
1

Abstract
We present a new graph grammar based approach for defin-
ing the syntax of visual languages and for generating visual
language parsers. Its main advantage in comparison to
other visual language parsing approaches is its ability to
handle context-sensitive productions which may replace
more than one non-terminal at the same time and which may
contain very complex context requirements. Its implementa-
tion will be part of a forthcoming parsing toolkit for visual
languages and the already existing graph grammar pro-
gramming environment PROGRES.

1 Introduction †

In reading the proceedings of the past VL workshops or any
book on software engineering one cannot help but notice that
a large variety of visual languages exists of which only a few
are equipped with a properformal syntax definition. That is
regrettable, as such definitions have a number of advantages
to offer:
• without a proper syntax definition, new users can only

guess the syntax of a graphical language by generalizing
from the provided examples,

• a definition could serve as unambiguous specification for
syntax directed editors over the language,

• a graphical parser could be generated out of a proper defi-
nition, and

• a syntax definition is a necessary precondition for a defini-
tion of the semantics of the language.

We think that it would be very beneficiary to the theory of
visual languages if a single syntax definition formalism
could be agreed on. Such a formalism should be highly
expressive, unambiguous, and specifications should be easy
to read and develop.

In this paper we will show howgraph grammars can be
used as syntax definition formalism for graphical languages,
and we will develop a graphical parsing algorithm based on
these grammars. We will however first argue why graphical
parsing would be useful for users of visual languages, and
we will show that graphical parsing, if used to its full power,
is less trivial than it might seem.

A graphical parser translates a diagram from its raw pic-
ture format into its underlying syntactic structure. If a graph-
ical parser is incorporated in a syntax directed graphical
†This is technical report 95-15 of Leiden University and is available
via ftp from ftp-serverftp.wi.leidenuniv.nl, file /pub/CS/Technical-
Reports/1995/tr95-15.ps.gz. This paper will also appear in the pro-
ceedings of the1995 IEEE Symposium on Visual Languages
(VL’95), Darmstadt, Germany, September 5-9, 1995.

editor, it may offer a far greater freedom to the user, as the
editor then only needs to require that the final diagram is syn-
tactically correct, instead of requiring that every intermediate
diagram is syntactically correct. Furthermore, graphical pars-
ing makes it possible to process diagrams which have been
drawn with ordinary graphical editors.

We explain our view on graphical parsing and graphical
syntax definition in Sec. 2, followed by a discussion of
related work in Sec. 3. Sec. 4 forms the core of the paper in
which we present our graphical parsing algorithm. In Sec. 5
we summarize the paper and discuss some remaining prob-
lems.

2 Multi-stage graphical analysis
We propose a multi-stage graphical analysis (parsing) pro-
cess as depicted in Fig. 1. Usual graphical editing, such as
with Idraw or FrameMaker, produces a collection of pictorial
elements, which are fed to phase 1 of the analysis process,
graphical scanning. It interprets the positions, sizes, and
shapes of pictorial elements and produces aspatial relations
graph, in which objects are connected by relations likecon-
tains, points at, and labels.

Phase 2,low level parsing, maps pictorial elements and
their spatial relationships onto more abstract objects and
relationships between them. Its output is anabstract rela-
tions graph. For Finite State Automata this phase would
recognize a circle that encloses a string as aState, and an
arrow with a close-by string as aTransition (cf. productions
p5, p6, andp7 of [13] or the FSA grammar of Marriott [10]).
Fig. 2 shows a FSA diagram and the transformation in its
corresponding abstract relations graph. However, low level
parsing would also happily accept an unconnected FSA, an

0: Graphical Editor

Pictorial Elements

1: Graphical Scanning

Spatial Relations Graph

2: Low Level Parsing

Abstract Relations Graph

3: High Level Parsing

Final Output

Low Level
Grammar

High Level
Grammar

0: Constraint
Editor

0: Low Level
Graph Editor

Figure 1: Our multi-stage graphical analysis approach

A Graph Grammar Approach to Graphical Parsing

J. Rekers A. Schürr

Department of Computer Science, Leiden University Lehrstuhl für Informatik III, RWTH Aachen
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands Ahornstr. 55, D-52074 Aachen, Germany

email: rekers@wi.leidenuniv.nl email: andy@i3.informatik.rwth-aachen.de

2

automaton with unreachable states, one without a start state,
or one with several start states.

In order to catch those kinds of errors, additional more
complex grammar rules are needed. Phase 3,high level
parsing, is defined by a grammar which states how sen-
tences should be generated, starting from anaxiom (cf. pro-
ductionsp1, p2 andp3 of [13]). For the FSA case, the axiom
would be anAutomaton, which may be rewritten into aStart-
State; given aState, one may add an outgoingTransition and
a newState; given twoStates, one may connect them by a
Transition. These rules guarantee connected automata, for
which all states are reachable from the start state.

