
A Comparison of Parallel Programming Paradigms and Data

Distributions for a Limited Area Numerical Weather Forecast Routine

Robert van Engelen

�

& Lex Wolters

y

High Performance Computing Division

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, the Netherlands

frobert,llexxg@cs.LeidenUniv.nl

Abstract

In this paper the impact of parallel programming paradigms and

data distributions on the performance of a parallel �nite di�erence

application is investigated. The �nite di�erence application is one

of the kernel routines of a limited area numerical weather forecast

model that is in use for producing routine weather forecasts at

several European meteorological institutes. Results are shown for

CRAY T3D and MasPar systems.

1 Introduction

The hirlam (HIgh Resolution Limited Area Model) sys-

tem [1] is a production code written in Fortran 77. This

state-of-the-art limited area numerical weather forecast sys-

tem has been optimized for e�cient execution on vector ma-

chines. However, even the computer power of vector archi-

tectures limits the model resolution to values that are un-

satisfactory from a physics point of view. Therefore lower

resolutions are enforced, since the weather forecasts must be

available within a reasonable amount of time. These consid-

erations focused current investigations on the design of par-

allel implementations of the hirlam system [2, 3, 4]. These

investigations were mainly aimed at data-parallel implemen-

tations and parallel sub-domain implementations employing

a domain decomposition approach on distributed memory

architectures. However, it is not clear yet what the impact

of data distributions and the employment of other paral-

lel programming paradigms will be on the performance of a

parallel implementation of the system. Since it is impossible

to investigate these topics for the complete hirlam code, we

will consider them only for a kernel routine, the dyn rou-

tine, which is one of the most time consuming parts of the

hirlam system. In general, solving nonlinear partial di�er-

ential equations by means of �nite di�erence methods results

in explicit coding of di�erence schemes. In the hirlam sys-

tem the dyn routine implements these schemes.

�

Support was provided by the Foundation for Computer Sci-

ence (SION) of the Netherlands Organization for Scienti�c Research

(NWO) under Project No. 612-17-120.

y

Support was provided by the Esprit Agency EC-DGIII under

Grant No. APPARC 6634 BRA III.

Published in proceedings of the 9

th

ACM International

Conference on Supercomputing, July 1995, Barcelona,

Spain, ACM Press, pp. 357{364

Several data distributions and parallel programming para-

digms will be investigated in this paper for the implemen-

tation of a parallel dyn code on two di�erent distributed

memory massively parallel computers. The selected archi-

tectures are the CRAY T3D and the MasPar computer sys-

tems. In general, the choice of data distribution and par-

allel programming style for a parallel dyn implementation

have immediate consequences for the design of a parallel

implementation of the hirlam system. Among the most

important consequences are performance, portability, and

generality of the parallel code.

This paper is organized as follows. Section 2 introduces the

hirlam system and briey reviews the dyn routine. Sec-

tion 3 describes the parallel platforms used for the inves-

tigation in this paper. Data distributions are discussed in

Section 4. In Section 5, several parallel implementations of

the dyn routine are described using various parallel pro-

gramming paradigms. Performance results are presented

and discussed in Section 6. To conclude, Section 7 sum-

marizes our results and conclusions.

2 Overview of hirlam

In this section the hirlam production code [1] and the dyn

routine in particular, are briey reviewed. The hirlam sys-

tem was developed by the hirlam-project group, a coop-

erative project of Denmark, Finland, Iceland, Ireland, the

Netherlands, Norway, and Sweden.

The hirlam weather forecast system contains �ve prognos-

tic variables: two horizontal wind components, temperature,

speci�c humidity, and surface pressure. All model parame-

ters are kept in memory. The core of the hirlam system

is provided by the `dynamics' and the `physics' routines.

In the dynamics routines, a set of three-dimensional cou-

pled nonlinear hyperbolic partial di�erential equations is

solved. This set of so-called Primitive Equations, see e.g. [5],

contains two horizontal momentum equations, a hydrosta-

tic equation, a mass continuity equation, a thermodynamic

equation, and a continuity equation for water vapor. Sev-

eral solution methods are implemented. Most of them use

explicit Eulerian gridpoint �nite di�erencing on a staggered

Arakawa C-grid with centered space-di�erencing and leap-

frog time-di�erencing, resulting in a second order accuracy

of the approximations. The physics routines compute the

parameterized processes which are described by the aggre-

gate e�ect of the physical processes with scales smaller than

the model resolution. Almost all the physical processes are

one-dimensional in vertical columns. The physics model can

1



be easily solved by N disjunct processes if the data is hor-

izontally distributed over a two-dimensional processor grid,

where N is the number of gridpoints in the horizontal.

In the dynamics part the dyn routine computes the explicit

tendencies of the �ve prognostic variables for each time step.

In the routine �nite di�erence techniques are adopted on a

three-dimensional grid.

