
Address Reference Generation in

a Memory Hierarchy Simulator Environment

�

Arnold J. Niessen Harry A. G. Wijsho�

High Performance Computing Division,

Department of Computer Science,

Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

niessen@cs.leidenuniv.nl

�

This work was supported in part by the Esprit Agency DG XIII under Grant No. AP-

PARC 6634 BRA.

1

Contents

1 Introduction 4

2 Related work 5

3 Simulator implementation 6

3.1 Scalar variables : 6

3.2 Pointers and arrays : 10

3.3 Identifying code fragments : 11

4 An example simulation 12

4.1 Simulated architecture : 12

4.2 Application : 12

4.3 Simulation results : 12

5 Conclusions 15

List of Figures

1 Implementation of integer simulating classes : : : : : : : : : : : : 8

2 Implementation and use of array simulation : : : : : : : : : : : : 10

3 Instrumentation of code fragment : : : : : : : : : : : : : : : : : : 11

4 Matrix bcsstk14 : 13

5 Simulation results L1-cache for SpMinDense : : : : : : : : : : : : 14

2

Abstract

Application driven address reference generation is a popular and fre-

quently used technique for the simulation of architectures. These ref-

erences can be produced by means of the insertion of instrumentation

statements in the source code. However, this requires a major rewriting

of the application source code under study. To alleviate this disadvantage,

this report describes the use of C

++

classes and operator overloading min-

imizing the amount of application code that is a�ected.

The following frequently used sparse matrix application codes are cur-

rently used in conjunction with this simulator: sparse matrix (SpM) LU-

decomposition, (SpM x SpM) multiplication, with (SpM x V) sparse ma-

trix vector multiply as a special case, and triangular solve. This report

demonstrates the use of this simulator for one of these applications.

3

1 Introduction

A hierarchical memory system consists of several storage levels [7, 8, 13, 16, 17].

Each of these levels is faster and smaller than the level below. This way, a large

virtual memory can be created with a low average access time. In most systems,

the lower part of the hierarchy is made up of main memory (DRAM), while the

middle part consists of one or more (hardware managed) caches and the higher

part consists of the (compiler managed) register banks. Caches are fast small

memories which make advantage of two important properties of applications:

spatial locality and temporal locality. Temporal locality addresses the fact that

a reference to a certain address is likely to occur very soon again, while spatial

locality is the property that it is likely that shortly after a reference to a speci�c

data item occurs, data items in the neighborhood of this item have a high

probability being used.

Sparse matrix computations [4, 6, 14, 23] form a signi�cant part of large

scale applications. Although caches show good behavior, i.e., a high hit rate,

on applications with regular memory reference patterns, their performance is

disappointing for sparse matrix applications, because these computations ex-

hibit problems which are speci�c to the nature of the data structure: indirect

addressing, irregular memory patterns, �ll-in, data movement, and the need for

many integer instructions per oating point operation. These problems result

in poor temporal and spatial locality.

Due to the growing gap between memory latency and processor cycle time,

memory system performance is of vital importance for these and other applica-

tions. To gain insight in the performance of memory systems, we have developed

a general-purpose memory hierarchy simulator environment. This simulator en-

vironment is implemented in C

++

and consists of three parts. The �rst part is

supplied by the user and consists of the application code to be analyzed. The

second part acts as an interface between this application code and the actual

simulator. It captures variable references at source code level from the �rst

part using object-oriented programming techniques. Furthermore, it generates

on-the-y address references to feed the third part. The third part consists of

the actual memory hierarchy simulator.

The interface part can be used in conjunction with any code written in C

++

,

C, or even in Fortran using f2c. A vast amount of target hardware architectures

can be simulated by changing the parameters of the memory hierarchy simulator

or adding new simulation modules. The major advantage of our approach is that

both the generated address references as well as the simulated architectures are

completely independent of the compiler environment, compiler e�ciency, and

the platform on which the simulation runs.

The outline of this report is as follows: section 2 describes several methods

described in related work on performance evaluation. Section 3 discusses the

interface between the application code and the memory system simulator. It

explains how the use of object-oriented technology enables the generation of

address references at source code level. Subsequently, in section 4, we present

simulator output for an application code fragment, originating from sparse ma-

trix Cholesky decomposition. Finally, section 5 presents general conclusions

about the simulator environment.

