parsing approactiésis its ability to N9 makes it possible to process diagrams which have been
handle context-sensitive productions which may replacedrawn with ordinary graphical editors.

more than one non-terminal at the same time and which may We explain our view on graphical parsing and graphical
contain very complex context requirements. Its implementassyntax definition in Sec. 2, followed by a discussion of
tion will be part of a forthcoming parsing toolkit for visual related work in Sec. 3. Sec. 4 forms the core of the paper in
languages and the already existing graph grammar pro- which we present our graphical parsing algorithm. In Sec. 5
gramming environment PROGRES. we summarize the paper and discuss some remaining prob-

. lems.
1 Introduction

In reading the proceedings of the past VL workshops or any2 Multi-stage graphical analysis
book on software engineering one cannot help but notice tha¥Ve propose a multi-stage graphical analysis (parsing) pro-
a large variety of visual languages exists of which only a fewcess as depicted in Fig. 1. Usual graphical editing, such as
are equipped with a propésrmal syntax definitionThat is with Idraw or FrameMaker, produces a collection of pictorial
regrettable, as such definitions have a number of advantagedlements, which are fed to phase 1 of the analysis process,
to offer: graphical scanning It interprets the positions, sizes, and
« without a proper syntax definition, new users can only Shapes of pictorial elements and producssaial relations
guess the syntax of a graphical language by generalizing@Ph. in which objects are connected by relations tike-
from the provided examples, ains, points af andlabels

« a definition could serve as unambiguous specification for Phase 2Jow level parsing maps pictorial elements and
syntax directed editors over the language, thelr_ spat!al relationships onto more abstract objects and
. relationships between them. Its output isadnstract rela-
* a_graphlcal parser could be generated out of a proper deflﬁons graph. For Finite State Automata this phase would
nition, and o N ~_recognize a circle that encloses a string &fede and an
* a syntax definition is a necessary precondition for a defini-arrow with a close-by string asTaansition (cf. productions
tion of the semantics of the language. Ps, Ps, andp; of [13] or the FSA grammar of Marriott [10]).
We think that it would be very beneficiary to the theory of Fig. 2 shows a FSA diagram and the transformation in its
visual languages if a single syntax definition formalism corresponding abstract relations graph. However, low level
could be agreed on. Such a formalism should be highlyparsing would also happily accept an unconnected FSA, an
expressive, unambiguous, and specifications should be easy
to read and develop.

In this paper we will show hograph grammarscan be
used as syntax definition formalism for graphical languages,
and we will develop a graphical parsing algorithm based on

0: Graphical Editor

Pictorial Elements

. . 0: Constraint
1: Graphical Scanning

these grammars. We will however first argue why graphical ¢ Editor
parsing would be useful for users of visual languages, and Low Level Spatial Relations Graph
we will show that graphical parsing, if used to its full power, Grammar
is less trivial than it might seem. 2: Low Level Parsing 0: Low Level
A graphical parsertranslates a diagram from its raw pic- Hiah Level ' Graph Editor
. - . . _ |g eve
ture format into its underlying syntactic structure. If a graph Grammar Abstract Relations Graph

ical parser is incorporated in a syntax directed graphical

TThis is technical report 95-15 of Leiden University and is available
via ftp from ftp-serverftp.wi.leidenuniv.nlfile /pub/CS/Technical-
Reports/1995/tr95-15.ps.gZhis paper will also appear in the pro-
ceedings of thel995 IEEE Symposium on Visual Languages
(VL'95), Darmstadt, Germany, September 5-9, 1995.

3: High Level Parsing

Final Output
Figure 1: Our multi-stage graphical analysis approe

'
t labels
2 E_.u_—r: Grael 2 w5 [Grge] ||
nnnnnnnnnnnnnn

labels
—‘ [DoubleArrow]” [Siring] & # l

contains from to

gl [startstate |0 Transition 1o»{ FinaiState | " "
assign assign

Figure 2: The transformation in a number of steps of .
FSA diagram into its abstract relations graph

automaton with unreachable states, one without a start state,
or one with several start states.

