
Multi-transformations: Code Generation and Validity

�

Peter M.W. Knijnenburg

High Performance Computing Division,

Dept. of Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

e-mail: peterk@cs.leidenuniv.nl

Eduard Ayguad�e and Jordi Torres

Departament d'Arquitectura de Computadors,

Universitat Polit�ecnica de Catalunya,

Gran Capit�a s/n�um, M�odul D6

08034-Barcelona, Spain

email: feduard,torresg@ac.upc.es

Abstract

In this paper we present a generalization of

the framework of unimodular loop transforma-

tions for parallelizing compilers, called multi-

transformations. Multi-transformations consist

of applying a di�erent unimodular transforma-

tion to the iteration space of each statement

in the loop body, and include also alignments.

Two key aspects are considered in this paper:

the generation of e�cient code that traverses

the di�erent transformed iteration spaces and

the test to decide the legality of the multi-

transformation. Some examples are used in

the paper that show the usefulness of multi-

transformations. In parallelizing compilers for

shared-memory they allow an easy exploitation

of parallelism; for distributed-memory multi-

processors they allow the generation of code that

follows the owner-computes rule and exploits lo-

cality of references.

Keywords: Parallelizing compilers, Unimodu-

lar loop transformations, E�cient code genera-

tion, Data dependences, Validity of transforma-

tions.

�

This research was partially supported by Esprit

BRA APPARC under grant no. 6634, and by the Min-

istry of Education of Spain under contract TIC-880/92.

1 Introduction

Loop transformations have been recognized to

be one of the most important components of the

parallelizing and vectorizing technology for cur-

rent supercomputers. The aim is to transform

nested loop structures into semantically equiv-

alent versions with more opportunities to par-

allilize them [Pol88, Wol91].

Most existing compilers apply a set of basic

loop transformations, one at a time. In each

step it has to be decided whether a transfor-

mation is legal (that is, respects data depen-

dences) and bene�cial to apply. Recently, it

has been proposed to specify transformations

by unimodular and non-singular integer matri-

ces [Ban93, LP94]. Such a matrix represents a

linear mapping from the original iteration space

to the target iteration space. A wide range of

basic loop transformations can be represented

in this way, including loop interchange, loop re-

versal, loop skewing [Ban91] and loop scaling

[LP94]. In fact, any linear transformation mod-

elled with a non-singular matrix can be viewed

as a composotion or product of these four basic

transformations.

The transformation matrix is used to translate

(array) references in the original loop to ref-

erences in the target loop as well as to deter-

mine the loop bounds of the new loop by means

of Fourier-Motzkin elimination [Ban91, Ban93,

1



LP94, WL91]. Traditionally, such a transforma-

tion applies to the whole loop. Recently, it has

been argued that it can be pro�table to apply

di�erent transformations to di�erent statements

in a loop [AT93, TALV93, DRR93, KPR94]. In

[AT93] it has been shown how di�erent displace-

ments d

i

for each statement S

i

can be used

to break dependences. This allows to consider

loop alignment in a uni�ed way with other loop

transformations. In [TALV93] this technique

has been applied to eliminate non-local refer-

ences when compiling for non-uniform memory

architectures. However, although they allow

di�ent displacements for di�erent statements,

the transformation (not necessarely unimodu-

lar) they apply afterwards is the same for all

of them. In [DRR93] a parallel scheduling tech-

nique for loop nests is proposed which extends

the hyperplane method [Lam74] by using a dif-

ferent a�ne scheduling for each statement in the

nest.

In this paper we extend the framework of linear

loop transformations by applying a di�erent uni-

modular transformation U

i

and displacement d

i

to each statement S

i

in the loop body. We call

such a transformation a multi-transformation.

We outline, by means of some examples, two

possible applications for the technique discussed

in this paper. First, it can be used to enhance

the parallelism of a loop by reordering state-

ments and thereby breaking dependences. Sec-

ond, it can be used to improve the data lo-

cality of a loop and allow an HPF-like com-

piler for distributed-memory machines to gener-

ate SPMD code following the owner-computes

rule.

We also describe the automatic generation of ef-

�cient code from the speci�cation of the multi-

transformation and the original loop bounds and

subscript expressions. The code generated scans

a transformed iteration space that is the compo-

sition of the transformed iteration space for each

statement in the loop body. It is very important

to optimize this code in order not to hide the

bene�ts obtained by parallelization. Another

key aspect considered in the paper is the va-

lidity of a multi-transformation. We show how

to test whether all dependences in the trans-

formed iteration space remain lexicographically

positive.

The paper is organized as follows. Section 3

shows the use of multi-transformations when

compiling loops for a distributed memory ma-

chine with data mappings speci�ed in a HPF-

like language. Before that, section 2 give

some preliminaries and introduce some nota-

tion. In section 4 we give the de�nition of

multi-transformations and discuss the basic al-

gorithms used to generate e�cient code for the

resulting loop structure. In section 6 we show

how the validity of a multi-transformation can

be established. For these two sections we dis-

cuss a working example (section 5) oriented to

exploit parallelism by breaking dependences and

recurrences using multi-transformations. Fi-

nally, in section 7, we give a brief discussion and

relate other work in the area.

2 Preliminaries

In this section we give some notation and termi-

nology used in this paper. First, we de�ne lower

and upperbounds for the loops we will consider.

