
1

Evolving Artificial Neural Networks
using the “Baldwin Effect”†

E.J.W. Boers, M.V. Borst and
I.G. Sprinkhuizen-Kuyper

Abstract—This paper describes how through simple means a
genetic search towards optimal neural network architectures can
be improved, both in the convergence speed as in the quality of
the final result. This result can be theoretically explained with the
Baldwin effect, which is implemented here not just by the learn-
ing process of the network alone, but also by changing the
network architecture as part of the learning procedure. This can
be seen as a combination of two different techniques, both help-
ing and improving on simple genetic search.

1 Introduction

Recently, several papers appeared which describe the optimization of artifi-
cial neural networks using evolutionary computation, e.g. [13, 15]. There are
many approaches to this mixture of biologically inspired methods. Various
aspects of artificial neural networks can be optimized, and several varieties
of evolutionary computation exist.

There are many ways to represent the different aspects of artificial neu-
ral networks in the ‘genetic material’ of the evolutionary computation
algorithms. These ways range from ‘blueprints’ to codings which make use
of a kind of ‘recipe’ describing only the generation of the network [3, 4].
This last method is more scalable towards real-life problems: one recipe can
be used to generate the appropriate networks for a whole class of problems.
Furthermore, very large architectures can be generated with just a small rec-
ipe, reducing the search space of the evolutionary computation algorithm.

†In: D.W. Pearson, N.C. Steele and R.F. Albrecht (eds.);Artificial Neural Nets and
Genetic Algorithms. Proceedings of the International Conference in Alès, France,
333–336, Springer Verlag Wien New York, 1995. Also available as: Technical
Report TR95-14, Computer Science Department, Leiden University. URL: ftp://
ftp.wi.leidenuniv.nl/pub/CS/TechnicalReports/1995/tr95-14.ps.gz.

2

A known problem with evolutionary computation is thefine tuning of
parameters. When the weights of a fixed architecture are optimized with e.g.
a genetic algorithm, this fine tuning problem can be solved by using the
genetic algorithm to find good starting points for a training process.

This fine tuning problem also arises when optimizing artificial neural
networkarchitectures. What is needed here are algorithms that can optimize
the architecture after the evolutionary computation has found an approximate
solution. Several pruning methods exist, but no existing algorithm is able to
add connections or nodes in anexisting architecture.

This paper will introduce a new algorithm that, using heuristics, is able
to determine the position in a modular network architecture where more
nodes are needed, and in this way dynamically changes the network architec-
ture as part of the training process.

This local search, applied at each fitness evaluation of the evolutionary
computation, decreases the time needed to find an approximation. This is
called the ‘Baldwin effect’, named after the one that first observed this in
biology [1].

2 Evolutionary Computation

This section will outline the three mainstreams in simulated evolution used
for optimization, see e.g. [8]. All three kinds of evolutionary computation are
based on the same principle: they work on a population of individuals, each
representing a possible solution to the problem to be optimized. Each mem-
ber is awarded a fitness measure, corresponding with the quality of the
proposed solution; selection for reproduction is either based on the (scaled)
fitness or on therank of the member in the population sorted on fitness. The
main differences between the methods are: the way in which the individuals
are represented in the population, the methods for reproduction and the ways
in which new populations are generated.

2.1 Genetic algorithms

This method operates on binary strings, containing a coding of the parame-
ters, each of which is called agene. Usually a complete new generation is
created by repeatedly selecting two parents and applying a cross-over opera-
tor to merge substrings of both parents into the new individual, which is
placed in the new generation.

2.2 Evolutionary strategies

This method generally works with real numbers coding the parameters of the
problem. The genetic operator that changes these parameters usually adds a
standard Gaussian random variable to each parameter. New generations are

3

created by combining the newly generated individuals with the old popula-
tion, and selecting the best.

2.3 Evolutionary programming

This paradigm differs from the previous two in that the individuals do not
consist of just parameters, but of actual functions, often written in LISP.
These functions, coded as trees, are recombined by exchanging subtrees of
two parents. The successive populations are generated in the same way as in
evolutionary strategies.

3 Coding schemes for neural networks

The different coding schemes for representing artificial neural networks in
the ‘genes’ of a population are strongly related to the type of evolutionary
computation and the neural network training paradigm.

3.1 Blueprint representations

Here, a complete one-to-one relation exists between the network’s weight
and/or architecture and its genetic representation, e.g. [14].

3.2 Recipes

In this approach, not the complete network is coded, but just an algorithmic
description of how to create the network. Boers et al. [3, 4] used L-systems,
coded in the chromosomes of a genetic algorithm, to grow the architecture of
feedforward networks. The fitness was calculated by looking at the generali-
zation of the resulting networks after training.

Gruau [11] proposed a similar approach, usingcellular encoding. His
method uses the tree representation of genetic programming to store gram-
mar trees, containing instructions which describe the architecture as well as
the weights of the network. This has the consequence that when recursion is
used, all weights conform to the same layout.

The philosophy behind these and other [16, 19] rewriting systems is
the scalability of the process, which can not be achieved using blueprint
methods.