In order to catch those kinds of errors, additional more
complex grammar rules are needed. Phashidgh level
parsing, is defined by a grammar which states how sen-
tences should be generated, starting froraxaom (cf. pro-
ductionsp,, p, andp; of [13]). For the FSA case, the axiom
would be arAutomatonwhich may be rewritten intoStart-
State given aState one may add an outgoifigansitionand .
a newState given twoStates one may connect them by a ~ a@xiom: PFD
Transition These rules guarantee connected automata, for 'abel wildcards:

B?, C? O { begin, fork, if }
which all states are reachable from the start state. S?. T2 O{end, assign, fork, join, send, receive, if }

It is also possible to perform only some steps of the pro- s?,r? O{n,f t}
posed multi-stage graphical analysis process. For instance,, ., qyctions:
the constraint based graph editor EDGE [9] may be used to

create a spatial relations graphs, and phase 1 would not bel: E

necessary. Or a syntax directed editor may directly create an

Figure 3: Sample process flow diagram

abstract relations graph, thereby skipping phases 1 and 2. ;. g5} sl 7' Bo _; T2
2.1 Process flow diagrams as example o o o ,- B
The running example of this paper will be the recognition of 3 I_3?‘—> Stat _B?—> {S_tle
well-structured process flow diagrams. An example of the

abstract relations graph of a process flow diagram is depicted n n

in Fig. 3. Do note that this graph already suggests work of Tos? n.ro:

phases 1 and 2 by the shape of the vertices in this graph, puf'® : B? St T2 =

this is only to make the example less abstract. S

Fig. 4 contains the (high-level) grammar for this language. Ny, Stat SIN
Production 1 of this grammar replaces the axRRD with 4b: fork» join »
two terminal vertices and one nonterminal vertex, which are e e
connected by means of twa(ext) edges. Production 2
deletes a singl8tatvertex and creates a nassignvertex, o .
which inherits an incoming and an outgoing control flow 1B S’):
edge from the deleted nonterminal vertex. Tashed con- 5 B
text vertices are used for this purpose. They have to be e s nrooe
present when the production is applied, but remain unmodi- N ol
fied. The left context vertex is one dbdgin fork, if} and
therefore source of a(ext) t(rue) or f(alse) edge. The right e .
context vertex is one ofepd assign..} and therefore 6: . B? P Stat—p T?.::=
always the target of a(ext) edge. Separately definéabel T Y
wildcards may be used to construct a single production as an
abbreviation for all the above mentioned combinations of
possible vertex and edge labels. B2 S stad Ny T2 =

The other productions have a similar outline: they extend T T
Statlists, create new process threads, establish communica-
tion channels between them, and produce conditional loops
as well as branches. Note that already such a small gramm:

Figure 4: Grammar for process flow diagrams

2

advantages. The main drawbacks of the first approach are:
users are not always aware of the consequences of attribute
assignments, and parsers have to spend a lot of time to
extractimplicitly defined knowledgabout relationships from
attributes and constraints.

The second approach is in our opinion the most readable
one, but the unrestricted use aintext elementsequires
very complex parsing algorithms. Furthermore, it is difficult
in this setting to rewrite nonterminals which may participate
in a statically unknown number of relationships.

In the latter case, thembedding rule approadb the most
convenient one. But embedding rules are difficult to under-
_ . . stand and all known parsing algorithms for productions with
Figure 5: A context-sensitive rewriting step embedding rules are either hopelessly inefficient or impose
ery hard restrictions on left- and right-hand sides of produc-
ons (see below).

contains reasonable examples of productions which do not’i
delete any nonterminals (production 3 and 4b) or which
replace more than one nonterminal at the same time (produc3.2 Properties of Graphical Parsing Algorithms

tion 5). Summarizing the explanations above, related parsing
3 Analysis of Related Approaches approaches should be studied and compared by answering

. . o . the following questions:
When inventing a new syntax definition and parsing * |s theleft-hand side of a production restricted to a single
approach for graphical languages, the most important thing nonterminal, which will be replaced by its right-hand side

is to come up with a reasonable solution for the so-called SN

embedding problenin the case of linear textual languages it ~(CONtext-free production)? . .

is clear how to replace a nonterminal in a sentence by a cort Are there any restrictions for thight-hand sides of pro-
responding sequence of (non-)terminals. But in the case of ductions?

graphical languages with many possible relationshipse Does the formalism allow references to additicrtaitext
between language elements we need a far more complicated elements which have to be present but remain unmodified
mechanism for (re-)establishing relationships between old during the application of a production?

context elements of a replaced nonterminal and its replacing Does the proposed type of grammar have more or less
(non-)terminals (see productions of Fig. 4 and Fig. 5). complex embedding rules which establish connections

: . between new elements (created by a production) and the
3.1 Embedding Problems of Graphical Languages surrounding structure?