De�nition 2.1 Let I = fI

1

; : : : ; I

n

g be a �nite

collection of loop indices. With respect to this

collection I we de�ne:

1. A basic (lower or upper) bound is an a�ne

expression a

0

+a

1

I

1

+ � � �+a

n

I

n

where, for

all i, a

i

2 Z. Note that some of the a

i

may

be zero.

2. Let a 2 N

+

and let B be a basic bound. A

simple lowerbound is an expression

�

1

a

B

�

.

A simple upperbound is an expression

�

1

a

B

�

.

3. A compound lowerbound is an expression

max(L

1

; : : : ; L

m

) where each L

i

is a simple

lowerbound. A compound upperbound is

an expression min(U

1

; : : : ; U

m

) where each

U

i

is a simple upperbound.

4. Basic, simple and compound bounds are

also called admissible bounds.

In the sequel of the paper we assume that

all bounds of loops to be transformed are ad-

missible. The techniques presented are such

that all resulting loop structures have admissi-

ble bounds. Every perfectly nested loop L gives

rise to a system of inequalities S(L), given by

S(L) =

8

>

<

>

:

L

1

� I

1

� U

1

.

.

.

L

n

� I

n

� U

n

2



Such a system should be read as the conjunc-

tion of the individual clauses. This system has

the property that every bound L

i

and U

i

is ad-

missible and only involves variables I

1

; : : : ; I

i�1

.

We call this the standard form of a system of

inequalities. Consider a system of inequalities

involving the variables I

1

; : : : ; I

n

fe

1

� e

0

1

; : : : ; e

k

� e

0

k

g

where each e

i

is an admissible lowerbound and

each e

0

i

is an admissible upperbound. Any such

system can be brought in standard form us-

ing Fourier-Motzkin elimination [DE73, Ban93].

Hence such system can be used to de�ne the

bounds of a perfectly nested loop. This is one of

the basic steps in applying a unimodular trans-

formation [Ban93, LP94]. Note that it is crucial

that all expressions are admissible for Fourier-

Motzkin elimination to be applicable.

Next we de�ne a class of loop structures which

will be delivered by the transformations we pro-

pose in this paper. This class has been intro-

duced by Chamski [Cha94].

De�nition 2.2 The class of nested loop se-

quences is inductively de�ned as the smallest

class of loop structures closed under

1. Any block of statements is a (trivial) nested

loop sequence.

2. If L and L

0

are two nested loop sequences,

then so is L;L

0

(L followed by L

0

).

3. If L is a nested loop sequences, then so is

the following loop,

DO I = L; U

L

ENDDO

where I is a new loop variable.

A nested loop sequence is called well-formed i�

all bounds are a�ne expressions over the loop

counters of the surrounding loops. In the sequel

we will only consider well-formed nested loop se-

quences which we will call simply a nested loop

sequence. For an example of a nested loop se-

quence, see Figure 9 in section 5.

Finally, we need the following notion. Consider

a block of statements in a nested loop sequence.

Then we can construct a perfectly nested loop

with bounds the bounds of the enclosing loops

and a body that only includes the statements of

the block. We call this loop nest the local nest

of the block.

3 Motivation

In this section we show the motivation for Multi-

transformations. In particular, we show how

they can be useful in a HPF-like paralleliz-

ing compiler for distributed memory machines.

This compiler is assumed to perform the paral-

lelization of loops based on the data layout (ei-

ther speci�ed by the user or automatically gen-

erated by a tool) and on the owner-computes

rule.

According to the owner-computes rule, a loop

should be parallelized so that each processor ex-

ecutes the portion of the iteration space that

performs computations on the data elements

owned by that processor. In other words, the

array subscripts on the left-hand side of the as-

signment statements decide the parallelization

of the iteration space. For instance, consider

the loop in �gure 1, taken from routine calc2

from swm256, a program in the SPEC bench-

mark set [Dix91]. Here we have taken N = 16

and M = 8 for simplicity. Assume that, due to

the data layout preferences of other loops or pro-

cedures, the reaching data layout for the arrays

is the following (expressed in HPF notation):

CHPF$ ALIGN WITH UNEW :: UOLD, Z, CV, H

CHPF$ ALIGN WITH PNEW :: POLD, CU

CHPF$ DISTRIBUTE UNEW(CYCLIC, *)

CHPF$ DISTRIBUTE PNEW(*, CYCLIC)

As dictated by the owner-computes rule, the

�rst statement of the loop would lead to the par-

allelization of the inner I loop in such a way that

each processor would execute those iterations

that update the elements UNEW(I+1,J) owned

by it. For instance, the iteration I = 1 should

be executed by the processor that owns row 2 of

matrix UNEW. Figure 2.a shows the assignment of

iterations to processors that ful�ls this property.

Using the same reasoning, the second statement

of the loop body would lead to the paralleliza-

tion of the outer J loop so that each processor

would execute those iterations that update the

elements PNEW(I,J) owned by it, as shown in

Figure 2.b. For instance, iteration J = 1 should

be executed by the processor that owns column

3



DO 200 J=1,N

DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+

1 TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)

2 +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))

1 -TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

Figure 1: Loop from routine calc1 in the SPEC swm256 benchmark.

1 2 3 4 5 6 7 8

J

1

2

3

4

5

6
I

7

8

9

10

11

12

13

14

15

16

to be executed by processor 0
to be executed by processor 1
to be executed by processor 2
to be executed by processor 3

1 2 3 4 5 6 7 8

J

1

2

3

4

5

6
I

7

8

9

10

11

12

13

14

15

16

Iteration space of the first statement:

to be executed by processor 0
to be executed by processor 1
to be executed by processor 2
to be executed by processor 3

Iteration space of the second statement:

Figure 2: Iteration spaces and parallelization strategies according to the owner-computes rule.