As an illustrative example of a �nite di�erence technique,

consider the one-dimensional advection of temperature. In

analytic form, one has

@T

@t

= u

@T

@x

: (1)

In the most simple form (no staggering of the grid) �nite

di�erencing of equation (1) with a leap-frog time-stepping

results in

T (x; t+�t) = T (x; t��t)+

�t

�x

u(x; t) � (T (x+�x; t)� T (x��x; t)); (2)

where T (x; t) is the temperature in gridpoint x at time t,

u(x; t) is the wind-component in the x-direction in gridpoint

x at time t, �t is the time step, and �x is the grid-distance

in the x-direction. In the dyn routine the explicit tendencies

of the �ve prognostic variables are computed for each hori-

zontal layer of the three-dimensional grid, using similar �nite

di�erence equations. On parallel architectures the ��x in

equation (2) can result in communications between proces-

sors if the grid is distributed over the processor array. Due

to optimizations on vector architectures the three- and two-

dimensional �elds in the hirlam reference code are stored

as two- and one-dimensional arrays, respectively, where the

horizontal dimension is reduced. In total, each layer re-

quires 28 one-dimensional loops over the horizontal grid to

compute the explicit tendencies.

3 Overview of the Parallel Platforms

In this section the CRAY T3D and MasPar massively par-

allel processing systems are briey reviewed. Both systems

are used for the investigation in this paper.

T3D. The CRAY T3D system is a scalable mimd system.

This distributed memory concurrent computer (or multi-

computer) comprises either 32, 64, 128, 256, 512, 1,024, or

up to 2,048 processing elements (PEs) arranged in a three-

dimensional torus. Each PE contains a DEC chip 21064

Alpha processor operating at a 150 MHz clock rate. This

superscalar single chip processor has a nominal peak per-

formance of 150 Mops with oating-point operations being

performed in 64-bit IEEE format. Thus, a T3D system has

a peak performance of 4.8 Gops (32 PEs) up to 300 Gops

(2,048 PEs).

Local memory within each PE is part of a physically

distributed, logically shared memory system. Each PE can

access the 8 or 32 Mbytes of local memory of another PE

without involving the microprocessor in that PE. The data

channels of the interprocessor network are bidirectional and

independent in each of the three dimensions. The theoretical

bandwidth of the network is 300 Gbytes/s for a 1024 PE

T3D system. For more details the reader is referred to [6].

MasPar. A MasPar system has a simd architecture with

from 1,024 (1K) up to 16,384 (16K) PEs, arranged in a two-

dimensional mesh with toroidal wrap-around. Two types of

MasPar systems are distinguished: MasPar MP-1 and Mas-

Par MP-2 systems. In a MasPar MP-1 system, each PE

is a 4-bit processor while the newer MP-2 systems contain

32-bit processors. Each processor has either 16 Kbytes or

64 Kbytes of local data memory. The theoretical peak per-

formance of a 16K MasPar MP-1 system is 26,000 MIPS

and 550 Mops (64-bit IEEE oating point) or 1,200 Mops

(32-bit IEEE oating point). For a 16K MasPar MP-2 sys-

tem, these numbers are 68,000 MIPS and 2.4 or 6.3 Gops,

respectively.

The Array Control Unit (ACU) of a MasPar system con-

trols the PEs. The PE-array and ACU form the Data Paral-

lel Unit (DPU). Besides the DPU, the MasPar system needs

a front-end (FE) that serves as an interface to the DPU.

The FE is the host for tools and compilers.

The communication networks of the MasPar MP-1 and

MP-2 are exactly the same. Interprocessor communication

takes place either through the Xnet or through channels con-

trolled by the Router. The Xnet provides nearest-neighbor

communication in the horizontal, vertical, and diagonal di-

rections. The theoretical bandwidth of the Xnet equals

23 Gbytes/s for a 16K MasPar system. Global interproces-

sor communication is handled by the router, having a the-

oretical bandwidth of 1.3 Gbytes/s. For more details the

reader is referred to [7].

4 Data Distributions

The data distribution or data layout within the hierarchical

memory of a concurrent computer is critical in determining

the performance and scalability of the parallel code. In the

design of parallel dyn code one has to choose among several

ways of distributing the data, in order to obtain a good load

balance.

4.1 Blocked versus Scattered Data Decompositions

Two common data decompositions are the blocked and the

scattered (or cyclic) decompositions [8, 9]. Consider a vector

of lengthM and a multicomputer comprising N

p

processors.