There are at least three solutions for the embedding problem; a(e thereadditional restrictions for the set of productions

1. Implicit Embedding: formalisms like picture layout or the form of graphs, which do not fall in the above men-
grammars [5] or constraint multiset grammars [10] do not tioned categories?
distinguish between vertex and relationship objects. As a, |5 the time and spaceomplexity of the proposed algo-

consequence, all needed relationships between Objects (it |inear, polynomial, or even exponential with respect
are implicitly defined as constraints over their attribute {5 the size of an input graph?

values. Therefore, attribute assignments within produc-
tions have the implicit side effect to create new relation-
ships to unknown context elements.

2. Extended Context all approaches which support the 3.3 Analysis of Graphical Parsing Algorithms
concept of relationships between objects directly, need arhe precedence graph grammarparser of Kaul is an
special mechanism to embed new (non-)terminal objectsattempt to generalize the idea of operator precedence based
in their proper context. A straight-forward solution for parsing and has a linear time and space complexity. The
this problem is to extend left- and right-hand sides of pro-parsing process is a kind of handle rewriting, where graph
ductions with context elements (as we do in Fig. 4). handles (subgraphs of the input graph) are identified by ana-
These context elements will not be modified by produc- lysing vertex and edge labels of their direct context. Unfortu-
tion applications but may be used as sources or targets forately, this approach works only for a very restricted class of
new relationships. graph languages.

3. Embedding Rules The last and most powerful solution The next three entries in the table contain references to
is an essential part of various forms of graph grammarsEarley-style parsing approaches [2]. The first one by Bunke
like [7,14]. These formalisms have separate embeddingand Haller [1] useplex grammars, which are a kind of con-
rules which allow the redirection of arbitrary sets of rela- text-free graph grammars with rather restricted forms of
tionships from a replaced nonterminal to its replacing embedding rules. Any nonterminal has only a fixed number
(non-)terminals. of connection points to its context. The second one by Wit-

All three approaches have their specific advantages and disenburg [17] uses dotted rules to organize the parsing process

Table 1 provides an overview of our related work studies
with respect to these questions.

3

for relational grammars, but without presenting any possible but would be quite unreadable. Furthermore,
heuristics how to select “good” dotted rules. Further- the realized parsing algorithm has the following restric-
more, it is restricted to the case of relational structures, tions:

where relationships of the same type define partial « Two nonterminals of the same class, which are used
orders. for the derivation of a single graphical language sen-

Finally, the approach of Ferucci et al. [4] with so- tence, must have different attribute values (otherwise
called INS-RG grammars is a translation of the graph the parser makes the wrong decision to identify them).
grammar approach of Rozenberg/Welzl [1] into the ter- « Their must be an upper boundary for the number of
minology of relational languages. In this approach right- possibly used different nonterminal attribute values
hand sides of productions may not contain nonterminals during parsing (otherwise, the parser tries to create an
as neighbours, thereby guaranteeing local confluence of infinite number of unidentifiable nonterminals).
graph rewriting (parsing) steps. Furthermore, polyno- , gyerapping matches of right-hand sides due to
mial complexity is guaranteed as long as generated ambiguous derivations may not occur (they cause the
graphs are connected and an upper boundary for the o sers immediate termination with a fatal error).
number of adjacent edges at a single vertex is known. . .

To summarize, all presented parsing approaches are

All presented approaches up to now are not adequate inadequate for defininghe language of process flow
for generating process flow graphs. Their embedding giagrams in a proper way. There is a strong need for a
rules are not able to rewrite previously unconne&ied new syntax definition and parsing approach, where both
vertices to pairs of connect&endandReceivevertices left- and right-hand sides of productions are arbitrary
(as we do in the rewriting step presented in Fig. 5). And 4raphs which share a common context graph. Such a for-

even the remaining two approaches of Marriot and Golin - yjism together with its parsing algorithms will be pre-
would have their difficulties with process flow diagrams. gented within the next section.