It is also possible to perform only some steps of the pro-
posed multi-stage graphical analysis process. For instance,
the constraint based graph editor EDGE [9] may be used to
create a spatial relations graphs, and phase 1 would not be
necessary. Or a syntax directed editor may directly create an
abstract relations graph, thereby skipping phases 1 and 2.

2.1 Process flow diagrams as example
The running example of this paper will be the recognition of
well-structured process flow diagrams. An example of the
abstract relations graph of a process flow diagram is depicted
in Fig. 3. Do note that this graph already suggests work of
phases 1 and 2 by the shape of the vertices in this graph, but
this is only to make the example less abstract.

Fig. 4 contains the (high-level) grammar for this language.
Production 1 of this grammar replaces the axiomPFD with
two terminal vertices and one nonterminal vertex, which are
connected by means of twon(ext) edges. Production 2
deletes a singleStat vertex and creates a newassign vertex,
which inherits an incoming and an outgoing control flow
edge from the deleted nonterminal vertex. Twodashed con-
text vertices are used for this purpose. They have to be
present when the production is applied, but remain unmodi-
fied. The left context vertex is one of {begin, fork, if} and
therefore source of an(ext), t(rue) or f(alse) edge. The right
context vertex is one of {end, assign,...} and therefore
always the target of an(ext) edge. Separately definedlabel
wildcards may be used to construct a single production as an
abbreviation for all the above mentioned combinations of
possible vertex and edge labels.

The other productions have a similar outline: they extend
Stat lists, create new process threads, establish communica-
tion channels between them, and produce conditional loops
as well as branches. Note that already such a small grammar

Figure 2: The transformation in a number of steps of an
FSA diagram into its abstract relations graph

Figure 3: Sample process flow diagram

begin

end

assign

fork

join

if

send

t

n
assign

if

receive

t

n

n n

f f

n n

n

n

to

axiom: PFD
label wildcards:

B?, C? ∈ { begin, fork, if }
S?, T? ∈ { end, assign, fork, join, send, receive, if }
s?, r? ∈ { n, f, t }

productions:

begin endPFD

fork join

if

Stat

Stat

::=

n

n

n

n

S?StatB?
::=

s? n

T?StatC?
r? n

S?B?
s? n

T?C?
r? n

send

receive

to

T?

Stat

Stat

B?T?StatB? ::=
s? n s?

t

f

n

n

T?StatB? ::=s? n
T?B?

s? n
assign

Stat::=

StatB? ::=s?
StatB?

s? n
Stat

if T?

Stat

B?T?StatB? ::=
s? n s?

t n

f

n n

Figure 4: Grammar for process flow diagrams

1:

2:

3:

4a:

5:

6:

7:

fork join T?

Stat

B?T?StatB? ::=
s? n s?

n n
n

fork join

Statn n

4b:

3

contains reasonable examples of productions which do not
delete any nonterminals (production 3 and 4b) or which
replace more than one nonterminal at the same time (produc-
tion 5).

3 Analysis of Related Approaches
When inventing a new syntax definition and parsing
approach for graphical languages, the most important thing
is to come up with a reasonable solution for the so-called
embedding problem. In the case of linear textual languages it
is clear how to replace a nonterminal in a sentence by a cor-
responding sequence of (non-)terminals. But in the case of
graphical languages with many possible relationships
between language elements we need a far more complicated
mechanism for (re-)establishing relationships between old
context elements of a replaced nonterminal and its replacing
(non-)terminals (see productions of Fig. 4 and Fig. 5).

3.1 Embedding Problems of Graphical Languages
There are at least three solutions for the embedding problem:
1. Implicit Embedding : formalisms like picture layout

grammars [5] or constraint multiset grammars [10] do not
distinguish between vertex and relationship objects. As a
consequence, all needed relationships between objects
are implicitly defined as constraints over their attribute
values. Therefore, attribute assignments within produc-
tions have the implicit side effect to create new relation-
ships to unknown context elements.

2. Extended Context: all approaches which support the
concept of relationships between objects directly, need a
special mechanism to embed new (non-)terminal objects
in their proper context. A straight-forward solution for
this problem is to extend left- and right-hand sides of pro-
ductions with context elements (as we do in Fig. 4).
These context elements will not be modified by produc-
tion applications but may be used as sources or targets for
new relationships.