The blocked decomposition, �

M;N

p

, assigns contiguous en-

tries in the global vector to the processors in blocks

�

M;N

p

(I) � (bI=mc; I mod m); (3)

where m = dM=N

p

e. That is, if �

M;N

p

(I) = (p; i), the entry

in the global vector with index I is assigned to processor p

where it is stored in a local vector with index i. The scat-

tered decomposition, �

M;N

p

, assigns contiguous entries in

the global vector to consecutive processors in the processor

array

�

M;N

p

(I) � (I mod N

p

; bI=N

p

c): (4)

For matrix problems the blocked and scattered decomposi-

tions can be applied over rows and columns to obtain blocked

and scattered matrix decompositions. Assume that the N

p

processors are arranged in a two-dimensional processor ar-

ray with P rows and Q columns, N

p

= PQ. Each processor

can be uniquely identi�ed by the pair (p; q), 0 � p < P ,

0 � q < Q denoting its position on the processor grid. Then,

the decomposition of a M � N matrix can be regarded as

the tensor product, �

M;P

(I)
�

N;Q

(J), of two vector decom-

positions, �

M;P

and �

N;Q

. The mapping �

M;P

decomposes

theM rows of the matrix over the P rows of processors, and

�

N;Q

decomposes the N columns of the matrix over the Q

2



0

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

0 7

7

0

0 7

7

0 0

00

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

14

15

15

15

15

1

11

12

22

203

33

3

(a) (b)

Figure 1: (a) Blocked and (b) scattered decompositions of

a 8� 8 matrix on a 4� 4 processor array. The thick square

represents one `stamp' of the processors grid on the matrix.

columns of processors. Thus, for the blocked decomposition

of a M �N matrix we have

�

M;P

(I)
 �

N;Q

(J) = ((p; q); (i; j)); (5)

where �

M;P

(I) = (p; i) and �

N;Q

(J) = (q; j), see Figure 1a.

Analogously, for the scattered decomposition we have

�

M;P

(I)
 �

N;Q

(J) = ((p; q); (i; j)); (6)

where �

M;P

(I) = (p; i) and �

N;Q

(J) = (q; j), see Figure 1b.

So, the matrix entry with global index (I; J) is assigned

to the processor at position (p; q) on a P � Q processor

grid, where it is stored in a local matrix with index (i; j).

Informally speaking, the scattered decomposition of a vector

or matrix can be described by `layering' the vector or matrix

on the processor grid. For more details the reader is referred

to [9].

4.2 Matrix to Vector Reductions

As described in Section 2, the dyn routine in the hirlam

reference code stores the three- and two-dimensional �elds in

two- and one-dimensional arrays by applying a dimensional

reduction to the horizontal grid component. In general, a

matrix can be reduced to a vector simply by applying a

numbering scheme to the matrix entries. Two basic number-

ing schemes are the column-major and row-major schemes.

More formally, the column-major numbering of the entries

of a M �N matrix is de�ned as

�

N

(I; J) � I +NJ: (7)

Thus, the (I; J) index of a M �N matrix receives number

I + NJ . For the one-dimensional column-major blocked

decomposition of a M �N matrix on a one-dimensional N

p

processor array we have:

(�

MN;N

p

� �

N

)(I; J) = (p; i): (8)

Analogously, for the one-dimensional column-major scat-

tered decomposition we have

(�

MN;N

p

� �

N

)(I; J) = (p; i): (9)

So, the matrix entry with global index (I; J) is assigned to

processor p, where it is stored in a local vector with index i.

The row-major numbering of the entries of a matrix and the

row-major matrix decompositions are de�ned analogously.

Standard Fortran 77 compilers adopt the column-major

numbering scheme for storage of matrices, which is in ac-

cordance with the choice of dimensional reduction in the

original dyn code.

5 Parallel dyn Implementations

In the previous section the data distributions were described

that can be exploited for the distributed storage of the arrays

containing the three- and two-dimensional �elds in a parallel

implementation of the dyn routine. Recall from Section 2

that due to the �nite di�erence schemes in the dyn routine

many references to nearest neighboring grid points have to

be made. For sequential and vector computers this poses

no problem. For distributed memory parallel computers,

however, these references may become interprocessor com-

munications with impact on performance. Furthermore, the

performance of parallel codes employing di�erent parallel

programming paradigms can di�er signi�cantly. Table 1 de-

picts the various parallel programming paradigms employed

for the parallel dyn implementations presented in the next

sections.

5.1 Data Parallel and Work Sharing

The CRAY T3D and MasPar systems, among many other

parallel platforms, allows data-parallel code for parallel exe-

cution. In Fortran 90 data-parallel code, array assignments

are implicitly executed in parallel. Investigations of data-

parallel hirlam code can be found in [3]. In work-sharing

code the work done by loop iterations over array elements

is equally shared among the available processors.

We have coded four data-parallel dyn implementations: two

one-dimensional dyn codes employing blocked and scattered

decompositions of the two-dimensional horizontal array com-

ponents which are reduced to one dimension, and two two-

dimensional dyn codes employing blocked and scattered de-

compositions of the two-dimensional horizontal array com-

ponents. The vertical array component is collapsed (or de-

generated), i.e. `stacked' onto the processor grid.