1 2 3 4 5 6 7 8

J’

1

2

3

4

5

6

I’
7

8

9

10

11

12

13

14

15

16

9 10 11 12 13 14 15 16

iteration space of the first statement
iteration space of the second statement

Processor 0 executes iterations I’={1,5,9,13,17}
Processor 1 executes iterations I’={2,6,10,14}
Processor 2 executes iterations I’={3,7,11,15}
Processor 3 executes iterations I’={4,8,12,16}

Parallelization of loop I’:

17

Figure 3: Iteration space after applying a di�erent linear transformation to each statement.

4



CHPF$ INDEPENDENT

CAPR$ DO PAR ON PNEW(:, 1)

DO I' = 1,1

DO J' = 1,16

PNEW(J',I') = POLD(J',I')-TDTSDX*(CU(J'+1,I')-CU(J',I'))

1 -TDTSDY*(CV(J',I'+1)-CV(J',I'))

ENDDO

ENDDO

CHPF$ INDEPENDENT

CAPR$ DO PAR ON UNEW(2~1, :)

DO I' = 2,8

DO J' = 1,8

UNEW(I',J') = UOLD(I',J')+

1 TDTS8*(Z(I',J'+1)+Z(I',J'))*(CV(I',J'+1)+CV(I'-1,J'+1)+CV(I'-1,J')

2 +CV(I',J'))-TDTSDX*(H(I',J')-H(I'-1,J'))

PNEW(J',I') = POLD(J',I')-TDTSDX*(CU(J'+1,I')-CU(J',I'))

1 -TDTSDY*(CV(J',I'+1)-CV(J',I'))

ENDDO

DO J' = 9,16

PNEW(J',I') = POLD(J',I')-TDTSDX*(CU(J'+1,I')-CU(J',I'))

1 -TDTSDY*(CV(J',I'+1)-CV(J',I'))

ENDDO

ENDDO

CHPF$ INDEPENDENT

CAPR$ DO PAR ON UNEW(9~1, :)

DO I' = 9,17

DO J' = 1,8

UNEW(I',J') = UOLD(I',J')+

1 TDTS8*(Z(I',J'+1)+Z(I',J'))*(CV(I',J'+1)+CV(I'-1,J'+1)+CV(I'-1,J')

2 +CV(I',J'))-TDTSDX*(H(I',J')-H(I'-1,J'))

ENDDO

ENDDO

Figure 4: Resulting code that scans the transformed iteration space in Figure 3

5



1 of matrix PNEW. Notice that the two paral-

lelization strategies are not compatible, making

it di�cult to generate parallel code. In fact,

the compiler should generate conditional state-

ments to test at run-time data ownership and

dynamically decide the iterations of the I and

J loops for which each processor would execute

each statement in the loop body.

Now we show how multi-transformations are

useful to generate the parallel code that sati-

�es the owner-computes rule. Assume that the

iteration space of the �rst statement is trans-

formed by applying a unit shift to dimension I

and the iteration space of the second statement

is transposed with respect to the one of the �rst

statement. Figure 3 shows the resulting iter-

ation space after combining the two transfor-

mations. Notice that now we could parallelize

the I

0

dimension and assign iterations in that

dimension so that the owner-computes rule is

satis�ed, as shown in the bottom right corner

of Figure 3. The parallel code can be automati-

cally generated from the formal speci�cation of

these two transformations (as described in Sec-

tion 4). This code will scan the transformed iter-

ation space so that each processor only executes

those iterations of the parallel I

0

loop that are

needed, and for each iteration of the sequential

J

0

loop the statements that have to be executed.

The code after applying the automatic trans-

formation procedure is shown in �gure 4. In

this code we are using the CHPF$ INDEPENDENT

directive to indicate the loops that should be

run in parallel. In addition to this directive we

also use the CAPR$ DO PAR directive that has a

similar meaning but is more complete. This di-

rective is de�ned by the FORGE programming

model [Inc] and is used here because of the ON

clause which selects a distributed array to con-

trol the loop distribution. Loop iterations are

distributed in such a way that references to the

control array occur in the processor that owns

those elements.

4 Multi-transformations

In this section we discuss a notion of multiple

mappings for perfectly nested loops. We call

these mappings multi-transformations. Further-

more, we show how e�cient code for the loop

structure resulting from a multi-transformation

can be generated. In section 6 we show how

the validity of a multi-transformation can be de-

cided.

First, consider a perfectly nested loop L with

statements S

1

; : : : ; S

N

in its body.

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

S

1

� � �

S

N

ENDDO

� � �

ENDDO

where all bounds are admissible bounds over the

loop indices of surrounding loops. The local nest

of statement S

i

is:

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

S

i

ENDDO

� � �

ENDDO

The local loop nest of a statement is used for de-

termining the iteration space for this statement

after a multi-transformation.

De�nition 4.1 Consider a perfectly nested

loop L of nesting depth n and with N state-

ments in its body. A multi-transformation M

for L consists of

� a collection T of n � n unimodular trans-

formations T = fU

i

: 1 � i � Ng, and

� a collection D of n dimensional displace-

ment vectors D = fd

i

: 1 � i � Ng.