3. Embedding Rules: The last and most powerful solution
is an essential part of various forms of graph grammars
like [7,14]. These formalisms have separate embedding
rules which allow the redirection of arbitrary sets of rela-
tionships from a replaced nonterminal to its replacing
(non-)terminals.

All three approaches have their specific advantages and dis-

Figure 5: A context-sensitive rewriting step

if

Stat

t
if

Stat

tn n
… …

… …

if

send

t
if

receive

tn n

to
… …

… …
ParsingGenerating

advantages. The main drawbacks of the first approach are:
users are not always aware of the consequences of attribute
assignments, and parsers have to spend a lot of time to
extractimplicitly defined knowledge about relationships from
attributes and constraints.

The second approach is in our opinion the most readable
one, but the unrestricted use ofcontext elements requires
very complex parsing algorithms. Furthermore, it is difficult
in this setting to rewrite nonterminals which may participate
in a statically unknown number of relationships.

In the latter case, theembedding rule approach is the most
convenient one. But embedding rules are difficult to under-
stand and all known parsing algorithms for productions with
embedding rules are either hopelessly inefficient or impose
very hard restrictions on left- and right-hand sides of produc-
tions (see below).

3.2 Properties of Graphical Parsing Algorithms
Summarizing the explanations above, related parsing
approaches should be studied and compared by answering
the following questions:
• Is theleft-hand side of a production restricted to a single

nonterminal, which will be replaced by its right-hand side
(context-free production)?

• Are there any restrictions for theright-hand sides of pro-
ductions?

• Does the formalism allow references to additionalcontext
elements, which have to be present but remain unmodified
during the application of a production?

• Does the proposed type of grammar have more or less
complex embedding rules, which establish connections
between new elements (created by a production) and the
surrounding structure?

• Are thereadditional restrictions for the set of productions
or the form of graphs, which do not fall in the above men-
tioned categories?

• Is the time and spacecomplexity of the proposed algo-
rithm linear, polynomial, or even exponential with respect
to the size of an input graph?

Table 1 provides an overview of our related work studies
with respect to these questions.

3.3 Analysis of Graphical Parsing Algorithms
The precedence graph grammar parser of Kaul is an
attempt to generalize the idea of operator precedence based
parsing and has a linear time and space complexity. The
parsing process is a kind of handle rewriting, where graph
handles (subgraphs of the input graph) are identified by ana-
lysing vertex and edge labels of their direct context. Unfortu-
nately, this approach works only for a very restricted class of
graph languages.

The next three entries in the table contain references to
Earley-style parsing approaches [2]. The first one by Bunke
and Haller [1] usesplex grammars, which are a kind of con-
text-free graph grammars with rather restricted forms of
embedding rules. Any nonterminal has only a fixed number
of connection points to its context. The second one by Wit-
tenburg [17] uses dotted rules to organize the parsing process

4

possible but would be quite unreadable. Furthermore,
the realized parsing algorithm has the following restric-
tions:
• Two nonterminals of the same class, which are used

for the derivation of a single graphical language sen-
tence, must have different attribute values (otherwise
the parser makes the wrong decision to identify them).

• Their must be an upper boundary for the number of
possibly used different nonterminal attribute values
during parsing (otherwise, the parser tries to create an
infinite number of unidentifiable nonterminals).

• Overlapping matches of right-hand sides due to
ambiguous derivations may not occur (they cause the
parser’s immediate termination with a fatal error).

To summarize, all presented parsing approaches are
inadequate for defining the language of process flow
diagrams in a proper way. There is a strong need for a
new syntax definition and parsing approach, where both
left- and right-hand sides of productions are arbitrary
graphs which share a common context graph. Such a for-
malism together with its parsing algorithms will be pre-
sented within the next section.

4 The graph parsing algorithm
Our parsing algorithm for graphical languages is in fact
a graph parsing algorithm. In this paper we will only
sketch its main characteristics; for a complete presenta-
tion of all details including a full proof of correctness
and termination, the reader is referred to [13].

Definition 1: A production is of the form (L, R), with L
andR both graphs.L andR may have an intersection.❏

A productionp := (L, R) can be read in two directions:
• In generation, the host graphG is searched for a match

h(L) of the left-hand sideL. If found,h(L) is replaced
by a copyh’(R) of the right-hand side, resulting in a
graphG’.

for relational grammars, but without presenting any
heuristics how to select “good” dotted rules. Further-
more, it is restricted to the case of relational structures,
where relationships of the same type define partial
orders.