Their parsing algorithms generalize the bottom-up algo-
rithms of Tomita [16] orCocke-Younger-Kasami[18, 4 The graph parsing algorithm

6] for context-free textual grammars. Marriot®n- 0 ; ; ; P

. ; ur parsing algorithm for graphical languages is in fact
straint multiset grammars [10] offer the conceptlof a grgph pgrsir?g algorithmg. IrFl) this papger \?ve will only
contixt eIeTents ?nd V\f’OII:J.Id tr;ergb¥ 3? able to defmg the sketch its main characteristics; for a complete presenta-
graph rewriting step ot Fig. 5. but the accompanying i, of gj| details including a full proof of correctness
parsing algorithm is not yet able do deal with these con- termination, the reader is referred to [13].

text elements. - o)
Definition 1: A production is of the form [, R), with L

There remains theicture layout grammars [5] of X ;
Golin. His parsing algorithm allows terminal context andR both graphsL. andR may have an intersectiah.

elements, but has a main focus on productions with one A productionp := (L, R) can be read in two directions:
nonterminal on the left-hand side and at most two < Ingenerationthe host graps is searched for a match
nonterminals on the right-hand side with predefined spa- h(L) of the left-hand sidé. If found, h(L) is replaced
tial relationships between them. A definition of process by a copyh’(R) of the right-hand side, resulting in a
flow graphs which obeys these restrictions should be graphG’.

Left-hand Right-hand Context Embedding Additional Parsing Space/Time
Side Side Elements Rules Restrictions Complexity
Kaul [7,8] one nonterminal directed nonempty no yes implicitly def. vertex linear
graph ordering by edges
Bunke/Haller [1] [| one nontermina nonempty no fixed set of no exponential
plex structure connection points
Wittenburg [17] one nontermingl nonempty no yes explicitly def. vertex] exponential
relational structure ordering by relations|
Ferrucci et al. [4]|| one nonterminagl rel. structure without no yes (bounded degree,| exponential
nonterminal neighbours connected structure) (polynomial)
Rozenberg/ one nonterminal| dir. graph without non- no yes (bounded degree,| exponential
Welzl [14] terminal neighbours connected graph) | (polynomial)
Marriot [10] one nonterminal arbitrary nonempty (yes) implicit acyclic grammar, | exponential
multiset no context elements
Golin [5] one nonterminal one or two one terminal implicit finite set of possible polynomial
(non-)terminals attribute values
Rekers/Schirr directed graph directed connected,| directed graph not yet global layering con- exponential
[13] nonempty graph dition for grammar

Table 1: Visual language syntax definition and parsing approaches

4

* In parsing the host grapl®’ is searched for a matth(R) a)
of the right-hand sid®. If found, h’'(R) is replaced by a n
copyh(L) of the left-hand sidg, resulting in a grapb. | begin |—>| fork

vl v2

Definition 2: The application of a productignis aproduc-
tion instance(p, h, '), where graph morphisnts L -~ G
andh’: R - G’ relate vertices and edgesloéndR to verti-
ces and edges & andG’. Theapplication of p to G with b)

resultG’ is denoted as i

i n

| ci'c . 0 oo | for
Do note that the part i that corresponds th(Ln R} and Vi 72
the part inG’ that corresponds tb'(L n R) are equal and

thus preserved by the application pfin either direction.

This part is thecontextwhich has to be present, but which

itself is not affected by the applicationpuf

Definition 3: A derivation from the axiom grapli to the
graph parsedG is a sequence of production instances
piy, ..., pi, with the following property:

i i i
A P G, Bz . B
One can distinguish two tasks which have to be performed
by a graph parsing algorithm:
1. Thesearchingn the host grapfor matcheof right-hand
sides of productions. This is an expensive process which
works at graph element level.

2. Each completed match results in a production instance. 9
These have to beombined into a derivatiorin the case
of ambiguities, it might however happen that more than
one derivation exists, or it might happen that a recog-
nized production instance is not useful at all.