Let L be a perfectly nested loop, and let M =

(T ;D) be a multi-transformation for L. The ap-

plication ofM to L consists of transforming the

local nest of statement S

i

by the unimodular

transformation U

i

and adding the displacement

vector d

i

thereby obtaining a local transformed

loop nest. By this transformation, iteration

~

I is

mapped to iteration U

i

~

I + d

i

for statement S

i

.

6



In this way, we obtain di�erent transformed it-

eration spaces for the di�erent statements in L.

We have to compute the union of these iteration

spaces and scan them in the lexicographical or-

der. Note that the union of convex polytopes

is not necessarily convex itself. Hence the re-

quired loop structure cannot be one single per-

fectly nested loop, but will rather be a nested

loop sequence.

We now show how to generate code for the

loop structure resulting from the application of

a multi-transformation. First, we construct all

local transformed loop nests. Second, we con-

struct one large loop, with an iteration space

that properly contains the union of the individ-

ual transformed iteration spaces. The body of

the loop consists of the transformed statements,

guarded in such a way that they are only ex-

ecuted in the iterations belonging to the local

transformed iteration space of this statement.

We regard this loop as an intermediate repre-

sentation of the desired nested loop sequence.

Third, we remove these guards by splitting up

the iteration space.

Transformation U

i

and displacement d

i

are in-

tended to be applied to statement S

i

. We de-

note the resulting statement by (U

i

+ d

i

) (S

i

).

In [AT93, TALV93] it has been explained how

to apply such a transformation. We give a short

review of the theory. Iteration

~

I is mapped to

~

I

0

= U

i

~

I+ d

i

. Hence references to

~

I in S

i

have

to be replaced by U

�1

i

(

~

I

0

�d

i

) = U

�1

i

~

I

0

�U

�1

i

d

i

.

Note that the di�erence with an ordinary uni-

modular transformation [Ban93] lies in the ex-

tra displacement component. Loop bounds are

transformed likewise and Fourier-Motzkin elim-

ination can be applied to obtain a standard

form [Ban93]. The resulting local loop nest is

denoted as:

DO I

0

1

= L

1i

; U

1i

� � �

DO I

0

n

= L

ni

; U

ni

(U

i

+ d

i

) (S

i

)

ENDDO

� � �

ENDDO

Next, these local loop nests have to be composed

into one resulting, global nest. Intuitively, we

can generate the code depicted in �gure 5. Al-

though this code is semantically correct, it is

very ine�cient. Nevertheless, it gives a clear

picture of the kind of transformation and its re-

sult we are considering in this paper. We now

show how to transform the above code into an

e�cient form. In [KB95] we have developed the

necessary theory for doing this automatically.

We briey show how to apply this theory in the

present case.

The main technical observation is that the IF-

statements in the intermediate code for the

transformed loop are of a special form. They

precisely de�ne a convex polytope, namely, the

iteration space of the local transformed loop

nest. We call these IF-statements guards.

Suppose L is a loop nest with loop indices

I

1

; : : : ; I

n

and admissible loop bounds, giving

rise to the following system of inequalities S(L):

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

Note that a lowerbound L

k

may involve the in-

dices I

1

; : : : ; I

k�1

, and likewise for an upper-

bound U

k

. These bounds de�ne the iteration

space P for L. Suppose that the condition of a

guard in L is of the form

L

0

1

� I

1

� U

0

1

; : : : ; L

0

n

� I

n

� U

0

n

de�ning a polytope P

0

inside P .

We now want to generate a loop structure that

scans P in the same order as L, but that exe-

cutes di�erent code in the intersection of P and

P

0

, and in the remainder of P . In [KB95] we

show how to isolate a polytope inside another

polytope and how to generate e�cient code for

scanning this partitioned space. The result of

this techniques is a nested loop sequence. This

nested loop sequence partitiones the iteration

space P in convex regions with the iteration

space P

0

isolated. We can execute di�erent code

in the di�erent regions: In P

0

we execute the

statement of the guard together with all other

guards, and in the remainder we execute only

these other guards. E�ectively, we have evalu-

ated the condition of the IF-satement at compile

time and have partitioned the loop accordingly.

In this way we have removed one guard. We

can itererate the procedure to remove all guards.

Space considerations prevent us from going into

details. Consult [KB95] for a proof of the next

proposition.

Proposition 4.2 Given a perfectly nested loop

L containing guards, we can construct a seman-

tically equivalent nested loop sequence N without

7



DO I

0

1

= minfL

1i

: 1 � i � Ng;maxfU

1i

: 1 � i � Ng

� � �

DO I

0

n

= minfL

ni

: 1 � i � Ng;maxfU

ni

: 1 � i � Ng

IF (L

11

� I

0

1

� U

11

)& � � �&(L

n1

� I

0

n

� U

n1

) THEN (U

1

+ d

1

) (S

1

)

.

.

.

IF (L

1N

� I

0

1

� U

1N

)& � � �&(L

nN

� I

0

n

� U

nN

) THEN (U

N

+ d

N

) (S

N

)

ENDDO

� � �

ENDDO

Figure 5: Intermediate code for the loop structure resulting from a multi-transformation.

guards in which moreover all bounds are simple

bounds.

We now want to apply Proposition 4.2 to

the present case of code generation for multi-

transformations. However, Proposition 4.2 can-

not be applied immediately, since the loop

bounds are not admissible (see De�nition 2.1):

lowerbounds contain minimum functions and

upperbounds maximum functions. Therefore

we replace the loop bounds by integer con-

stants which are garanteed to be smaller than

the lowerbounds, and larger than the upper-

bounds. In this way we obtain a rectangu-

lar iteration space, properly containing all lo-

cal iteration spaces. The resulting bounds are

thus admissible. We can compute these con-

stants using Banerjee's theory on the maximum

and minimum values that a�ne functions can

take [Ban88]. After this phase we can legally

apply the theory from [KB95]. We obtain a

nested loop sequence that exactly scans the it-

eration space which consists of the union of

the local iteration spaces obtained in the multi-

transformation but avoid the use guards.