Automatic translation of the sequential Fortran 77 dyn

code to data-parallel Fortran 90 code, see Figures 2a and 2b,

was provided by the Vast-II compiler [10], being part of the

MasPar software. This way, both one- and two-dimensional

data-parallel dyn codes were obtained. The translation re-

sulted in data-parallel codes where each code contained 56

data-parallel array assignments for each horizontal layer of

the integration area.

T3D. The blocked and scattered decompositions were ob-

tained with the `SHARED' compiler directives. In this respect,

it is important to stress that the current CRAY T3D systems

require the non-collapsed dimensions of these distributed ar-

rays to be integer powers of two.

The current implementation of the T3D Fortran com-

piler translates data-parallel code to work-sharing code [11],

see Figures 2b and 2c. By specifying for each loop which

array elements reside on what processor in the work-sharing

global address local address

space space

implicit data parallel and

communication work sharing

explicit shared memory message passing

communication put/get

preceding/deferred sub-domain

communication splitting

Table 1: Parallel programming paradigms.

3



DO 10 J=2,N-2

DO 20 I=2,M-2

B(I,J)=(A(I+1,J)-A(I,J))

+ *(A(I,J+1)-A(I,J))

20 CONTINUE

10 CONTINUE

(a)

B(2:M-2,2:N-2)=(A(3:M-1,2:N-2)

+ -A(2:M-2,2:M-2))

+ *(A(2:M-2,3:N-1)

+ -A(2:N-2,2:N-2))

(b)

CDIR$ DOSHARED (J,I) ON B(I,J)

DO J=2,N-2

DO I=2,M-2

B(I,J)=(A(I+1,J)-A(I,J))

+ *(A(I,J+1)-A(I,J))

END DO

END DO

(c)

Figure 2: Examples of (a) sequential code, (b) data-parallel code, and (c) work-sharing code.

code, the loop iterations over array elements will be equally

shared among the available processors. Implicit barrier-

synchronization points are placed at the end of the work-

sharing loop constructs if the data dependency analysis of

the compiler indicates this necessity. However, in order to

obtain maximum e�ciency on the T3D system, all implicit

barriers were removed and explicit barriers were added at 8

synchronization points in the data-parallel dyn code.

MasPar. Arrays stored on the DPU are distributed over

the PE-array with the default scattered decomposition. To

obtain blocked decompositions for all distributed arrays, the

`-block' compiler option was used. In addition, the proper

alignment of arrays on the two-dimensional PE-array with

respect to their use was controlled with `MAP' compiler direc-

tives. For the one-dimensional dyn code, vectors are row-

by-row mapped on the two-dimensional PE-array.

From a portability and maintenance point of view, the data-

parallel implementation of the dyn routine is the most pre-

ferred alternative of all parallel programming paradigms.

The data-parallel code can be easily obtained from the orig-

inal dyn code with the aid of the Vast-II compiler. The

code can be run on both MasPar and CRAY T3D systems

without many modi�cations.

5.2 Sub-Domain Splitting

Another attractive method for the parallelization of the dyn

routine is provided by a domain decomposition approach, see

also [4]. Informally speaking, the nature of the model pro-

vided by dyn allows a decomposition of the global model

into local sub-models which can be solved separately on

parallel architectures. The local models can be distributed

among the available processors such that each processor exe-

cutes the sequential dyn routine in parallel. Distributing the

local models can only be accomplished if the data of the hor-

izontal component of the global three- and two-dimensional

�elds are decomposed using the two-dimensional blocked de-

composition. As described in Section 2, computation of the

explicit tendencies of the prognostic variables on a grid point

involves references to data at the neighboring grid points.

As a result, the sub-grids of the local models have mutually

overlapping zones, see Figure 3. The size of the overlap at

the upper and left borders and the size of the overlap at

the lower and right borders are one and two grid points, re-

spectively. Therefore, application of sub-domain splitting in

dyn involves the storage of additional data in the overlap

zones that has to be communicated between the processors

in advance. This way, the domain decomposition approach

`pushes' all communications to the outside of the routine

and no synchronization of the processors is required within

the routine. In principle, sub-domain splitting of dyn pro-

vides portable code for mimd platforms. No modi�cations

within the original dyn code are necessary, which makes

maintenance of the parallel dyn code easy. However, this

method is not very suitable for MasPar systems, since over-

lapping zones are di�cult to express in data parallelism.

For this reason we have coded sub-domain splitting on the

CRAY T3D only.

5.3 Adding Explicit Message Passing

In the previous section, the domain decomposition approach

was used to obtain a parallel dyn code by combining the ex-

ecution of sequential dyn code on separate processors in par-

allel. This way, a coarse-grain parallel implementation was

obtained with all communications `pushed' to the outside of

the dyn routine. In this section two similar but �ne-grain

parallel implementations of dyn will be presented. Again,

the two-dimensional blocked decomposition of the horizon-

tal components of the three- and two-dimensional �elds is

applied. Furthermore, each block is extended by a `ring'

measuring one grid point in all four directions. The rings

bu�er the data at nearest neighboring grid points that reside

on the four logically adjacent processors. Explicit commu-

nications are required to exchange the updated data at grid

points that reside on adjacent processors.