Finally, the approach of Ferucci et al. [4] with so-
called 1NS-RG grammars is a translation of the graph
grammar approach of Rozenberg/Welzl [1] into the ter-
minology of relational languages. In this approach right-
hand sides of productions may not contain nonterminals
as neighbours, thereby guaranteeing local confluence of
graph rewriting (parsing) steps. Furthermore, polyno-
mial complexity is guaranteed as long as generated
graphs are connected and an upper boundary for the
number of adjacent edges at a single vertex is known.

All presented approaches up to now are not adequate
for generating process flow graphs. Their embedding
rules are not able to rewrite previously unconnectedStat
vertices to pairs of connectedSend andReceive vertices
(as we do in the rewriting step presented in Fig. 5). And
even the remaining two approaches of Marriot and Golin
would have their difficulties with process flow diagrams.
Their parsing algorithms generalize the bottom-up algo-
rithms of Tomita [16] orCocke-Younger-Kasami [18,
6] for context-free textual grammars. Marriot’scon-
straint multiset grammars [10] offer the concept of
context elements and would thereby be able to define the
graph rewriting step of Fig. 5. But the accompanying
parsing algorithm is not yet able do deal with these con-
text elements.

There remains thepicture layout grammars [5] of
Golin. His parsing algorithm allows terminal context
elements, but has a main focus on productions with one
nonterminal on the left-hand side and at most two
nonterminals on the right-hand side with predefined spa-
tial relationships between them. A definition of process
flow graphs which obeys these restrictions should be

Left-hand
Side

Right-hand
Side

Context
Elements

Embedding
Rules

Additional Parsing
Restrictions

Space/Time
Complexity

Kaul [7,8] one nonterminal directed nonempty
graph

no yes implicitly def. vertex
ordering by edges

linear

Table 1: Visual language syntax definition and parsing approaches

Bunke/Haller [1] one nonterminal nonempty
plex structure

no fixed set of
connection points

no exponential

Wittenburg [17] one nonterminal nonempty
relational structure

no yes explicitly def. vertex
ordering by relations

exponential

Ferrucci et al. [4] one nonterminal rel. structure without
nonterminal neighbours

no yes (bounded degree,
connected structure)

exponential
(polynomial)

Rozenberg/
Welzl [14]

one nonterminal dir. graph without non-
terminal neighbours

no yes (bounded degree,
connected graph)

exponential
(polynomial)

Marriot [10] one nonterminal arbitrary nonempty
multiset

(yes) implicit acyclic grammar,
no context elements

exponential

Golin [5] one nonterminal one or two
(non-)terminals

one terminal implicit finite set of possible
attribute values

polynomial

Rekers/Schürr
[13]

directed graph directed connected,
nonempty graph

directed graph not yet global layering con-
dition for grammar

exponential

5

• In parsing, the host graphG’ is searched for a matchh’(R)
of the right-hand sideR. If found, h’(R) is replaced by a
copyh(L) of the left-hand sideL, resulting in a graphG.

Definition 2: The application of a productionp is aproduc-
tion instance , where graph morphismsh: L → G
andh’: R → G’ relate vertices and edges ofL andR to verti-
ces and edges ofG andG’. Theapplication of p to G with
resultG’ is denoted as

. ❏

Do note that the part inG that corresponds to and
the part inG’ that corresponds to are equal and
thus preserved by the application ofpi in either direction.
This part is thecontext which has to be present, but which
itself is not affected by the application ofpi.

Definition 3: A derivation from the axiom graphA to the
graph parsedG is a sequence of production instances

 with the following property:

❏

One can distinguish two tasks which have to be performed
by a graph parsing algorithm:
1. Thesearching in the host graphfor matches of right-hand

sides of productions. This is an expensive process which
works at graph element level.

2. Each completed match results in a production instance.
These have to becombined into a derivation. In the case
of ambiguities, it might however happen that more than
one derivation exists, or it might happen that a recog-
nized production instance is not useful at all.

During the development of our parsing algorithm it became
evident that dealing with these two tasks at the same time
results in very complex algorithms. These algorithms would
even perform a lot of work which turns out to be useless
afterwards. Therefore, we decided to realize a two-phase
parsing algorithm as follows:
• The bottom-up phase searches the graph for matches of

the right-hand side of productions. On the recognition of
such a right-hand side, a production instancepi is created,
and the elements inh’(L \ R) are added to the graph, but
nothing is deleted from it. The additions might in turn lead
to the recognition of other right-hand sides. The result of
the bottom-up phase is the collectionPI of all production
instances discovered.
The production instances created havedependency rela-
tions among each other, such asabove(pi, pi’), which
means thatpi should occur beforepi’ in a derivation, or
exclude(pi, pi’), which states thatpi andpi’ may not occur
in the same derivation. These relations can be computed
during the bottom-up phase.