5 Some Examples

In this section we show with a couple of ex-

amples the usefulness of multi-transformations.

In the �rst example we show how to transform

statements involved in a cycle in the depen-

dence graph in order to exploit inherent par-

allelism and to reduce the number of explicit

synchronizations needed to execute the loop in

parallel. In the second example, we show how

multi-transformations are useful to transform

non-uniform dependences into uniform ones.

In the �rst example we consider a loop where

there are several recurrences in the dependence

graph. Consider the following loop:

DO I = 1, 16

DO J = 1, 8

S1: A(I, J) = B(I-1, J+1) ...

S2: B(I, J) = A(I, J-1) ...

S3: C(I, J) = C(I-1, J-1) + B(I, J)

ENDDO

ENDDO

The dependence graph and iteration space are

shown in Figures 6.a and 6.b, respectively. No-

tice that there are two recurrences (one travers-

ing the �rst and the second statement and an-

other one including the third statement.

These two recurrences prevent the exploitation

of parallelism out of the loop. Assume that we

apply the following multi-transformation:

U

1

=

�

0 1

1 0

�

d

1

=

�

0

0

�

U

2

=

�

0 1

1 0

�

d

2

=

�

�1

0

�

U

3

=

�

�1 1

1 0

�

d

3

=

�

15

0

�

Observe that (U

1

+ d

1

) (S

1

) represents a loop

interchange, (U

2

+ d

2

) (S

2

) a loop interchange

with a unit shift in the �rst dimension, and

(U

3

+ d

3

) (S

3

) a skew of the space plus a shift.

After applying this multi-transformation, the

iteration space for the transformed loop be-

comes the one shown in Figure 7. One can

see that in this transformed space the depen-

dences, forming the two recurrences in the orig-

inal graph, now allow the parallelization of the

8



<0, 1><1, -1>

<0, 0>

<1, 1>

1 2 3 4 5 6 7 8

J

1

2

3

4

5

6
I

7

8

9

10

11

12

13

14

15

16

(a) (b)

Figure 6: (a) Dependence graph and (b) iteration space for a double-nested loop.

1

2

3

4

5

6

I’

7

8

9

10

11

12

13

14

15

16

0

17

18

19

20

21

22

1 2 3 4 5 6 7 8
J’

9 10 11 12 13 14 15 16

Figure 7: Transformed iteration space after applying a multi-transformation.

DO I' = 0,22

DO J' = 1,16

S1' IF (1 <= I' <= 8 & 1 <= J' <= 16) A(J',I') = B(J'-1,I'+1) ...

S2' IF (0 <= I' <= 7 & 1 <= J' <= 16) B(J',I'+1) = A(J',I') ...

S3' IF (0 <= I' <= 22 & max(1,16-I') <= J' <= min(16,23-I')) C(J',I'+J'-15) =

C(J'-1,I'+J'-16) + B(J',I'+J'-15)

ENDDO

ENDDO

Figure 8: Intermediate code that scans the transformed iterationspace shown in Figure 6

9



DO I' = 0,0

DO J' = 1,15

S2'

ENDDO

DO J' = 16,16

S2' S3'

ENDDO

ENDDO

DO I' = 1,7

DO J' = 1,15-I'

S1' S2'

ENDDO

DO J' = 16-I',16

S1' S2' S3'

ENDDO

ENDDO

DO I' = 8,8

DO J' = 1,7

S1'

ENDDO

DO J' = 8,15

S1' S3'

ENDDO

DO J' = 16,16

S1'

ENDDO

ENDDO

DO I' = 9,15

DO J' = 16-I',23-I'

S3'

ENDDO

ENDDO

DO I' = 16,22

DO J' = 1,23-I'

S3'

ENDDO

ENDDO

Figure 9: Code after removing guards.

outer I

0

loop. Only dependence S

2

� S

3

with

distance h0; 0i in the original graph has become

a non-uniform data dependence and needs ex-

plicit synchronization to allow the paralleliza-

tion of the I

0

loop. The o�set d

3

added to the

transformed iteration space of S

3

makes the de-

pendence S

2

� S

3

lexicographically positive in

the transformed iteration space. The value of d

3

is the minimum value that guarantees the `lex-

icographically positiveness' of the transformed

distance. This minimum value for the o�set can

be obtained from the transformed distance by

assuming a generic value for d

3

and then instan-

tiate it to ensure this condition.

The intermediate code, obtained form the trans-

formed local iteration spaces, is shown is Fig-

ure 8. After removing the guards, we obtain the

code shown in �gure 9.

In the second example we show how a non-

uniform data dependence that prevents parallel

loop execution can be transformed into a uni-

form one by using a multi-transformation, thus

allowing the loop to run in parallel. Consider

the following loop:

DO I = 1, 16

DO J = 1, 8

S1: A(I, J) = ...

S2: B(I, J) = A(I-J, J) ...

S3: C(I, J) = B(I-1, J-1) ...