We have implemented two parallel dyn codes on the

CRAY T3D system requiring explicit communications. One

code utilizes synchronous, the other asynchronous commu-

nications:

� Synchronous. Parallel Virtual Machine (PVM) mes-

sage passing.

� Asynchronous. Shared memory get using the T3D

`shared memory management' functions.

Shared memory functions, part of the CRAYT3D Fortran 77

libraries, perform remote `put' and `get' operations on the

local memory of remote processors. No handshaking mecha-

nism is required. Although a `shared memory put' operation

x

y

Figure 3: Decomposition of the horizontal grid into mutually

overlapping sub-grids. Each sub-grid is assigned to one of

the 4� 4 processors.

4



0

100

200

300

400

500

600

0 2000 4000 6000 8000 1000012000140001600018000

tim
e 

(m
s)

grid size

scattered
blocked

100 Mflops
200 Mflops

0

100

200

300

400

500

600

0 2000 4000 6000 8000 1000012000140001600018000

tim
e 

(m
s)

grid size

scattered
blocked

100 Mflops
200 Mflops

(a) (b)

Figure 4: (a) Total elapsed time of the one-dimensional and (b) two-dimensional work-sharing dyn codes executed with 64

PEs on the CRAY T3D.

is faster than a `get', the `put' operation requires the receiv-

ing processor to issue a data cache invalidate. Since this

is too expensive in general, asynchronous communication is

implemented using `shared memory get' function calls only.

For both codes, 9 communication phases are needed to up-

date the data in each horizontal layer. In each phase several

sends are issued resulting in a total of 26 data exchanges per

layer.

From a portability point of view, the parallel dyn code

with PVM communications should be preferred since the

code with asynchronous communications adopts the T3D-

speci�c `shared memory get' function calls. On the MasPar

system, however, no explicit message passing can be coded

in Fortran.

6 Performance Results

In this section the performance of the various parallel dyn

codes, described in the previous section, are compared on

CRAY T3D and MasPar systems.

The CRAY T3D system used for the investigation in this

paper is a T3D system with 32 Mbytes of local memory for

each PE. The cf77 release 6.0.2 Fortran compiling system

was used. The MasPar system used for the investigation in

this paper is a 1K MasPar MP-1 system (32�32 mesh) with

a DEC 5000/240 front-end. All tests were performed with

system release 3.2.0 of the MasPar software, which included

Vast-II 3.06 and the Fortran 90 compiler MpFortran 2.2.7.

The elapsed time presented in all �gures was determined

by taking the average of ten execution times of one call to

dyn, using the `irtc' intrinsic function on the CRAY T3D

system and using the `mpTimerStart' and `mpTimerElapsed'

intrinsic functions on the MasPar system. The standard

deviation turned out to be about 1% on both CRAY T3D

and MasPar systems.

6.1 Data Parallel and Work Sharing Results

In this section the performance of the data-parallel dyn

codes, described in Section 5.1, on CRAY T3D and Mas-

Par systems will be presented.

T3D. Unfortunately, the one-dimensional data-parallel dyn

code with blocked data decomposition computed incorrect

results on the CRAY T3D and generated run-time oating

point exceptions with scattered data decomposition, ren-

dering the one-dimensional data-parallel codes useless. For

this reason, it was decided to translate data-parallel code to

work-sharing code manually and use the work-sharing codes

on the T3D system instead. The array alignment was chosen

to be on the `assigned' array in the work-sharing code.

Figure 4 depicts the elapsed time of the one- and two-

dimensional work-sharing codes. The timings are given as a

function of the M �N grid size in the horizontal, M = N ,

with 16 levels. Iso-100 and iso-200 Mops curves are in-

cluded in the �gures, denoting the elapsed time of opti-

mally scalable 100 or 200 Mops (parallel) machines exe-

cuting dyn. Here, the number of oating point operations

executed by the two-dimensional dyn routine on a square

M �N horizontal integration area, M = N , with 16 levels,

is given by

#oating point operations =

77:6 � 10

3

� 13:2 � 10

3

�M + 3:78 � 10

3

�M

2

: (10)

This equation was derived using the CRAY T3D `Appren-

tice' performance tool which reports the number of oating

point operations executed in one run of the dyn routine.

The average number of oating point operations of dyn

executed on several di�erent grid sizes was used to derive

equation (10). This equation is independent of the number

of processors.

From Figures 4a and 4b the following observations can be

made. Firstly, the one-dimensional code is better scalable

with respect to the grid size. The reason is that the re-

duction of the two-dimensional horizontal integration area

to a one-dimensional area improves the load balance us-

ing N

p

= PQ processors if dM=P e � dN=Qe > dMN=N

p

e.