• The dependency relations are used to direct the second
phase of the parsing process, thetop-down phase. It starts
with an empty graph and applies production instances of
PI in such a way that theabove andexclude relations are
respected. By knowing all possible production instances
and their dependency relations in advance, the top-down
phase is able to postpone exploration of alternative deriva-

p h h′, ,()

G
pi

G ′⇒
h L R∩()

h′ L R∩()

pi1 … pin, ,

A
pi1⇒ G1

pi2⇒ …
pin⇒ Gn G≡

tion branches as long as possible. When necessary, these
alternative derivations are developed in a pseudo-parallel
fashion, with a preference for depth-first development.

4.1 The bottom-up phase
We will parse the process-flow diagram of Fig. 6a according
to the grammar of Fig. 4. In the end this will lead to two pos-
sible derivations, as it is ambiguous which of the two assign
statements should match production4a.

The bottom-up phase searches the graph for matches of
productions. The right-hand side of production2 matches
twice in this diagram: this results in production instancespi1
andpi2 of Table 2, and extends the graph to the one of Fig.
6b. The match described by production instancepi2 is
depicted more clearly in Fig. 7.

In the extended graph the right-hand side of production4a
can be recognized withStat vertexv7, but it can also be rec-
ognized withStat vertexv8. Similarly, production4b can be
recognized in two ways. This means that production
instancespi3, pi4, pi5, andpi6 of Table 2 are created, and the
graph is extended to the one of Fig. 6c. In this graph the
right-hand side of the production1 can be recognized, which

begin fork

assign

join end

assign

n n

n
n

n
n

begin fork

assign

join end

assign

n n

n
n

n
n

Stat

Stat

n n

nn

a)

b)

v1 v2

v3
v4

v5 v6

v1 v2

v3
v4

v5 v6

v7

v8

begin fork

assign

join end

assign

n n

n
n

n
n

Stat

Stat

n n

nn
v1 v2

v3
v4

v5 v6

v7

v8Stat

Stat

v9

v10

c)

begin fork

assign

join end

assign

n n

n
n

n
n

Stat

Stat

n n

nn
v1 v2

v3
v4

v5 v6

v7

v8Stat

Stat

v9

v10

PFD

PFD

d)

Figure 6: Some intermediate graphs of the BU phase

v12

v11

6

means that two production instances are created, and two
PFD vertices (v11 anv12) are added to the graph. That com-
pletes the work of the bottom-up phase, and the production
instances of Table 2 will be shipped to the top-down phase.

4.2 Search plans and dotted rules
In the description above, we simply stated which matches
were possible, but not how these matches are computed. In
order to implement searching for matches efficiently, we
associate a linearsearch plan to each production’s right-
hand side, which predetermines the order in which the match
must be constructed. Each search plan starts with the match-
ing of a single vertex, and extends its match at every step by
following an edge from the already matched part of the host
graph into the still unknown part. For example, a reasonable
search plan for production 6 of Fig. 4 would be:

N1: vertex({if})

E1: edge(N1, →, {t}, N2: vertex({Stat}))

E2: edge(N2, →, {n}, N1)

E3: edge(N1, →, {f}, N3: vertex({end, assign, fork,
join, send, receive, if}))

E4: edge(N1, ←, {n, t, f}, N4: vertex({begin, fork, if}))

In order to be able to construct these search plans, right-hand
sides of productions have to be connected. In constructing a
match, the bottom-up phase moves adot through the search

pi prod. Xlhs Common Xrhs

pi1 2 v7 v2 v5 v3

Table 2: The production instances created

pi2 2 v8 v2 v5 v4

pi3 4a v9 v1 v6 v2 v7 v5

pi4 4a v10 v1 v6 v2 v8 v5

pi5 4b v2 v8 v5 v7

pi6 4b v2 v7 v5 v8

pi7 1 v11 v1 v9 v6

pi8 1 v12 v1 v10 v6

begin fork

assign

join end

assign

n n

n
n

n
n

begin fork

assign

join end

assign

n n

n
n

n
n

Stat
n n

v1 v2

v3
v4

v5 v6

v1 v2

v3
v4

v5 v6

v8

T?StatB? ::=s? n
T?B?

s? n
assign

Figure 7: The matches described by pi2

pi2

plan: vertices and edges left of the dot are already matched,
the ones right of it still have to be matched. Such adotted
rule is attached to the vertex in the host graph where the next
to be matched edge starts or ends. It might happen that a
searched-for edge is not present in the host graph. In that
case the dotted rule issuspended, and will be awakened
when a promising edge appears.