ENDDO

ENDDO

The dependence graph for this loop is shown in

Figure 10.a. If we apply the following multi-

transformation

U

1

=

�

1 0

0 1

�

d

1

=

�

0

0

�

U

2

=

�

1 �1

0 1

�

d

2

=

�

0

0

�

U

3

=

�

1 �1

0 1

�

d

3

=

�

�1

�1

�

then the original iteration space is transformed

into the one shown in Figure 10.b. Notice that

the iteration space for statement S

1

remains un-

changed and the iteration spaces for S

2

and S

3

are skewed with respect to S

1

. In addition, S

3

is shifted with respect to S

2

. As a result of this

transformation, every dependence in the orginal

dependence graph is transformed to h0; 0i and

the outer I

0

loop can be fully parallelized.

6 Validity of a multi-trans-

formation

In this section we discuss how the validity of

a multi-transformation can be decided. The

10



<j, 0>

(a) (b)

<1, 1>

1 2 3 4 5 6 7 8
J’

1

2

3

4

5

6
I’

7

8

9

10

11

12

13

14

15

16

-6

-5

-4

-3

-2

-1

0

9

-8

-7

Figure 10: (a) Dependence graph and (b) iteration space after multi-transformation

theory we present in this section is based

on [Kni94].

Suppose L is a loop nest with loop indices

I

1

; : : : ; I

n

and admissible loop bounds, giving

rise to the following system of inequalities S(L):

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

Note that a lowerbound L

k

may involve the in-

dices I

1

; : : : ; I

k�1

, and likewise for an upper-

bound U

k

. These bounds de�ne the iteration

space P for L.

Let S

1

and S

2

be statements in L and suppose

that they are involved in a dependence �. We

assume that S

1

de�nes a subscripted variable

S

1

: A(e

1

; : : : ; e

d

) = � � �

and that S

2

uses a subscripted variable

S

2

: � � � = � � � A(e

0

1

; : : : ; e

0

d

) � � �

Our aim is to de�ne a collection of poly-

topes which contain all dependence informa-

tion. We only consider memory based depen-

dences [PW92]. These polytopes are called de-

pendence polytopes.

A possible dependence can be carried by each

loop in the nest, or is a loop independent de-

pendence. Therefore, for each 1 � m � n, we

de�ne a polytope P

m

which encodes the depen-

dences carried by the mth loop, and a polytope

P

1

for the loop independent dependences. Each

dependence polytope P

m

is a subset of P � P .

Each point h

~

I;

~

I

0

i in P

m

will code a dependence

from iteration

~

I to iteration

~

I

0

with a direction

vector

h =; � � � ;=

| {z }

m�1�

; <; �; � � � ; � i (1)

The polytope P

1

has analogous properties.

We construct P

m

in three stages. First, we

construct P � P by introducing fresh variables

I

0

1

; : : : ; I

0

n

.

8

>

>

<

>

>

:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

L

1

[

~

I

0

=

~

I] � I

0

1

� U

1

[

~

I

0

=

~

I]; : : : ;

L

n

[

~

I

0

=

~

I] � I

0

n

� U

n

[

~

I

0

=

~

I]

(2)

Second, we add the constraints that enforce the

two references to be to the same location.

e

1

= e

0

1

[

~

I

0

=

~

I]; : : : ; e

d

= e

0

d

[

~

I

0

=

~

I] (3)

11



Third, we add a constraint to �lter out the

points h

~

I;

~

I

0

i such that

~

I

0

is lexicographically

larger than

~

I. In particular, we �lter out the

points such that the direction vector of the de-

pendence from

~

I to

~

I

0

is of the form 1. The

constraint is given by

I

1

= I

0

1

; : : : ; I

m�1

= I

0

m�1

; I

m

< I

0

m

(4)

Summarizing, P

m

is de�ned by the system of

inequalities given by equations (2), (3) and (4).

Finally, we construct a polytope P

1

contain-

ing the loop independent dependences from the

system of inequalities given by equations (2), (3)

and

I

1

= I

0

1

; : : : ; I

n

= I

0

n

(5)

Example. Consider the �rst example in sec-

tion 5 and the dependence S

2

� S

3

. The depen-

dence polytopes are given by: P

1

= ;, P

2

= ;

and P

1

is given by

1 � I

1

� 16 1 � I

2

� 8

I

1

� I

0

1

� I

1

I

2

� I

0

2

� I

2

We see from this description that every depen-

dence runs from hi; ji to hi; ji, which means that

the distance is h0; 0i. 2

Now assume that S

1

is to be transformed by

U

1

and d

1

, and S

2

by U

2

and d

2

. Consider the

matrix U

1


 U

2

given by

U

1


 U

2

=

�

U

1

0

0 U

2

�

If U

1

and U

2

are unimodular, then so is U

1


U

2

.

Let the vector d be given by

d =

�

d

1

d

2

�

Now we want to transform each P

m

by the uni-

modular transformation U

1


 U

2

and displace-

ment d. This can be done in exactly the same

way as transforming a loop by a unimodular

transformation and a displacement. This is

briey discussed in section 4, and in more de-

tail in [AT93, TALV93, Kni94]. The resulting

polytope is denoted as P

�

m

:

P

�

m

= (U

1


 U

2

+ d) (P

m

)

A point in P

�

m

is given by hU

1

~

I+ d

1

;U

2

~

I

0

+ d

2

i,

which is exactly the dependence in the trans-

formed iteration spaces.

Example. (continued) We have to transform

P

1

from the previous example. The trans-

formed polytope

P

�

1

=

�

U

2


 U

3

+

�

d

2

d

3

� �

(P

1

)

where U

2

, U

3

, d

2

and d

3

are given in section 5.