4

2 Related work

Because the performance of hierarchical memory systems becomes more critical

as CPU speeds increases, a number of approaches has been taken to estimate

the performance of such a memory hierarchy. These approaches include the

use of program analysis by means of mathematical tools, execution of pro�led

applications, and simulation.

Performance prediction based on program analysis is done by Kelly and

Pugh ([11]). However, their approach is limited to regular code fragments.

One of the disadvantages of executing a pro�led application is that a working

system, or at least a prototype of this system, must be available. Obviously,

this may be prohibitively expensive or even impossible.

The use of address traces as input of a simulator has become rather popular.

Because mathematical models have not been able to generate address traces

that are representable for all characteristics of the application under study,

applications remain required in order to generate these traces. Such trace driven

simulation is very exible. On the other hand, its limitations are: operating

system overhead is not taken into account, long simulations represent only small

simulated execution times, and the target architecture may di�er from the trace

generating architecture.

Address references may be collected in traces for later (post mortem) analy-

sis, or for immediate (on-the-y) use. Essentially, there are three methods to

generate traces for post mortem analysis. First, trace-generating hardware may

record all interactions between memory system and CPU, without impact on

the application. Second, if this hardware is absent, a compiler may modify the

object code at link-time by inserting code fragments recording address refer-

ences [20]. Third, annotation statements can be added (automatically) to the

source code, so that variable reference traces will be generated at run-time [5].

Because the storage requirements of trace data may be substantial, on-the-y

methods are preferred in case storage use or I/O time is at a premium. Source

code modi�cation can be used for on-the-y simulation. This report describes

implicit source code modi�cation using operator overloading techniques of C

++

[21]. It therefore combines the advantages of invisible link-time code modi�ca-

tion with the exibility and generality of source code modi�cation. However,

in contrast with traces generated at link-time, it is important to realize that

compiler optimizations (see e.g. [1]) are not properly accounted for in the re-

sulting traces in case traces are generated by instrumentation statements added

to the source code. Therefore, in an attempt to recover this de�ciency, some

compiler optimizations (such as register allocation) have been incorporated into

the simulator. More advanced compiler optimizations like constant propagation

and common subexpression elimination will be lost.

5

3 Simulator implementation

This section elaborates on the grounds on which C

++

has been chosen for the

implementation of the interface part of the simulator environment. First, we

discuss how references to scalar variables can be captured. Thereafter, we extend

this technique to arrays.

3.1 Scalar variables

During the simulation of the memory system, every reference to a variable in

the program is represented by a triple of the following form, where tp 2 fRD,WRg,

ad denotes the address of a variable with a size of sz bytes:

(tp; ad; sz)

A simple method to produce such a trace by explicit source code modi�cation

is shown below. Consider, for example, the following statement:

int a,b,c,d;

a = b + c + d;

We use tracing functions RD_int() and WR_int() to generate address references,

as described below:

int RD_int(int* address)

{ TRACE <RD, address, sizeof(int)>;

return (*address);

}

int* WR_int(int* address, int value)

{ TRACE <WR, address, sizeof(int)>;

(*address) = value;

}

We may rewrite the original statement into the following construct:

int a,b,c,d;

WR_int(&a,((RD_int(b)+RD_int(c))+RD_int(d)));

It records read actions on variables b, c, and d, followed by a write action on

variable a. However, it does not record a write action on a temporary variable (or

a register) which could be used to store b+c. In that case, a further modi�cation

of this statement yields references to this temporary variable as well, as can be

seen below:

int a,b,c,d,tmp;

WR_int(&a,(RD_int(WR_int(&tmp,(RD_int(b)+RD_int(c))))+RD_int(d)));

6

Clearly, this approach is cumbersome and hence not suitable for quick hand-

modifying prototyping. Furthermore, the generated trace depends on the archi-

tecture which executes the instrumented application code.