During the development of our parsing algorithm it became
evident that dealing with these two tasks at the same time
results in very complex algorithms. These algorithms would
even perform a lot of work which turns out to be useless) . .
afterwards. Therefore, we decided to realize a two-phase Figure 6: Some intermediate graphs of the BU phas

parsing algorithm as follows: tion branches as long as possible. When necessary, these
» The bottom-up phasesearches the graph for matches of alternative derivations are developed in a pseudo-parallel
the right-hand side of productions. On the recognition of fashion, with a preference for depth-first development.
such a right-hand side, a production instgpics created,
and the elements in'(L\ R) are added to the graph, but 4.1 The bottom-up phase
nothing is deleted from it. The additions might in turn lead We will parse the process-flow diagram of Fig. 6a according
to the recognition of other right-hand sides. The result ofto the grammar of Fig. 4. In the end this will lead to two pos-
the bottom-up phase is the collectiBhof all production sible derivations, as it is ambiguous which of the two assign
instances discovered. statements should match productin
The production instances created hdependency rela- The bottom-up phase searches the graph for matches of
tions among each other, such above(pi, pi’) which productions. The right-hand side of product®matches
means thapi should occur beforgi’ in a derivation, or twice in this diagram: this results in production instanmgs
exclude(pi, pi’) which states thgii andpi’ may not occur ~ andpi2 of Table 2, and extends the graph to the one of Fig.
in the same derivation. These relations can be computedb. The match described by production instapi2 is
during the bottom-up phase. depicted more clearly in Fig. 7.

The dependency relations are used to direct the second In the extended graph the right-hand side of produe#on
phase of the parsing process, ttyg-down phase It starts can be recognized witBtatvertexv7, but it can also be rec-
with an empty graph and applies production instances ofognized withStatvertexv8. Similarly, productiordb can be

Pl in such a way that theboveandexcluderelations are recognized in two ways. This means that production
respected. By knowing all possible production instancesinstance®i3, pi4, pi5, andpi6 of Table 2 are created, and the
and their dependency relations in advance, the top-dowrgraph is extended to the one of Fig. 6¢. In this graph the
phase is able to postpone exploration of alternative derivaright-hand side of the productidncan be recognized, which

=G g

n

vi2 v10

5

. d I xins | C <rh plan: vertices and edges left of the dot are already matched,
pr] prod. S | Lommon rns the ones right of it still have to be matched. Sucoted
pil 2 v7 v2 V5 v3 rule is attached to the vertex in the host graph where the next
, to be matched edge starts or ends. It might happen that a
pi2 2 v8 V2 V5 v4 . .
: searched-for edge is not present in the host graph. In that
pi3 || 4a v9 vivé v2V7v5 case the dotted rule suspendedand will be awakened
pi4 4a v10 vl v6 v2 v8 V5 when a promising edge appears.
pi5 4b V2 v8 V5 v7 Say, we have the following subgraph in the host graph and a
pi6 4b V2 V7 V5 v8
pi7 1 vll v1 v9 v6
pi8 1 v12 v1v10 v6

Table 2: The production instances created
otted rule is attached towith its dot in front of the match-

means that two production instances are created, and tw g directive:

PFD vertices Y11anv12 are added to the graph. That com-
pletes the work of the bottom-up phase, and the production E4: edge(N1, —, {a}, N2: vertex({k}))

instances of Table 2 will be shipped to the top-down phase. | this case both edges match, gndndz both obtain an

4.2 Search plans and dotted rules incremented version of the dotted rule. We also have to leave

- . . the original dotted rule (in suspended state) attached to ver-
In the description above, we simply stated which matchestexx as another edge with latemay still appear
were possible, but not how these matches are computed. In”_"]

order to implement searching for matches efficiently, we The bottom-up algorithm starts by attaching initial dotted
associate a lineasearch planto each production’s right- rules to matching vertices in the host graph. Next it repeat-
hand side, which predetermines the order in which the matctedly chooses an active dotted rule to advance. If a dot
must be constructed. Each search plan starts with the matcieaches the end of a search plan, the associated production
ing of a single vertex, and extends its match at every step bjias been recognized completely. That generates a production
following an edge from the already matched part of the hostinstance, and the host graph is extended with the elements in

graph into the still unknown part. For example, a reasonablel \ R: vertices may give rise to initial dotted rules, edges
search plan for production 6 of Fig. 4 would be: may activate suspended dotted rules. This is repeated until

N1: vertex({if}) there are no remaining active dotted rules.