Say, we have the following subgraph in the host graph and a

dotted rule is attached tox with its dot in front of the match-
ing directive:

E4: edge(N1, →, {a}, N2: vertex({k}))

In this case both edges match, andy andz both obtain an
incremented version of the dotted rule. We also have to leave
the original dotted rule (in suspended state) attached to ver-
texx, as another edge with labela may still appear.

The bottom-up algorithm starts by attaching initial dotted
rules to matching vertices in the host graph. Next it repeat-
edly chooses an active dotted rule to advance. If a dot
reaches the end of a search plan, the associated production
has been recognized completely. That generates a production
instance, and the host graph is extended with the elements in

: vertices may give rise to initial dotted rules, edges
may activate suspended dotted rules. This is repeated until
there are no remaining active dotted rules.

Our bottom-up phase performs an exhaustive generation of
all possible production instances, during which it only
extends the graph on every production instance found.
Although the algorithm takes care not to perform double
work (initial dotted rules are only created for newly created
vertices, dotted rules only proceed over newly created
edges), this may still lead to non-termination, as the grammar
may be cyclic.

We, therefore, have to introduce the followinglayering
restriction on the grammar: every edge and vertex label is
assigned a layer number, such that terminal labels belong to
layer 0, and non-terminal labels belong to a layer greater
than 0. This layer assignment has to be such that every pro-
duction respects the following orderL < R:

with the number of elements inG which have a label of
layer k. This layering restriction guarantees the termination
of the bottom-up phase by disallowing cyclic grammars.

The layering can also be used to process active dotted rules
in such a way that productions which generate graph ele-
ments of lower layers are given priority. This means that the
layers of the elements that are added to the graph will be
increasing. This implies again that dotted rules which are
waiting for an element of a lower layer can safely be dis-
carded. In practice, this measure avoids almost all suspended
dotted rules; see [13] for details.

l

k

a

a

kx

y

z

L \ R

L R< i L i R i< j i< L j∀∧∃ R j=⇔

G k

7

4.3 The dependency relations
A production instance represents the application of a produc-
tion to some version of the graph, and it indicates the graph
elements matched by both sides of the production. By oper-
ating on graph elements, production instances depend on
each other. In order to reason about these dependencies, we
first introduce the abbreviationsXlhs, Common, andXrhs for
the different sets of elements matched by a production
instance, and next introduce the dependency relationsabove,
consequence, excludes, andexcludes*.

Definition 4: We define the following abbreviations for a
production instancepi := with p := (L, R):

• Xlhs(pi) = h(L \ R), the exclusive left-hand side, which are
(in generation) the set of deleted graph elements;

• common(pi) = h(L∩ R) , the set of matched but preserved
graph elements;

• Xrhs(pi) = h’(R \ L), the exclusive right-hand side, which
are (ingeneration) the set of created graph elements.❏

Definition 5: Given these partitions, we can define three
cases when a production instancepi should beabove a pro-
duction instancepi’ in any derivation in which both occur:

1. : pi creates an element which
is deleted again bypi’ , or

2. : pi needs a context ele-
ment which is deleted bypi’ , or

3. : pi deletes an element
whichpi’ needs as context element.

In case 1 or 2,pi’ consumes an element which is produced or
needed bypi. Therefore,pi’ must belong to any derivation
which containspi, i.e. pi’ is said to be aconsequence of pi
(andcons* is its transitive closure). ❏

Definition 6: It may also be the case that two production
instancesexclude each other (directly or indirectly) and may
never be part of the same derivation:

• : pi andpi’ create the same
elements, or

• : pi andpi’ have a mutual
above relation.

The transitive closureexcludes*is defined as follows:
∃ pi, pi’ : pi cons* pi∧ pi’ cons* pi’ ∧ pi excludespi’ . ❏

Based on these definitions, the production instances of
Table 2 lead to the relations as depicted in Fig. 8. For exam-
ple, holds since:

Xrhs(pi8)∩ Xlhs(pi4) ={ v1, v10, v6} ∩ {v10} ≠ ∅ .

4.4 The top-down phase
The top-down phase composes a subset of the production
instances which forms aderivation for the graph parsed.
Given the production instances of Table 2 and the relations
of Fig. 8, correct derivations according to Def. 3 would be:

 and .

The top-down phase develops such a derivation by keeping
a stack ofpartial derivations, of which only the topmost one
is active. The lower ones are starting points for alternative

p h h′, ,()

Xrhs pi() Xlhs pi′()∩() ∅≠

common pi() Xlhs pi′()∩() ∅≠

Xrhs pi() common pi′()∩() ∅≠

Xrhs pi() Xrhs pi′()∩() ∅≠

above pi pi′,() above pi′ pi,()∧

above pi8 pi4,()

pi7 pi3 pi6 pi1 pi2, , , ,{ } pi8 pi4 pi5 pi1 pi2, , , ,{ }

derivations, and will only become active if the ones higher
on stack fail.