Two aspects of a scalar variable i are visible to the programmer during

program execution: (1) the right-hand-side value (denoted by i), and (2) the

left-hand-side value (or address, denoted by &i). Less visible is the fact where

and how the data corresponding to such a variable (or corresponding to such an

address) is stored. For example, if an integer variable i is stored in a register

bank or in a cache, a reference to i is performed in a few nanoseconds, while

this may cost many milliseconds if it is stored in a memory page which has been

swapped to disk. Usage of the program visible address &i makes generated

address references compiler-dependent. Hence, a method is wanted to associate

a possibly di�erent address with each variable which is used in the generated

references. We may now store this extra information together with program

variables, by implementing a class which simulates variables. Combining this

approach with overloading all operators minimizes rewriting of source code.

We describe part of the implementation of the class simint, which simulates

integer variables. This class is a derived class from a class memobj, which is

used to handle objects stored in memory. A simint object s (simulating an

integer i) of class memobj has an address s.address which is assigned to it

by its constructor. The computation of this address is completely independent

from the address &i as it has been assigned by the compiler, creating platform-

independent simulation. It also stores its size and remembers in which memory

level it is stored (for example, cache, integer register bank, or oating point

register bank).

Figures 1(a..c) show part of this implementation. Every constructed object of

memobj is automatically allocated an address. Member functions memobj::RD()

and memobj::WR() generate on-the-y references to the appropriate memory

level.

Rather than using class simint to de�ne variables in the application source

code directly, this class is only used to derive classes c_int and r_int. The

former class is used for variables which are not stored in the register bank (array

elements and global variables), while the latter class is used for for register vari-

ables (for dynamic variables). We did not implement a derived class t_int for

temporaries. Instead, elements of class simint are treated as temporaries by de-

fault. This way, all compiler generated temporaries are treated correctly. This

allows replacing integer formal parameters in procedure headings by simint.

Calls involving actual arguments of either type c_int, r_int, and int are al-

lowed. Calls with actual arguments of type int are handled by a temporary

variable of type simint which is now known (to the interface) to be a temporary.

Hence, calls to procedures remain unmodi�ed.

Figure 1(e) shows the calls to the tracing functions RD() and WR() when the

statement in �gure 1(d) is executed. Variables tmp0 and tmp1 are automatically

generated by the constructor call in the return statement of the operator+ func-

tion. The references to variable tmp1 are redundant, and the use of advanced

compiler techniques should be able to remove this constructor call. However,

this call is not removed by the currently used compiler (g++, version 2.6.3).

To overcome this problem, a detection method has been incorporated in the

7

class memobj { // Class for data objects stored in memory

int memloc, size;

int in_ml; // stored in memory level:

// INTREG_LEVEL integer register bank

// FPREG_LEVEL f.p. register bank

// CACHE_LEVEL cache

public:

memobj(const int sz, const int memory_level=INTREG_LEVEL)

{ size = sz;

in_ml = memory_level;

memloc = memory_allocate(size, in_ml);

}

void RD() const {memsys::mlp[in_ml]->mlRD(memloc,size,memsys::time);}

void WR() const {memsys::mlp[in_ml]->mlWR(memloc,size,memsys::time);}

};

(a) Class memobj

class simint : public memobj {

int value;

public:

simint(const int dummy, const int memory_level): memobj(sizeof(int),memory_level){}

// ^dummy to enable C++-like initializations simint i=9; simint j(10);

simint(const int s) : memobj(sizeof(int)) { WR(); value=s; }

simint(simint& s) : memobj(sizeof(int)) { s.RD(); WR(); value=s.value; }

simint& operator=(const simint& s) { s.RD(); WR(); value=s.value; return *this; }

friend simint operator+ (const simint& a, const simint& b);

}

simint operator+ (const simint& a, const simint& b)

{ a.RD();b.RD();return simint(a.value + b.value);}

(b) Class simint

class c_int : public simint {

public:

c_int() : simint(0,CACHE_LEVEL){};

c_int(const int s) : simint(0,CACHE_LEVEL){ WR(); value=s; }

c_int(const simint& s) : simint(0,CACHE_LEVEL){ s.RD(); WR(); value=s.value; }

c_int& operator=(const simint& s) { s.RD(); WR(); value=s.value; return *this; }

};

(c) Class c_int

c_int a,b,c,d;

a=b+c+d;

(d) Code example

b.RD() c.RD() tmp0.WR() tmp0.RD() d.RD() tmp1.WR() tmp1.RD() a.WR()

(e) Calls to RD() and WR()

Figure 1: Implementation of integer simulating classes

8

interface to remove these redundant references. This method delays the gener-

ation of a write reference to the simulator until the next reference is made. In

case this reference is a read of the same register within an assignment operator,

the write/read combination is redundant and hence can be skipped. Likewise,

if this reference is to another variable, or if it is a read outside an assignment

operator, the delayed write reference is not redundant.