4 On-line adaptation of architecture

An other way to find the ‘correct’ network architecture is to incorporate on-
line architectural change in the learning algorithm. Most of the existing

4

methods for on-line architecture adaptation can be classified into two
categories:

• constructive algorithms, which add complexity to the network starting
from a very simple architecture until the network is able to learn the
task. When the remaining error is sufficiently low, this process is halted
[7, 9, 17, 18].

• destructive algorithms, which start with large architectures and remove
complexity, usually to improve generalization, by decreasing the
number of free variables of the network. Nodes or edges are removed
until the network is no longer able to perform its task. Then the last
removal is undone [6, 20, 21].

Destructive algorithms leave us with the problem of finding an initial archi-
tecture. Existing constructive algorithms produce architectures that, with
respect to their shape, are problem independent. Only thesize of the pro-
duced architecture varies. Since the architecture of a network greatly affects
its performance, this is a serious restriction.

Here, we propose a constructive method that is able to work onmodu-
lar architectures [3, 4, 13], the initial architecture of which is found using
evolutionary computation. This algorithm determines during trainingwhere
to perform the adaptation [5]. We considered the following possibilities:

• adding nodes to existing modules,
• adding connections between modules and
• adding modules.

Adding a module, in most architectures, is not a ‘small’ adaptation; i.e. it
influences the predefined modular structure in a major way. Adding a con-
nection between previously unconnected modules has the same problem. We
implemented the first possibility, because it is the simplest method in the
sense that it only needs local information.

A module, when seen as feature detector, should be able to detect
whether it is powerful enough for the number of features it is presented with.
The method presented here looks at the weight changes of nodes in a module
during training. When, after a number of training cycli these changes remain
relatively large, acomputational deficiency is detected. Our current approach
is to add one node at a time to the module with the highest computational
deficiency. This, of course, can be done in each module independently, but
this requires an extra threshold and can lead to adding more nodes than is
really needed.

Further, experiments were done with different ways to calculate the
computational deficiency, e.g. looking at incoming and outgoing weights or
looking at changes in the sign of the weights. This rarely led to differences in
the path followed by the algorithm, indicating the robusteness of the method.
An other important issue is the initialization of the weights of the added

5

node, and the possible ways to treat the existing weights. Ideas taken from
cascaded-correlation [7], and growing cell-structures [10] were tried, which
increased the learning speed compared with random initializations [5].

To give an impression of the results of this relatively simple algorithm
we show some experiments we did with the ‘What/Where’ problem [22],
where 9 different 3x3 patterns are presented on all 9 possible positions in a
5x5 grid, giving a total of 81 different input/output patterns. The network has
to learnwhich pattern is presentedwhere. Strictly speaking, this problem can
be learnedwithout hidden layer. When however a hidden module is present,
the problem becomes more difficult to solve (due tointerference of the two
tasks). Then, better results are obtained when the hidden module is divided
among the two separate tasks giving a separate hidden module for each task.
The original experiment was neurological in nature: it tried to explain why
there are separate neurological pathways in the brain concerned with the
detection of objects and the position of those objects. Fig. 1 gives the average
sum-squared error of ten repetitions of training 300 cycli using backpropaga-
tion with momentum for several sizes of the two hidden modules. Table 1
gives the consecutive module sizes of our algorithm for the two subnet-
works. It is easy to see that our algorithm follows the optimal path, and
learns the task, which demonstrates that it is correctly determining the mod-
ule where the next node should be added. More experiments are described in
[5].

0

5

10

150
5

10
15

20
30
40
50
60
70
80

Figure 1: The remaining error plotted as function of the sizes of
the two hidden modules.

what
1

18
18

1

where

6

5 Initiating the “Baldwin effect”

Baldwin was the first to recognize the impact of adaptive behavior of indi-
viduals on evolution [1]. He showed that ‘Lamarckism’ was not necessary to
explain thatlearned behaviour seems to propagate through the genes of suc-
cessive generations, but that instead, the inherited character was theability to
learn, with a profitable effect on the fitness of the individual.

The same effect can be used in evolutionary computation applied to
neural networks. When learning is part of the fitness evaluation when search-
ing for a good set of weights for a given architecture, a significant speed-up
and final quality of solution can be achieved [2, 15]. Also when using evolu-
tionary computation to optimize architectures, learning can increase
performance [3,12], but sofar these attempts have been restricted to learning
weights. With the algorithm presented in this paper, it will be possible to
optimize modular artificial neural network architectures, ‘implementing’ the
Baldwin effect not just by learning weights, but by adapting the modular
structure itself as well.

However, as already observed by Whitley et al. [23], the Baldwin
effect usually results in better solutions than the Lamarckian approach, but it
also takes more time. Therefore, we are currently implementing this scheme
on a parallel supercomputer (CM5), to try some real world problems.

6 Conclusions and further work

Looking at several recent studies in the area of neural network architecture
optimization, our conclusion is that current computers are just beginning to
be fast enough to test existing methods on really large problems. Recogniz-
ing the need for more scalable methods has resulted in several approaches
using grammars. Moreover, effects known from biology that can increase the
speed of artificial evolution are getting more and more attention. In order to
cope with the increasing complexity of our world, fully understood methods
with deterministic operations will in the future no longer have the needed
strength. What might be called amessy approach will be better suited. Evolu-

Table 1: Results of the what/where experiment.