E1: edge(N1, — , {t}, N2: vertex({Stat})) Our bo_ttom-up phage pgrforms an exha_lustive gene_ration of
all possible production instances, during which it only

E2: edge(N2, —, {n}, N1) extends the graph on every production instance found.
E3: edge(N1, —, {f}, N3: vertex({end, assign, fork, Although the algorithm takes care not to perform double
join, send, receive, if})) work (initial dotted rules are only created for newly created

E4: edge(N1, <, {n,t, f}, N4: vertex({begin, fork, if})) vertices, dotted rules only proceed over newly created

nﬁdges), this may still lead to non-termination, as the grammar

In order to be able to construct these search plans, right-ha ,
Ihay be cyclic.

sides of productions have to be connected. In constructing
match, the bottom-up phase movedoa through the search We, therefore, have to introduce the followilayering
restriction on the grammar: every edge and vertex label is
assigned a layer number, such that terminal labels belong to
join |—>|end | layer 0, and non-terminal labels belong to a layer greater
) V6 than 0. This layer assignment has to be such that every pro-
duction respects the following ordex R:

L<R o= |:HL|i<|R|i|:][|j<i |L|J-:|R|j

[v

59 53 5@l My T = s e , :
. B?: \ > TP = _B?;—S“g > T with |G|, the number of elements @which have a label of

NN pi2 layer k. This layering restriction guarantees the termination
of the bottom-up phase by disallowing cyclic grammars.

The layering can also be used to process active dotted rules
in such a way that productions which generate graph ele-
ments of lower layers are given priority. This means that the
layers of the elements that are added to the graph will be
increasing. This implies again that dotted rules which are
waiting for an element of a lower layer can safely be dis-
carded. In practice, this measure avoids almost all suspended
dotted rules; see [13] for details.

Figure 7: The matches described by pi2

4.3 The dependency relations pi7 pi8 pi7 pi8 pi7 <«— pis

A production instance represents the application of a produc-

tion to some version of the graph, and it indicates the graph * % *
elements matched by both sides of the production. By oper- pi pid ni3 pid _ _
ating on graph elements, production instances depend on PI3 4—» pi4
each other. In order to reason about these dependencies, w

first introduce the abbreviatioidhs CommonandXrhsfor

the different sets of elements matched by a production| yis pi6 pi5 pi6 . .
instance, and next introduce the dependency relatiomse Pi5 «—» pi6
consequencgexcludesandexcludes* ><

Definition 4: We define the following abbreviations for a _ _ _ _

production instancpi := (p, h,) withp:= (L, R): pil pi2 pil pi2 pil pi2
« Xlhs(pi) = h(L \ R) the exclusive left-hand side, which are consequence above excludes and

(in generation the set of deleted graph elements;

« common(pi) = h(Ln R), the set of matched but preserved Figure 8: The dependency relations induced by Table

graph elements; derivations, and will only become active if the ones higher
- Xrhs(pi) = (R \ L) the exclusive right-hand side, which " Stack fail.
are (ingeneration the set of created graph elementd.] Definition 7: A tuple (G, API_, EPI) is apartial deriva-

tion for G in the context of all possible production instances
Pl. G, is the graph built by the applied production instances
duction instancei’ in any derivation in which both occur: " APl the production instances iBPI; are the already
1. Xrhg p) n XIhgpi)) # O : pi creates an element which excluded ones. .
is deleted again byi’, or ' The top-down phase starts with a derivat{gh O, 0) of
. , o length 0. Next, it repeats the following steps until a complete
2. commof pin XIhg(pf)) #: pi needs a context ele- yeriyation has been found, or there are no partial derivations
ment which is deleted by, or left. It creates at each step a setcahdidate production
3. Xrhgp) n commoi p)) # O: pi deletes an element instance<CPI, which are thosegi in PI\ (APl O EPI.) such
which pi’ needs as context element. that all production instancedboveit are either imPAPI or in
In case 1 or i’ consumes an element which is produced orEPI.. It depends on the contents@®| what happens next:
needed bypi. Thereforepi’ must belong to any derivation ., cpj = [J: API. is a successful derivation®. = G; other-
which containspi, i.e. pi" is said to be &onsequencef pi wise, the current partial derivation is dropped and the top-
(andcons*is its transitive closure). u down phase continues with the next one on stack

Definition 6: It may also be the case that two production . |s there gi [CPI without anexcludes*relation to another
instanceexcludeeach other (directly or indirectly) and may still applicable production instance: apgliyby changing