Similar classes were written for simdouble and simfloat. Multiple inclusion

of the source code using appropriate macro de�nitions avoids code duplication.

The total interface as described above consists of approximately 1000 lines.

The de�nition of the overloaded logical operators && and || does not agree

with the behavior of the corresponding built-in operators. The built-in operator

&& does not evaluate its second argument, if the �rst argument evaluates to true.

There is no way to mimic this approach with the following overloaded operator

operator&&(const simint& a, const simint& b)

Would overloading this operator be used, it would invalidate program se-

mantics in case the application code contains constructs like the one below:

int valid[N];

int n=0;

while ((n < N) && valid[n]) n++;

However, we circumvented this problem by explicit casting the operands of

type simint to int and the integer result back to a temporary simint. Hence,

every use of this operator (viz. f1 && f2) is modi�ed into a form where explicit

casting is performed (viz. (simint(((int) f1) && ((int) f2)))). A similar

procedure is applied to the logical operator ||.

9

3.2 Pointers and arrays

So far, only scalar variables have been discussed. Other types of variables, in-

cluding pointers, arrays, and structures, are more di�cult to deal with. There

is no simple solution to treat pointers in a similar manner as scalar variables.

However, since our current research is heavily focused on sparse matrix com-

putations, and most sparse matrix application codes are written in Fortran,

we did not consider the use of more advanced features like pointers and multi-

dimensional arrays.

Although it is possible to declare arrays of c_int, this results in many in-

dependent calls to memory_allocate(). This may scatter the elements over

the memory, while arrays are usually stored in one contiguous piece of memory.

Therefore, we enforce that before an array initialization occurs, the memory

allocator is noti�ed about the fact that the subsequent size element initial-

izations should be treated as elements of the same array. In this manner, the

memory allocator can assure that these elements will be stored in contiguous

memory.

Figure 2 shows class array which `captures' one-dimensional array initializa-

tions. References to array elements are captured by the overloaded operator[],

which applies both to left-hand-side and right-hand-side usage of array elements.

class int_array {

c_int *pnt;

public:

int_array(int s)

{ if (s != 0) {

inform_memory_allocator(s, sizeof(int));

pnt=new c_int[s];

} else {

pnt=NULL;

};

}

~int_array() { delete[] pnt;}

c_int& operator[](int el) const { return pnt[el]; }

}

int_array A(10); // simulates int A[10];

A[3] = 4;

Figure 2: Implementation and use of array simulation

10

3.3 Identifying code fragments

Obviously, we have to identify every code fragment for which separate re-

sults have to be gathered. This identi�cation is performed using the construc-

tor/destructor facility o�ered to us by C

++

, as illustrated in �gure 3. The �rst

line of each code fragment consists of an initialization of an automatic variable,

called dummy. Di�erent identi�ers, (for example, FP in �gure 3(b)) are assigned

to separate instances of this variable. The constructor belonging to the class

codename of this object, noti�es the simulator about the fact that a code frag-

ment called FP is entered. Likewise, the destructor ags the exit of a code

fragment. Figure 3(c) shows how simulation results can be obtained for each

variable reference within a statement individually, by using temporary float

variables dv and rs, whose use is not captured.

VAL[i] = VAL[i] - DENSEVAL[ind];

(a) Original code fragment

{ codename dummy(FP);

VAL[i] = VAL[i] - DENSEVAL[ind];

}

(b) Code, to identify a statement.

{ float dv, rs;

{ codename dummy(FP1);

dv = DENSEVAL[ind];

}

{ codename dummy(FP2);

rs = VAL[i] - dv;

}

{ codename dummy(FP3);

VAL[i] = rs;

}

}

(c) Code, to identify each array reference

Figure 3: Instrumentation of code fragment

11

4 An example simulation

This section describes an example simulation run and shows a part of the output

which is produced by the simulator.