Definition 7: A tuple is apartial deriva-
tion for G in the context of all possible production instances
PI. is the graph built by the applied production instances
in ; the production instances in are the already
excluded ones. ❏

The top-down phase starts with a derivation of
length 0. Next, it repeats the following steps until a complete
derivation has been found, or there are no partial derivations
left. It creates at each step a set ofcandidate production
instancesCPI, which are thosepi in PI \ (APIC ∪ EPIC) such
that all production instancesabove it are either inAPIC or in
EPIC. It depends on the contents ofCPI what happens next:

• CPI = ∅: APIC is a successful derivation ifGC = G; other-
wise, the current partial derivation is dropped and the top-
down phase continues with the next one on stack

• Is there api ∈ CPI without anexcludes* relation to another
still applicable production instance: applypi by changing
the active partial derivation into

(GC \ Xlhs(pi)∪ Xrhs(pi), APIC ∪ {p}, EPIC) .

• Else: anypi ∈CPI is selected and a partial derivation of the
form (GC , APIC , EPIC ∪{ pi}) is pushed for the case thatpi
turns out to be a wrong choice. Next,pi is applied by
changing the current partial derivation into:

(GC \ Xlhs(pi)∪ Xrhs(pi),
 APIC ∪ {pi},
 EPIC ∪ {pi’ ∈PI: pi excludes* pi’}) . ❏

This process is fully based on production instances and their
dependency relations. It generates a derivation if possible,
and, in the case of more than one possible derivations, it gen-
erates the first one encountered.

4.5 The output of the analysis
It depends on the application domain what thefinal resultof
the analysis process must be and how it should be specified:

1. It might be the case that we are only interested whether a
derivation exists or not. Ayes/no answer then suffices.

2. Our parsing algorithm represents a derivation as a
sequence ofproduction instanceapplications. This pro-

Figure 8: The dependency relations induced by Table 2

pi7 pi8

pi3 pi4

pi5 pi6

pi1 pi2

pi7 pi8

pi3 pi4

pi5 pi6

pi1 pi2

above

pi7 pi8

pi3 pi4

pi5 pi6

pi1 pi2

consequence

* ***

excludes and
excludes*

Gc APIc EPIc, ,()

Gc
APIc EPIc

A ∅ ∅, ,()

8

vides all information, but might be too detailed and too
abstract to interpret.

3. During the above rewriting process non-terminal ele-
ments are created, which are consumed again to create
terminal elements. It would also be possible to perform
the rewriting byonly creating elements. In that case, the
final result would be a graph which contains the axiom
graphA, the final graphG, and all intermediate graphs as
subgraphs. Certain terminals and non-terminals could be
filtered out of this graph again.

4. Another solution would be the YACC way: attach an
arbitrary action to every production; these actions are
then executed in the order of the derivation found. This is
a quite low-level solution which can however create any
desired data structure.

5. A higher level approach is based oncoupling two graph
grammars such that parsing a graph with respect to the
first grammar is bound to the generation of another graph
with respect to the second grammar [15].

Throughout this paper we have only considered method 2;
any further processing of derivation results is subject for
future research.

5 Summary and discussion
Graph grammars are a very powerful mechanism for defining
the syntax of graphical languages with well-known theoreti-
cal properties [3]. The main drawback of graph grammars
until now was the lack of efficiently working parsing algo-
rithms or, more general, the lack of almost any tool support.
Within this paper we presented the overall ideas of a new
graph grammar parsing algorithm. A complete formal defi-
nition of our new approach together with a proof of correct-
ness of the presented parsing algorithm may be found in
[13]. Its implementation will be part of a forthcoming pars-
ing toolkit for visual languages [12] and the already existing
graph grammar programming environment PROGRES [11].

A flaw in our parsing algorithm is the inability to identify
“equivalent” non-terminals, which are the result of local
ambiguities. This deficiency is demonstrated in the example
of Fig. 6, in which two equivalentStat nodes (v9 andv10)
appear. They are the result of a locally ambiguous interpreta-
tion of thefork-join statement. In order to avoid reduplica-
tion of parsing efforts, it would be nice if these twoStat
nodes could be identified instead of resulting in two com-
pletely different derivations.