This is satis�ed for at least half of all grid sizes. Sec-

ondly, observe that the blocked one- and two-dimensional

work-sharing dyn codes have peak performances of around

200 Mops. The requirement that array dimensions should

be powers of two has a big impact on the blocked distribu-

tion, as can be seen by the large staircase-like steps. These

steps are a result of the improper load balance that oc-

5



0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

tim
e 

(m
s)

grid size

scattered
blocked

5 Mflops
10 Mflops

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

tim
e 

(m
s)

grid size

scattered
blocked

5 Mflops
10 Mflops

(a) (b)

Figure 5: (a) Total elapsed time of the one-dimensional and (b) two-dimensional data-parallel dyn codes executed on the

1K MasPar MP-1 system.

curs when the horizontal grid cannot be perfectly mapped

on the processor array. Thirdly, both scattered one- and

two-dimensional data-parallel codes have a lower peak per-

formance than the blocked codes. This is due to the fact

that for the codes with scattered data decompositions more

communications are required: adjacent grid points always

reside on di�erent processors. The average performance of

the scattered codes is 100{150 Mops. Note that the one-

dimensional scattered code has a somewhat higher perfor-

mance and is well scalable. The scalability can be explained

by the fact that for larger grids an increase of the horizontal

grid results in the `stacking' of one or more grid layers on

each processor.

MasPar. On the MasPar system 32-bit oating-point arith-

metic was used which su�ces for the arithmetic performed

in dyn. Figure 5 depicts the elapsed time of the one- and

two-dimensional data-parallel dyn codes. Iso-5 and iso-

10 Mops curves are included in the �gures.

The following observations can be made from Figures 5a

and 5b. Firstly, the one-dimensional code is better scalable

with respect to the grid size. Secondly, observe that the

blocked one- and two-dimensional data-parallel dyn codes

have a peak performance of around 10 Mops on the 1KMas-

Par MP-1. The scattered one- and two-dimensional data-

parallel codes have a somewhat higher performance with

exception of the two-dimensional code at grid sizes mea-

suring 32 � 32, 64 � 64, and 96 � 96, respectively. The

lower performance is due to less e�cient communications

with run-time library calls for the codes with the blocked

data distributions. As a result the amount of data ex-

changed is lower, while the communication costs are higher.

Thirdly, observe that the one-dimensional code show irreg-

ular time curves. The reason is that processor communi-

cation in the one-dimensional code is mainly diagonal over

the two-dimensional processor grid, because a reference to

an adjacent grid point may require communication with a

non-nearest neighbor processor. This is in contrast to the

two-dimensional code where an adjacent grid point is always

located on the same or a neighbor processor.

In comparing CRAY T3D and MasPar results, the follow-

ing observations can be made. The general expectation

that blocked decompositions require less communication and

hence, less time, is true only for the CRAY T3D system.

The codes with blocked data decompositions and speci�c

grid sizes give the highest performance, while the code with

one-dimensional scattered data decomposition gives a better

average performance.

6.2 Sub-Domain Splitting and Explicit Message Passing

Results

In this section the performance results of the parallel dyn

codes obtained by sub-domain splitting and explicit message

passing will be presented.

Theoretically, the parallel code that results from sub-domain

splitting in dyn as described in Section 5.2, is less scalable

compared to the data-parallel codes. This is due to the fact

that each local model can only be solved separately if the

local grid is extended with mutually overlapping zones. The

additional computational overhead involved becomes appar-

ent when the size of the overlapping zone is relatively large

compared to the size of the local grid. For such problems,

the scalability of the algorithm decreases with increasing

number of processors N

p

as follows. Consider a horizontal

integration area that comprisesM�N grid points. Let n, s,

e, and w denote the size of the north, south, east, and west

overlapping zones, respectively, and let P and Q denote the

number of processors in the longitudinal and lateral direc-

tions, respectively, such that N

p

= PQ. A lower bound for

the e�ciency of the parallel dyn code obtained by splitting

the horizontal grid into sub-domains, is

e�ciency =

sequential time

N

p

� parallel time

�

size of global grid

N

p

� size of local grid

�

MN

N

p

�

��

M�n�s

P

�

+ n+ s

�

�

��

N�e�w

Q

�

+ e+ w

�

; (11)

since the sequential time is proportional to the grid size. Re-

call that an algorithm is perfectly scalable if the e�ciency

depends only on the grain size, g = MN=N

p

, and not inde-

pendently on M , N , and N

p

. Only when g � 1, the scal-

ability of the algorithm approaches linearity. For the dyn

6



0

50

100

150

200

0 2000 4000 6000 8000 1000012000140001600018000

tim
e 

(m
s)

grid size

upper bound
measured

500 Mflops

Figure 6: Theoretical upper bound and measured total

elapsed time of the parallel sub-domain dyn code executed

with 64 PEs on the CRAY T3D.

routine the size of the overlapping zones in the four direc-

tions are n = 1, s = 2, e = 2, and w = 1, respectively. For

example, a theoretical e�ciency of at least 50% corresponds

to a grain size of g > 36, thus MN > 2304 for N

p

= 64.