4.1 Simulated architecture

The simulator models the memory hierarchy according to current state of the art

and announced technology. Memory is either a banked memory or a Rambus[9]

memory system. We use the cache-time analysis tool `cacti' [22] to predict the

access time of a cache, since access time changes with technology, size, line size,

and associativity.

The architecture in this simulation example is a 3-level memory, consisting

of standard main memory, and two caches, called L2-cache, and (on-chip) L1-

cache. We present some of the reported data from the lowest memory level, a

16 kB direct-mapped cache, with write-allocate copy-back strategy, and 16 byte

line size.

4.2 Application

Various data structures have been developed to store sparse matrices e�ciently

[10, 12, 15, 18, 19]. The choice of the data structure for a sparse matrix is one of

the major factors which determines performance. In many cases sparse vector

storage is chosen for sparse matrices, because it is easy to handle, performs

decently, and has low storage overhead [4, 6]. Row-wise storage has a high

degree of spatial locality, resulting in a high cache hit rate. When the data

structure is not static, the costs of element deletion and insertion is reduced if

a linked list data structure is used. Linked list handling shows, however, very

poor spatial locality. The simulation in this section uses linked lists to illustrate

this e�ect.

A frequently used sparse matrix application is Cholesky decomposition.

The application code we use is a column-wise Cholesky decomposition of a

symmetric matrix from the Harwell-Boeing test set of matrices. This matrix,

bcsstk14.rsa, has order 1806, and 32630 non-zero elements in the lower tri-

angular part. To reduce the amount of �ll-in the matrix is reordered with

a minimum-degree algorithm. We used the minimum-degree implementation

which is available in the software package SMMS93, written by F. Alvarado[2].

Figure 4 shows the matrix before and after reordering. The matrix is stored as

a set of sparse vectors. Each sparse vector is stored as a linked list. For more

details, we refer to [3, 4, 6, 14, 23].

The application consists of subsequently initializing data structures, reading

a sparse matrix, factorizing, and �nally writing the output matrix. In between

stages the memory system is ushed. Scalar variables are ignored in this exam-

ple. Only references to array elements are traced.

4.3 Simulation results

Simulator results show that 60.2 % of the total simulated execution time is

spent in a function called SpMinDense. For this function, we present part of the

12

(a) Matrix

(b) Minimum degree reordered matrix

Figure 4: Matrix bcsstk14

statistics, output by the simulator, for the L1-cache in �gure 5. The �rst col-

umn presents the simpli�ed code, with the instrumentation code removed. The

second column shows the number of array accesses made to the corresponding

line line in the source code. The third column shows the time spent for these

array references. The fourth column shows the hit rate in L1-cache, while the

measured average miss penalty is shown in the last column.

During memory accesses to consecutive locations, spatial locality is respon-

sible for a hit rate of

100(N�1)

N

%, where N is the number of data items per

cache line. For the fourth source code line, int ind = IND[i], this hit rate

would be 75 %, since an integer is 4 bytes and the cache line size is 16 bytes.

For the read reference to VAL[i], which is an 8 byte data item, this hit rate

would be 50 %. The real hit rate is, of course, higher due to temporal locality,

or lower due to cache interferences. Measurements for these hit rates are 68.2

13

Accesses Time Hit Miss

Code spent rate penalty

(x1000) (%) (%) (ns)

SpMinDense(int first);

int i;

for (i=first; i; i=LNK[i]) { 6424 13.7 68.4 25.7

int ind = IND[i]; 6424 13.7 68.2 26.8

if (DENSEBIT[ind]) { 6424 4.9 96.0 32.1

VAL[i] = VAL[i] - DENSEVAL[ind];

\ \ _______ 4727 4.8 90.1 28.6

\ ___________________ 4727 14.8 44.9 26.4

___________________________ 4727 5.2 100.0

DENSEBIT[ind] = false; 4727 6.0 99.9 41.2

}

}

Total (rd) 1123 100.0 74.2 26.6

(wr) 99.9 41.2

Figure 5: Simulation results L1-cache for SpMinDense

% and 44.9 %. Since part of this hit rate is due to temporal locality, we see that

spatial locality is only partially useful for this application. This con�rms that

linked lists show poor spatial behavior.