Step 0 1 2 3 4 5 6 7 … 19

What 1 1 1 1 1 2 2 3 … 15

Where 1 2 3 4 5 5 6 6 … 6

7

tionary computation will perhaps continue to be the only search strategy able
to generate the desired complexity.

7 References

[1] J.M. Baldwin; ‘A new factor in evolution.’ In:American Naturalist,
30, 441–451, 1896.

[2] R.K. Belew; ‘When both individuals and populations search: adding
simple learning to the genetic algorithm’. In: J.D. Schaffer (Ed.);Pro-
ceedings of the third International Conference on Genetic Algorithms,
34–41, Kaufmann, San Mateo, CA, 1989.

[3] E.J.W. Boers and H. Kuiper;Biological Metaphors and the Design of
Modular Artificial Neural Networks. MSc. Thesis, Leiden University,
1992.

[4] E.J.W. Boers, H. Kuiper, B.L.M. Happel and I.G. Sprinkhuizen-Kuy-
per; ‘Designing modular artificial neural networks’. In: H.A. Wijshoff;
Computing Science in The Netherlands: Proceedings (CSN’93), Ed.:
H.A. Wijshoff, 87–96, Stichting Mathematisch Centrum, Amsterdam,
1993.

[5] M.V. Borst; Local Structure Optimization in Evolutionairy Generated
Neural Network Architectures. MSc. Thesis, Leiden University, 1994.

[6] Y.L. Cun, J. Denker and S. Solla; ‘Optimal brain damage’. In:
Advances in Neural Information Processing Systems, 2, 598–605,
1990.

[7] S.E. Fahlman and C. Lebiere; ‘The Cascaded-Correlation Learning
Architecture’. In:Advances in Neural Information Processing Systems,
2, 524-532, 1990.

[8] D.B. Fogel; ‘An introduction to simulated evolutionary optimization’.
In: IEEE Transactions on Neural Networks, 5, 3–14, 1994.

[9] M. Fréan; ‘The Upstart algorithm: a method for constructing and train-
ing feedforward neural networks’. In:Neural Computations, 2, 198–
209, 1990.

[10] B. Fritzke; ‘Growing cell structures - A self-organizing network for
unsupervised and supervised Learning. TR-93-026, 1993.

[11] F. Gruau;Neural Network Synthesis Using Cellular Encoding and the
Genetic Algorithm. PhD. Thesis, l’Ecole Normale Supérieure de Lyon,
1994.

8

[12] F. Gruau and D. Whitley; ‘Adding learning to the cellular development
of neural networks: evolution and the Baldwin effect’. In:Evolutionary
Computation, 1, 213–233, 1993.

[13] B.L.M. Happel and J.M.J. Murre; ‘Design and evolution of modular
neural network architectures’. In: Neural Networks,7, 985–1004,
1994.

[14] S.A. Harp, T. Samad and A. Guha; ‘Towards the genetic synthesis of
neural networks’. In: J.D. Schaffer (Ed.);Proceedings of the third
International Conference on Genetic Algorithms (ICGA), 360–369,
Kaufmann, San Mateo, CA, 1989..

[15] G.E. Hinton and S.J. Nowlan; ‘How learning can guide evolution’. In:
Complex Systems, 1, 495–502, 1987

[16] H. Kitano; ‘Designing neural network using genetic algorithm with
graph generation system’.Complex Systems, 4, 461–476, 1990.

[17] M. Marchand, M. Golea and P. Ruján; ‘A convergence theorem for
sequential learning in two-layer perceptrons’. In:Europhysics Letters,
11, 487–492, 1990.

[18] M. Mezard and J.-P. Nadal; ‘Learning in feedforward layered net-
works: the Tiling algorithm’. In:Journal of Physics A, 22, 2191–2204,
1989.

[19] E. Mjolsness; ‘Bayesian interference on visual grammars by neural
nets that optimize’. Technical Report YALEU-DCS-TR-854, Yale Uni-
versity, 1990.

[20] M. Mozer and P. Smolensky; ‘Skeletonization: a technique for trim-
ming the fat from a network via relevance assessment’. In:Advances in
Neural Information Processing Systems, 1, 107–115, 1989.

[21] C.W. Omlin and C.L. Giles;Pruning recurrent neural networks for
improved generalization performance. Revised Technical Report No.
93-6, Computer Science Department, Rensselaer Polytechnic Institute,
Troy, N.Y., 1993.

[22] J.G. Rueckl, K.R. Cave and S.M. Kosslyn; ‘Why are “what” and
“where” processed by separate cortical visual systems? A computa-
tional investigation’. In:Journal of Cognitive Neuroscience, 1, 171–
186, 1989.

[23] D. Whitley, V.S. Gordon and K. Mathias; ‘Lamarckian evolution, the
Baldwin effect and function optimization’. In: Y Davidor, H.-P.
Schwefel and R. Männer (Eds.);Lecture Notes in Computer Science,
866, 6–15, Springer-Verlag, 1994.