The performance results of the sub-domain parallel code on

the CRAY T3D are shown in Figure 6. We have included

a theoretical upper bound on the total elapsed time which

corresponds to the e�ciency curve of a 500 Mops parallel

machine with N

p

= 64. This theoretical upper bound is

based on equation (11).

The following observations can be made from Figure 6.

Firstly, the peak performance of the parallel sub-domain

dyn code is around 500 Mops. Secondly, observe that the

actual performance of the parallel code is higher than the

theoretical performance based on equation (11). One reason

for this di�erence can be explained by the fact that not all

computations in dyn use all of the data stored in the overlap

zones. The second reason is that the small data cache of the

T3D has a higher hit ratio when the sub-domain dyn code

executes with small integration areas.

The performance results of the parallel dyn codes with ex-

plicit message passing on the CRAY T3D are shown in Fig-

ure 7, from which the following observations can be made.

Firstly, the peak performance of the parallel dyn code with

`shared memory get' communications is around 500 Mops.

Secondly, the `shared memory get' communications are sig-

ni�cantly faster than the PVM communications. In this

respect the CRAY T3D `Apprentice' performance tool re-

ported that 25 ms of the total execution time was spent on

sending data and 62 ms on receiving data with PVM mes-

sage passing. These measures were independent of the grid

size. Thus it can be concluded that PVM on the T3D re-

sults in a signi�cant overhead. This in contrast to `shared

memory management' functions that utilize the hardware

capabilities of the T3D directly with negligible overhead.

Finally, it can be concluded from Figures 6 and 7 that a

peak performance of 500 Mops is obtained for both the

parallel sub-domain dyn code and the `shared memory get'

dyn code on the CRAY T3D with 64 PEs.

0

50

100

150

200

0 2000 4000 6000 8000 1000012000140001600018000

tim
e 

(m
s)

grid size

PVM
shared memory get

500 Mflops

Figure 7: Total elapsed time of parallel dyn using PVM

message passing and `shared memory get' communications

executed with 64 PEs on the CRAY T3D.

6.3 CRAY T3D Performance Comparison

The performance results of the various parallel dyn codes

on the CRAY T3D with 4, 16, and 64 PEs and two di�erent

grid sizes are shown in Table 2. In the table the results of

the parallel codes employing the blocked two-dimensional

data decomposition are shown.

From Table 2 the following observations can be made.

Firstly, the codes are well scalable with respect to the num-

ber of processors for both grid sizes. Secondly, the hand-

written work-sharing dyn code is up to 33% faster than

the data-parallel dyn code. Hence, the translation of the

data-parallel to work-sharing code by the CRAY T3D com-

piler is sub-optimal. Thirdly, the `shared memory get' code

is about 2.5 times faster than the work-sharing code. The

CRAY T3D `Apprentice' performance tool reported that the

number of instructions generated by the compiler that is ex-

ecuted in the work-sharing code per oating point opera-

tion is equal to 25 from which 6 are memory load/stores;

for the `shared memory get' code this is equal to only 2.2

instructions per oating point operation from which 1.2 are

memory load/stores. This indicates that the compiler is cur-

rently not able to generate code that is equally e�cient for

both programming styles. Besides, it is worthwhile to men-

tion that the data cache is invalidated if data-parallel or

work-sharing codes are executed. However, in general, the

8 Kbytes data cache of the T3D is too small especially for

vector-based computations. Therefore, future research on

this subject is required to maximize cache reuse. Fourthly,

the highest performance was obtained for the `shared mem-

ory get' and sub-domain codes. Note that the performance

of the sub-domain code is slightly higher when the local in-

tegration area is small.

As a �nal remark we want to mention that this and other

investigations show that the single-node performance of the

CRAY T3D is disappointing. For example in [12] a perfor-

mance of only 12 Mops per PE was reported for a par-

allel implementation of a weather forecast model on the

CRAY T3D. This is only 8.0% of the peak performance

which is somewhat higher than the performance obtained

for the most e�cient parallel dyn routine in this investiga-

tion being only 5.2% of the peak performance.

7



64� 64� 16 grid 128 � 128 � 16 grid

4 PEs 16 PEs 64 PEs 4 PEs 16 PEs 64 PEs

shared memory get 500 121 33 2125 507 123

sub-domain splitting 538 132 29 2131 524 125

PVM 559 205 119 2241 600 207

work sharing 1356 333 82 5679 1423 325

data parallel 1594 412 109 6644 1665 413

Table 2: Total elapsed time (ms) of parallel dyn codes on the CRAY T3D.