Parsing algorithms based oncover checks, such as Marri-
ott’s [10], are able to identify non-terminals which are the
result of local ambiguities: each element knows which input
elements it covers; at the moment two elements with the
same label and the same cover set occur, the two are identi-
fied. A drawback of cover set based parsing algorithms is
that they require that the left-hand side of every production is
a single non-terminal. They are even not able to deal with
non-terminal context elements, since cover sets do not record
the history of derivations. This is the reason why Marriott's
parsing algorithm works only for grammars without context
elements and why Golin’s parsing algorithm [5] disallows
non-terminal context elements.

However, context elements and more complex left-hand
sides are indispensable for producing readable syntax defini-
tions of visual languages. Therefore, our parsing algorithm
uses complexhistory relations instead of simple cover sets
and is, thereby, able to handle productions properly, which
• delete more than one vertex at the same time,
• delete nothing at all, i.e. extend a graph only, and
• make use of context elements.
Future research is necessary to find a way to identify non-ter-
minals with equivalent histories during parsing.

6 References
[1] H. Bunke and B. Haller.A Parser for Context-free Plex Gram-

mars. In M. Nagl, editor, Proc. 15th Int. Workshop on Graph-
Theoretic Concepts in Computer Science – WG’89, LNCS
411, Springer Verlag, pages 136–150, 1989.

[2] J. Earley. An Efficient Context-free Parsing Algorithm.
CACM, 13(2), ACM Press, pages 94–102, 1970.

[3] H. Ehrig, H.J. Kreowski, and G. Rozenberg, editors,Proc. 4th
Int. Workshop on Graph Grammars and Their Application to
Computer Science, LNCS 532, Springer Verlag, 1991.

[4] F. Ferruci, G. Tortora, M. Tucci, G. Vitiello:A Predictive
Parser for Visual Languages Specified by Relation Grammars.
In Proc. IEEE Symposium on Visual Languages -- VL’94,
IEEE Computer Society Press, pages 245-252, 1994.

[5] E.J. Golin.A Method for the Specification and Parsing of Vis-
ual Languages. PhD thesis, Brown University, 1991.

[6] T. Kasami. An Efficient Recognition and Syntax Analysis
Algorithm for Context-free Languages. Technical Report
AFCRL-65-758, Air Force Cambridge Research Laboratory,
Bedford Mass., 1965.

[7] M. Kaul. Parsing of Graphs in Linear Time. In Ehrig, Nagl,
and Rozenberg, editors, 2nd Int. Workshop on Graph Gram-
mars, LNCS 153, Springer Verlag, pages 206–218, 1982.

[8] M. Kaul. Syntaxanalyse für Präzedenzgraphgrammatiken.
PhD thesis, Universität Passau, 1985. In german.

[9] F. Newbery Paulisch.The Design of an Extendible Graph Edi-
tor. PhD thesis, University of Karlsruhe, Germany, LNCS
704, Springer Verlag, 1991.

[10] K. Marriott. Constraint Multiset Grammars. In Proc. IEEE
symposium on Visual Languages -- VL’94, IEEE Computer
Society Press, pages 118-125, 1994.

[11] PROGRES– PROgramming with Graph REwriting Systems.
Software package, see world wide web page http://www-
i3.informatik.rwth-aachen.de/research/progres.html.

[12] J. Rekers.On the Use of Graph Grammars for Defining the
Syntax of Graphical Languages. In Proc. of Colloquium on
Graph Transformation, Palma de Mallorca, 1994. Also availa-
ble from ftp siteftp.wi.leidenuniv.nl, file /pub/CS/Technical-
Reports/1994/tr94-11.ps.gz.

[13] J. Rekers and A. Schürr.A Parsing Algorithm for Context-sen-
sitive Graph Grammars (long version). Technical Report 95-
05, Leiden University, 1995. Available by ftp from ftp-server
ftp.wi.leidenuniv.nl, file /pub/CS/TechnicalReports/1995/tr95-
05.ps.gz.

[14] G. Rozenberg and E. Welzl.Boundary NLC Graph Grammars
– Basic Definitions, Normal Forms, and Complexity. Informa-
tion and Control, 69, pages 136–167, 1986.

[15] A. Schürr. Specification of Graph Translators with Triple
Graph Grammars. In Mayer and Tinhofer, editors, Proc. Int.
Workshop on Graph-Theoretic Concepts in Computer Science
– WG’93, will appear in LNCS, 1995.

[16] M. Tomita.Efficient Parsing for Natural Languages. Kluwer

9

Academic Publishers, 1985.
[17] K. Wittenburg. Earley-style Parsing for Relational Gram-

mars. In Proc. IEEE Workshop on Visual Languages – VL’92,
pages 192–199, 1992.

[18] D. Younger.Recognition and Parsing of Context-Free Lan-
guages in Time n3. Information and Control, 10(2), pages
189–208, 1967.