P

�

1

is given by the following system of inequal-

ities.

0 � J

1

� 7 1 � J

2

� 16

16+J

1

�J

2

� J

0

1

� 16+J

1

�J

2

J

2

� J

0

2

� J

2

We see that the transformed dependence is in-

deed non-uniform. For instance, there is a

dependence from h1; 8i to h9; 8i with distance

h8; 0i; and a dependence from h2; 9i to h9; 9i

with distance h7; 0i. 2

Now we show how to test whether all depen-

dences remain lexicographically positive. This

is the condition that the dependence � is pre-

served by the transformation [ZC90, Wol91].

We consruct new polytopes Q

k

m

for 1 � k � n

by adding `lexicographical possitiveness' con-

straints to P

�

m

:

J

0

1

= J

1

& � � � & J

0

k�1

= J

k�1

& J

0

k

< J

k

Observe that Q

k

m

contains an integer point

h

~

J;

~

J

0

i i� there exists a dependence from

~

I to

~

I

0

such that for the transformed dependence, run-

ning from

~

J = (U

1

+ d

1

)

~

I to

~

J

0

= (U

2

+ d

2

)

~

I

0

, it

is the case that the direction vector is the form

h =; � � � ;=

| {z }

k�1�

; >; �; � � � ; � i

Hence in case any of the polytopes Q

k

m

contain

integer points, the dependence is violated.

Example. (continued) Given the description of

P

�

1

above, it is easy to see that both the con-

ditions J

0

1

< J

1

and J

1

= J

0

1

& J

0

2

< J

2

yield

inconsistent systems of inequalities. Hence the

dependence h0; 0i is not violated by the trans-

formation. 2

Proposition 6.1 Let L be a loop nest contain-

ing N statements S

1

; : : : ; S

N

. Let M = (T ;D)

be a multi-transformation for L. Then the appli-

cation of M on L is valid if and only if for each

dependence � from S

i

to S

j

it is the case that the

polytopes Q

k

m

obtained as described above from

U

i


 U

j

and displacement vectors d

i

and d

j

do

not contain integer points.

12



Note that we can check whether a polytope

contains integer points using the Omega test

by Pugh [Pug92]. Conservatively, we can

check whether a polytope is empty by checking

whether the system of inequalities that de�nes

it is inconsistent. We can use Fourier-Motzkin

elimination for this purpose [BW94, KB95].

7 Conclusion

In this paper we have shown how di�erent uni-

modular transformations can be used for dif-

ferent statements in a loop nest. We have

focussed on three aspects: some examples of

their applicability, the legality of the trans-

formed dependences, and the generation of ef-

�cient code for the transformed loop structure

avoiding guards.

Multi-transformations have been presented as

a mapping from an original iteration space to

a new iteration space with more opportunities

to exploit parallelism and/or data locality. We

have also shown how this framework is valid for

generating SPMD code from HPF-like directives

specifying alignment and distribution of data in

a compiler that uses the owner-computes rule.

Multi-transformations include any kind of align-

ment: inter- or intra-dimensional, and uniform

(like shift) or non-uniform (like skewing), and

reordering of statements.

Chamski [Cha95] has proposed an algorithm for

scanning unions of convex polytopes, based on

the Parametric Integer Programming tool by

Feautrier [Fea88]. Our techniques are based

on Fourier-Motzkin elimination and seem to be

more easily controlable in an interactive compi-

lation environment. In [AT93, TALV93] a di�er-

ent strategy is proposed for scanning the union

of a collection of iteration spaces. The main

idea there is to isolate the itersection of these

iteration spaces where all statements have to

be executed, and scanning the remaining bor-

der by means of guarded statements. However,

the transformations considered in those papers

only di�er in a displacement vector. Hence

the resulting local iteration spaces will over-

lap to a large extend in all practical situation.

This means that the borders of the intersection

are small relative to the entire iteration space.

Hence this technique is easy and acceptable for

that situation. However, it is not acceptable

when multi-transformations are used in which

case there exists a large area outside the inter-

section. Hence, if we would apply this tech-

nique, then the part of the iteration space we

would have to scan using guarded statements

would be a large fraction of the entire iteration

space.

The validity problem for multi-transformations

is highly non-trivial. If there exists a depen-

dence from statement S

1

to S

2

, for iteration

~

I

to

~

I

0

, then the transformed dependence distance

is (U

2

+ d

2

)

~

I

0

� (U

1

+ d

1

)

~

I for possibly di�erent

unimodular transformations and displacements.

Hence the transformed dependence distances are

not easily related to the original dependence dis-

tances. This shows that even for uniform de-

pendences it is di�cult to decide the validity

of a multi-transformation. These problems are

worsened if we also consider non-uniform depen-

dences as we do in this paper. The technique

discussed in section 6 is a new and powerful

approach to the validity problem. This tech-

nique relies heavily on Fourier-Motzkin elimina-

tion for constructing a collection of dependence

polytopes and for deciding whether these are

empty or not. Although this technique may be

expensive for deeply nested loop structures and

complex index functions, it has been observed

before [Pug92, BW94] that in all practical situ-

ations the algorithm runs fast.