7 Conclusions

To conclude, the main results of this investigation are:

� The data-parallel dyn code can be easily obtained by

automatic translation from the sequential dyn code

and runs on both CRAY T3D and MasPar systems.

However, in general, this translation could be more

di�cult especially for codes exploiting dirty Fortran

tricks. The data-parallel code is highly portable com-

pared to the other parallel programming paradigms.

� The performance of the data-parallel and work-sharing

codes on the CRAY T3D are signi�cantly lower (2.5{3

times) than can be obtained by employing other par-

allel paradigms. This shows a clear tradeo� between

portability and e�ciency.

� For data-parallel code it has been shown that the two-

dimensional blocked data decomposition results in the

highest performance on CRAY T3D and MasPar sys-

tems if the grid can be perfectly mapped on the proces-

sor array. In case of an imperfectly mapping the best

average performance can be obtained with the scat-

tered one-dimensional data decomposition.

� All codes are well scalable on the CRAY T3D with

respect to both grid size and number of processors,

except the data-parallel and work-sharing codes with

blocked data decompositions. The exception is due to

the constraint that dimensions of distributed arrays

should be powers of two.

� PVM message passing is portable, but ine�cient on

CRAY T3D systems. The shared memory put/get

communications with the CRAY T3D shared memory

functions are not portable but e�cient and fast.

� The highest performance of the dyn routine with 64

processors on the CRAY T3D is equal to 500 Mops.

The highest performance was obtained with the par-

allel dyn codes employing the sub-domain or shared

memory put/get parallel programming paradigms.

� The highest performance of the data-parallel dyn rou-

tine on the 1K MasPar MP-1 system equals 10 Mops.

To summarize, the �rst main conclusion is that no opti-

mal data distribution exists that for all grid sizes results in

the best performance of the parallel code. The second main

conclusion is that an e�cient use of the CRAY T3D requires

the inclusion of explicit message passing primitives by the

programmer. Unfortunately, the CRAY T3D Fortran com-

piler is not able to generate e�cient code for data-parallel

and work-sharing implementations. Finally, despite the fact

that explicit �nite di�erence codes are considered easily par-

allelizable, this investigation demonstrates that many issues

have to be considered to obtain optimal parallel code.

Acknowledgements

We would like to thank Gerard Cats of the Royal Nether-

lands Meteorological Institute (KNMI) for many valuable

discussions. This project was sponsored by the National

Computing Facilities Foundation (NCF) for the use of super-

computing facilities, with �nancial support from the Nether-

lands Organization for Scienti�c Research (NWO).

References

[1] P. Kallberg (editor), Documentation Manual of the

Hirlam Level 1 Analysis-Forecast System, June 1990.

[2] L. Wolters, G. Cats, and N. Gustafsson, Limited Area

Numerical Weather Forecasting on a Massively Paral-

lel Computer, in proceedings of the 8

th

ACM Interna-

tional Conference on Supercomputing, July 11{15 1994,

Manchester, England, ACM Press, pp. 289{296.

[3] L. Wolters, G. Cats, and N. Gustafsson, Data-parallel

Numerical Weather Forecasting, accepted for publica-

tion in a special issue of Scienti�c Programming on

`Application Performance Analysis'.

[4] T. Kauranne, The Operational Hirlam 2 Model on Par-

allel Computers, to appear in proceedings of the Sixth

ECMWF Workshop on the use of Parallel Processors in

Meteorology, ECMWF, Reading, UK, November 1994.

[5] G.J. Haltiner and R.T. Williams, Numerical Prediction

and Dynamic Meteorology, second edition, John Wiley

& Sons, New York, 1980.

[6] CRAY T3D, CRAY T3D System Architecture

Overview, Cray Research, Inc., March 1993.

[7] MasPar, MasPar MP-1 Hardware Manuals, MasPar

Computer Corporation, July 1992.

[8] E. van de Velde, Data Redistribution and Concurrency,

Parallel Computing, 16, December, 1990, pp. 125{138.

[9] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Don-

garra, J. DuCroz, A. Greenbaum, S. Hammerling,

A. McKenny, and D. Sorensen, Lapack: A portable lin-

ear algebra library for high-performance computers, in

proceedings of Supercomputing '90, 1990, IEEE Press,

pp. 1{10.

[10] Vast-II,MasPar Vast-2 User Guide, MasPar Computer

Corporation, July 1992.

[11] CRAY T3D, CRAY T3D Applications Programming,

Cray Research, Inc., June 1994.

[12] D. Dent, L. Isaksen, G. Mozdzynski, M. O'Keefe,

G. Robinson, F. Wollenweber, IFS Model: Performance

Measurements, to appear in proceedings of the Sixth

ECMWF Workshop on the use of Parallel Processors in

Meteorology, ECMWF, Reading, UK, November 1994.

8