14

5 Conclusions

In this paper we have presented a simulator which performs address reference

trace capturing at source code level, using C

++

classes and operator overload-

ing. This technique aims at minimizing code rewriting. Rewriting is limited

to the following two rewriting methods. Formal parameters, scalar variables

and arrays are replaced by classes which simulate their behavior. Further, a

peculiarity of the logical operators || and && has to be imitated by rewriting

all expressions involving these operators. In addition, if the source code frag-

ment which generates an address reference has to identi�ed, an instrumentation

statement is required.

We have shown simulator output for an example sparse matrix application.

The simulator presents a detailed analysis of the performance of all simulated

memory levels, and relates this performance to speci�c code fragments or in-

dividual variable references. This makes it a useful tool for the evaluation of

strategies to increase spatial or temporal locality, as well as for the evaluation

of complete hierarchical memory systems.

Acknowledgements The authors would like to express their thanks to

Aart Bik for his helpful comments.

15

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers Principles, Techniques

and Tools. Addison-Wesley publishing company, 1986.

[2] Fernando L. Alvarado. The Sparse Matrix Manipulation System: User

and Reference Manual. The University of Wisconsin, Madison, Wisconsin

53706, USA, May 18, 1993. SMMS93 software and documentation available

from ftp://eceserv0.ece.wisc.edu/pub/smms93.

[3] Jack J. Dongarra, Iain S. Du�, Danny C. Sorensen, and Henk A. van der

Vorst. Solving Linear Systems on Vector and Shared Memory Computers.

Society for Industrial and Applied Mathematics, 1991.

[4] Iain S. Du�, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse

Matrices. Oxford Science Publications, 1990.

[5] Dennis Gannon et al. SIGMA II: A tool kit for building parallelizing com-

pilers and performance analysis systems. Department of Computer Science,

Indiana University, 1992.

[6] Alan George and Joseph W.H. Liu. Computer Solution of Large Sparse

Positive De�nite Systems. Prentice-Hall Inc., 1981.

[7] Jim Handy. The Cache Memory Book. Academic Press, 1993.

[8] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Mateo,

California, 1990.

[9] Rambus Inc. Architectural overview, 1993.

[10] A. Jennings. A compact storage scheme for the solution of symmetric linear

simultaneous equations. The Computer Journal, Volume 9:281{285, 1966.

[11] Wayne Kelly and William Pugh. Determining schedules based on perfor-

mance estimation. Technical Report CS-TR-3108, also UMIACS-TR-93-67,

Dept. of Computer Science, Univ. of Maryland, College Park, MD 20742,

December 1993.

[12] S.J. Donal T. MacVeigh. E�ect of data representation on cost of sparse

matrix operations. Acta Informatica, 7:361{394, 1977.

[13] David A. Patterson and John L. Hennessy. Computer Organization & De-

sign: The Hardware/Software Interface. Morgan Kaufmann Publishers,

Inc., San Mateo, California, 1994.

[14] Sergio Pissanetsky. Sparse Matrix Technology. Academic Press, London,

1984.

[15] Udo W. Pooch and Al Nieder. A survey of indexing techniques for sparse

matrices. Computing Surveys, 5(2):109{133, June 1973.

16

[16] Betty Prince. Semiconductor Memories. John Wiley & Sons, 2nd edition

edition, 1991.

[17] Steven A. Przybylski. Cache and memory hierarchy design : a performance-

directed approach. Morgan Kaufman Publishers, 1990.

[18] Youcef Saad and Harry A.G. Wijsho�. A benchmark package for sparse

computations. In Proceedings on International Supercomputing, pages 500{

509, 1988.

[19] Robert Schreiber. A new implementation of sparse gaussian elimination.

ACM Transactions on Mathematical Software, 8(3):256{276, September

1982.

[20] Michael D. Smith. Tracing with pixie. Center for Integrated Systems,

Stanford University, Stanford CA 94305-4070, April 1991. Version 1.1.

[21] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

second edition edition, 1993.

[22] Steven J.E. Wilton and Norman P. Jouppi. An enhanced access and cycle

time model for on-chip caches. WRL Research Report 93/5, Digital Western

Research Laboratory, 250 University Avenue, Palo Alto, California 94301

USA, July 1993.

[23] Zahari Zlatev. Computational Methods for General Sparse Matrices.

Kluwer Academic Publishers, 1991.

17