Definition 5: Given these partitions, we can define three
cases when a production instapeshould beabovea pro-

never be part of the same derivation: the active partial derivation into
e (Xrhg(p) n Xrhgpi)) #0: pi andpi’ create the same (Gc \ Xlhs(pi) O Xrhs(pi) APIc O {p}, EPI) .
elements, or « Else: anypi [OCPI is selected and a partial derivation of the
» abové€ pj pf) Dabové pi, pi): pi andpi’ have a mutual form (G¢, AP, EPI- O{pi}) is pushed for the case thgait
above relation. turns out to be a wrong choi(;e. _Nepi, is applied by
The transitive closurexcludes*is defined as follows: changing the current partial derivation into:
Opi, pr’: pi cons* pidJpr cons* pi’ Opi excludesr . O (Slgl\ XD”‘S(P') 0 Xrhs(pi),
Based on these definitions, the production instances of EPIED EB?’DP“ pi excludes* pi) . 0

Table 2 lead to the relations as depicted in Fig. 8. For exam-) i)
ple, abové p8, pi4) holds since: This process is fully based on production instances and their

. S dependency relations. It generates a derivation if possible,
Xrhs(pi8)n Xlhs(pi4) ={v1, v10, v n {viG =0 . and, in the case of more than one possible derivations, it gen-
4.4 The top-down phase erates the first one encountered.

The top-down phase composes a subset of the productiof5 The output of the analysis
instances which forms derivation for the graph parsed.

Given the production instances of Table 2 and the relationl} dePends on the application domain whatfthal resultof -
of Fig. 8, correct derivations according to Def. 3 would be:(N€ @nalysis process must be and how it should be specified:

{pi7, pi3, pi6, pil, pi2} and{pi8, pi4, pi5, pil, pi2} . 1. It might be the case that we are only interested whether a
The top-down phase develops such a derivation by keeping derivation exists or not. fes/no answethen suffices.

a stack opartial derivations,of which only the topmost one 2. Our parsing algorithm represents a derivation as a
is active. The lower ones are starting points for alternative sequence oproduction instancepplications. This pro-

7

vides all information, but might be too detailed and too
abstract to interpret.

However, context elements and more complex left-hand
sides are indispensable for producing readable syntax defini-

3. During the above rewriting process non-terminal ele- tions of visual languages. Therefore, our parsing algorithm
ments are created, which are consumed again to creatdse€s complexistory relationsinstead of simple cover sets
terminal elements. It would also be possible to performand is, thereby, able to handle productions properly, which

the rewriting byonly creating elementdn that case, the

» delete more than one vertex at the same time,

final result would be a graph which contains the axiom « delete nothing at all, i.e. extend a graph only, and

graphA, the final graplG, and all intermediate graphs as
subgraphs. Certain terminals and non-terminals could beF
filtered out of this graph again.

4. Another solution would be the YACC way: attach an

* make use of context elements.

uture research is necessary to find a way to identify non-ter-
minals with equivalent histories during parsing.

arbitrary action to every production; these actions are 6 References

then executed in the order of the derivation found. This is[q]
a quite low-level solution which can however create any
desired data structure.

5. A higher level approach is based @oupling two graph
grammarssuch that parsing a graph with respect to the [2]
first grammar is bound to the generation of another graplb]
with respect to the second grammar [15].

Throughout this paper we have only considered method 2;
any further processing of derivation results is subject for[4]
future research.

5 Summary and discussion

Graph grammars are a very powerful mechanism for definin9[5]
the syntax of graphical languages with well-known theoreti- [6]
cal properties [3]. The main drawback of graph grammars
until now was the lack of efficiently working parsing algo-
rithms or, more general, the lack of almost any tool support.
Within this paper we presented the overall ideas of a new7]
graph grammar parsing algorithmA complete formal defi-
nition of our new approach together with a proof of correct-
ness of the presented parsing algorithm may be found irl8]
[13]. Its implementation will be part of a forthcoming pars-
ing toolkit for visual languages [12] and the already existing [l
graph grammar programming environment PROGRES [11].

A flaw in our parsing algorithm is the inability to identify
“equivalent” non-terminals, which are the result of local
ambiguities. This deficiency is demonstrated in the example
of Fig. 6, in which two equivaleritatnodes ¥9 andv10 [11]
appear. They are the result of a locally ambiguous interpreta-
tion of thefork-join statement. In order to avoid reduplica-
tion of parsing efforts, it would be nice if these t@tat [12]
nodes could be identified instead of resulting in two com-
pletely different derivations.