Pugh et al. [KPR94, PW92] has proposed a dif-

ferent approach to multi-transformations. Their

approach is based on the Omega package, which

contains a collection of procedures for manipu-

lating formulas in the �rst order theory of Pres-

burger arithmetic. Mappings and the validity

problem for them can be formulated in this the-

ory. Since the theory is decidable, although

via a generally very expensive procedure (at

least O(2

2

cn

) [Rab77]), it can be used for this

purpose. The present work, however, is �rmly

rooted in well-known techniques and can be im-

plemented in restructuring compilers possessing

the machinery needed for unimodular transfor-

mations without great di�culty.

We are currently extending this framework

in order to use non-singular integer matri-

cesi [LP94]. The problem with these kind of

matrices is that they induce di�erent strides for

the transformed local nests. By guarding the

statements in the resulting global nest, one can

easily achieve that the correct iterations are be-

13



ing executed for every transformed statement,

but the code would become too ine�cient.

References

[AT93] E. Ayguad�e and J. Torres. Partitioning

the statement per iteration space using

non-singular matrices. In Proc. 7th ACM

Int. Conf. Supercomputing, 1993.

[Ban88] U. Banerjee. Dependence Analysis for

Supercomputing. Kluwer Academic Pub-

lishers, Norwell, 1988.

[Ban91] U. Banerjee. Unimodular transforma-

tions of double loops. In Advances in

Languages and Compilers for Parallel

Processing, chapter 10. The MIT Press,

1991.

[Ban93] U. Banerjee. Loop Transformations for

Restructuring Compilers. Kluwer Acad-

emic Publishers, Norwell, 1993.

[BW94] A.J.C. Bik and H.A.G. Wijsho�. Im-

plementation of Fourier-Motzkin elimi-

nation. Technical Report 94-42, Dept.

of Computer Science, Leiden University,

1994.

[Cha94] Z.S. Chamski. Nested loop sequences:

Towards e�cient loop structures in au-

tomatic parallelization. In Proc. 27th

Hawaii Int. Conf. on System Sciences,

pages 14{22, 1994.

[Cha95] Z.S. Chamski. Enumeration of dense

non-convex iteration sets. In Proc. Eu-

roMicro Workshop on Parallel and Dis-

tributed Processing, pages 156{163. IEEE

Press, 1995.

[DE73] G.B. Dantzig and B.C. Eaves. Fourier-

Motzkin elimination and its dual. J. of

Combinatorial Theory, 14:288{297, 1973.

[Dix91] K. Dixit. The SPEC benchmarks. Par-

allel Computing, 17:1195{1209, 1991.

[DRR93] A. Darte, T. Risset, and Y. Robert. Loop

nest scheduling and transformations. In

J.J. Dongarra and B. Tourancheau, ed-

itors, Environments and Tools for Par-

allel Scienti�c Computing, volume 6 of

Advances in Parallel Computing, pages

309{332. North Holland, 1993.

[Fea88] P. Feautrier. Para-

metric integer programming. Operations

Research, 22(3):243{268, 1988.

[Inc] Applied Parallel Research Inc. xHPF

Version 1.2, User's Guide, may 1994 re-

lease edition.

[KB95] P.M.W. Knijnenburg and A.J.C. Bik. On

reducing overhead in loops. Technical

Report 95-07, Dept. of Computer Sci-

ence, Leiden University, 1995.

[Kni94] P.M.W. Knijnenburg. On the validity

problem for unimodular transformations.

Technical Report 94-40, Dept. of Com-

puter Science, Leiden University, 1994.

[KPR94] W. Kelly, W. Pugh, and E. Rosser. Code

generation for multiple mappings. Tech-

nical Report UMIACS-TR-94-87, Dept.

of Computer Science, Univ. of Maryland,

1994.

[Lam74] L. Lamport. The parallel execution of

DO loops. Comm. of the ACM, 17(2):83{

93, 1974.

[LP94] W. Li and K. Pingali. A singular loop

transformation framework based on non-

singular matrices. Int'l J. of Parallel Pro-

gramming, 22(2):183{205, 1994.

[Pol88] C. Polychronopoulos. Parallel Program-

ming and Compilers. Kluwer Academic

Publishers, Boston, 1988.

[Pug92] W. Pugh. The Omega test: A fast and

practical integer programming algorithm

for dependence analysis. Comm. of the

ACM, 8:102{114, 1992.

[PW92] W. Pugh and D. Wonnacott. Going

beyond integer programming with the

Omega test to eliminate false data de-

pendences. Technical Report CS-TR-

2993, Dept. of Computer Science, Univ.

of Maryland, 1992.

[Rab77] M.O. Rabin. Decidable theories. In

J. Barwise, editor, Handbook of Mathe-

matical Logic, chapter C.3, pages 595{

629. North Holland, 1977.

[TALV93] J. Torres, E. Ayguad�e, J. Labarta,

and M. Valero. Align and distribute-

based linear loop transformations. In

U. Banerjee, D. Gelernter, A. Nicolau,

and D. Padua, editors, Proc. 6th Int.

Workshop on Languages and Compil-

ers for Parallel Computing, volume 768

of Lecture Notes in Computer Science,

pages 321{339, Berlin, 1993. Springer

Verlag.

[WL91] M.E. Wolf and M.S. Lam. A loop trans-

formation theory and an algorithm to

maximize parallelism. IEEE Transac-

tions on Parallel and Distributed Sys-

tems, 2(4):430{439, 1991.

[Wol91] M.J. Wolfe. Optimizing Supercompilers

for Supercomputers. The MIT Press,

1991.

14



[ZC90] H. Zima and B. Chapman. Supercompil-

ers for Parallel and Vector Computers.

ACM Press, New York, 1990.

15