Parsing algorithms based oover checkssuch as Marri-
ott's [10], are able to identify non-terminals which are the [13]
result of local ambiguities: each element knows which input
elements it covers; at the moment two elements with the
same label and the same cover set occur, the two are identi-
fied. A drawback of cover set based parsing algorithms is
that they require that the left-hand side of every production igl14]
a single non-terminal. They are even not able to deal with
non-terminal context elements, since cover sets do not recorfilS]
the history of derivations. This is the reason why Marriott's
parsing algorithm works only for grammars without context
elements and why Golin's parsing algorithm [5] disallows
non-terminal context elements.

(10]

(16]

H. Bunke and B. HalleA Parser for Context-free Plex Gram-
mars In M. Nagl, editor, Proc. 15th Int. Workshop on Graph-
Theoretic Concepts in Computer Science — WG'89, LNCS
411, Springer Verlag, pages 136-150, 1989.

J. Earley. An Efficient Context-free Parsing Algorith
CACM, 13(2), ACM Press, pages 94-102, 1970.

H. Ehrig, H.J. Kreowski, and G. Rozenberg, editBrsc. 4th

Int. Workshop on Graph Grammars and Their Application to
Computer SciencéNCS 532, Springer Verlag, 1991.

F. Ferruci, G. Tortora, M. Tucci, G. Vitiell)A Predictive
Parser for Visual Languages Specified by Relation Grammars
In Proc. IEEE Symposium on Visual Languages -- VI'94
IEEE Computer Society Press, pages 245-252,.1994

E.J. Golin.A Method for the Specification and Parsing of Vis-
ual LanguagesPhD thesis, Brown University, 1991.

T. Kasami. An Efficient Recognition and Syntax Analysis
Algorithm for Context-free Languagedechnical Report
AFCRL-65-758, Air Force Cambridge Research Laboratory,
Bedford Mass., 1965.

M. Kaul. Parsing of Graphs in Linear Timén Ehrig, Nagl,
and Rozenberg, editors, 2nd Int. Workshop on Graph Gram-
mars, LNCS 153, Springer Verlag, pages 206—-218, 1982.

M. Kaul. Syntaxanalyse fur Prazedenzgraphgrammatiken
PhD thesis, Universitat Passau, 1985. In german.

F. Newbery PaulisciThe Design of an Extendible Graph Edi-
tor. PhD thesis, University of Karlsruhe, Germany, LNCS
704, Springer Verlag, 1991.

K. Marriott. Constraint Multiset Grammarsin Proc. IEEE
symposium on Visual Languages -- VL'94, IEEE Computer
Society Press, pages 118-125, 1994.

PROGRES- PROgramming with Graph REwriting Systems
Software package, see world wide web pdudg://www-
i3.informatik.rwth-aachen.de/research/progres.html

J. RekersOn the Use of Graph Grammars for Defining the
Syntax of Graphical Languagek Proc. of Colloquium on
Graph Transformation, Palma de Mallorca, 1994. Also availa-
ble from ftp siteftp.wi.leidenuniv.nl file /pub/CS/Technical-
Reports/1994/tr94-11.ps.gz

J. Rekers and A. SchiA.Parsing Algorithm for Context-sen-
sitive Graph Grammars (long versiorflechnical Report 95-
05, Leiden University, 1995. Available by ftp from ftp-server
ftp.wi.leidenuniv.nl file /pub/CS/TechnicalReports/1995/tr95-
05.ps.gz

G. Rozenberg and E. WelBoundary NLC Graph Grammars
— Basic Definitions, Normal Forms, and Complexitjorma-
tion and Control, 69, pages 136-167, 1986.

A. Schiirr. Specification of Graph Translators with Triple
Graph Grammarsin Mayer and Tinhofer, editors, Proc. Int.
Workshop on Graph-Theoretic Concepts in Computer Science
—WG’93, will appear in LNCS, 1995.

M. Tomita. Efficient Parsing for Natural LanguageKluwer

Academic Publishers, 1985.

[17] K. Wittenburg. Earley-style Parsing for Relational Gram-
mars In Proc. IEEE Workshop on Visual Languages — VL'92,
pages 192-199, 1992.

[18] D. Younger.Recognition and Parsing of Context-Free Lan-

guages in Time *h Information and Control, 10(2), pages
189-208, 1967.

