
On Reducing Overhead in Loops

�

Peter M.W. Knijnenburg Aart J.C. Bik

High Performance Computing Division,

Dept. of Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands.

E-mail: peterk@cs.leidenuniv.nl and ajcbik@cs.leidenuniv.nl

Abstract

In this paper we discuss several techniques for reducing

the overhead in Fortran-like DO loops. In particular, we

describe two topics:

1. Simplifying loop bounds.

2. Removing a�ne IF-statements from loops.

The objective is to isolate the part of the iteration

space of the original loop in which the bounds take

simpler forms, or in which the condition is satis�ed.

The main technical tool for determining this subspace

is Fourier-Motzkin elimination. We show an easy way

to generate code for scanning the di�erent parts of an

iteration space that have been isolated in this way.

We present our techniques as a number of elementary

transformation steps. SInce these steps only partition

the iteration space, the steps can always legally be em-

ployed. The full e�ect of these steps is obtained by it-

erating them until no more changes occur. The result

will be a loop structure in which all bounds are sim-

ple a�ne expressions and from which all IF-statements

with a�ne conditions have been eliminated.

1 Introduction

It is well-known that many programs spend most exe-

cution time in only a small fraction of the code, namely,

in loops [Kuc78]. Since this is particularly true for

scienti�c applications, it is desirable to have the loops

structured in such a way that overhead in the execution

is minimized. In this paper we consider the following

two sources of overhead:

�

This research was partially supported by Esprit BRA AP-

PARC under grant no. 6634

1. Overhead in computing the loop bounds. This

overhead occurs when bounds are given as the

minimum or maximum of a number of elemen-

tary a�ne expressions. While programmers will

probably not code their programs using these

kind of bounds, they are generated when loops

are transformed using unimodular transforma-

tions [Ban90, Ban93, Ban94, WL91]. We want to

identify that part of the iteration space in which

the minimum or maximum of a number of ex-

pressions e

1

; : : : ; e

n

is given by the expression e

i

.

For in this subspace, we may replace the origi-

nal bound by e

i

thereby reducing the overhead of

determining the loop bounds at run time. The

techniques discussed in this paper can serve as a

post-processing phase of unimodular transforma-

tions, in which the resulting loop structures are

`cleaned up'.

2. IF-statements in the loop body. These IF-

statements cause a portion of the code in the loop

to be executed in some iterations, and not in other

iterations. At the same time, in each iteration

it has to be decided which portion to execute by

evaluating the condition of the IF-statement. It is

therefore desirable to isolate at compile time the

part of the iteration space in which this condition

is true, and replace the IF-statement by its THEN-

part, and by its ELSE-part in the remainder of the

iteration space. In this way, no condition needs

to be evaluated at run time. Of course, this can-

not always be done. However, we identify a class

of IF-statements, called a�ne IF-statements, for

which this partitioning can be computed at com-

pile time.

The main technical tool we employ for determining

the relevant subspaces of the iteration space is Fourier-

Motzkin elimination [DE73]. Fourier-Motzkin elimina-

tion is a way of solving systems of linear inequalities.

1



Using this tool, we have to intersect the original iter-

ation space with a polytope, de�ned by a system of

linear inequalities, in order to obtain a loop structure

that scans the iteration space but that executes di�er-

ent code in the di�erent parts.

Although Fourier-Motzkin elimination is exponential

in the number of inequalities in the system it solves, it

has been observed before [BW95a, Pug92, LP92] that

the algorithm has fast implementations for loops with

small nesting depth, as is always the case in practi-

cal situations. This is particularly true when executed

on current work-stations. Moreover, we can view the

transformations presented in this paper as transferring

computation from run time to compile time. The more

e�ort one wants to spend to restructure loops at com-

pile time, the less run time overhead one is left with.

Obviously, the e�ort is better spend at compile time

than at run time. Moreover, since our approach is

to de�ne a small collection of elementary transforma-

tions, the user can choose in an interactive compilation

environment just how much e�ort he is willing to give.

Since the transformations discussed in this paper only

partition the iteration space of the original loop, and

hence leave the order in which the iteration points are

visited intact, application is always valid. Moreover,

under some mild conditions, every transformation step

will improve the execution time of the loop. Hence

we provide a powerful restructuring technique that is

universally applicable.

The paper is organized as follows. In section 2 we give

technical preliminaries and introduce some notation.

In section 3 we discuss the algorithm for intersecting

two polytopes. In section 4, we discuss some methods

to simplify loop bounds and illustrate these methods

with some small examples. In section 5 we show how

a�ne IF-statements can be removed. In section 6 we

discuss an extended example. Finally, in section 7 we

give a brief discussion and relate the present work to

another approach.

2 Preliminaries

In this section, we give some preliminaries used in the

rest of this paper. First, we de�ne lower and upper-

bounds for the considered loops.

De�nition 2.1 Let I = fI

1

; : : : ; I

n

g be a �nite col-

lection of loop indices. With respect to this collection

I we de�ne:

1. A basic lower/upper bound is an a�ne expression

a

0

+ a

1

I

1

+ � � �+ a

n

I

n

where, for all i, a

i

2 Z.

2. Let a 2 N and let B be a basic bound. A simple

lower-bound is an expression

�

1

a

B

�

.

A simple upper-bound is an expression

�

1

a

B

�

.

3. A compound lower-bound is an expression

max(L

1

; : : : ; L

m

) where each L

i

is a simple lower-

bound. A compound upper-bound is an expres-

sion min(U

1

; : : : ; U

m

) where each U

i

is a simple

upper-bound.

Note that each basic bound is also a simple lower or

upper-bound, and, in turn , each simple bound is also

a compound bound. In the sequel of the paper we will

make this identi�cation when no confusion can arise.

Basic, simple and compound bounds are also called

admissible. All other expressions for bounds, like I

1

�I

2

or an indirection IND(I), are called inadmissible. The

reason for this distinction is that admissible bounds

can be used and are obtained in the process of Fourier-

Motzkin elimination (see below).

Every perfectly nested loop L with basic bounds gives

rise to a system of inequalities S(L), given by

S(L) =

8

>

<

>

:

L

1

� I

1

� U

1

.

.

.

L

n

� I

n

� U

n

(1)

Such a system should be read as the conjunction of

the individual clauses. This system has the property

that every bound L

i

and U

i

only involves variables

I

1

; : : : ; I

i�1

. We call this the standard form of a sys-

tem of inequalities. Note that for loops with compound

lower and upper-bounds we also can de�ne such a sys-

tem of inequalities. Since compound upper-bounds

may contain oor and minimum function, we use the

following equivalences to obtain a standard form:

� I �

�

1

a

B

�

i� aI � B (I is integer, a > 0).

� I � min(U

1

; : : : ; U

m

) i� I � U

1

& � � �& I � U

m

.

Similar equivalences hold for compound lower-bounds.

Any system of inequalities involving the variables

I

1

; : : : ; I

n

can be brought in standard form using

Fourier-Motzkin elimination [DE73, Ban93, LP92].

We try to give some intuition. Consider a set C =

f'

1

; : : : ; '

k

g of inequalities, where each inequality '

i

is of the form e � e

0

for two a�ne expressions e and

e

0

over the variables I

1

; : : : ; I

n

. Then Fourier-Motzkin

elimination consists of the following process. First,

rewrite all expressions involving the variable I

n

to the

form L � I

n

; : : : ; I

n

� U . Then each inequality ob-

tained in this way bounds I

n

by expressions only in-

volving the variables I

1

; : : : ; I

n�1

. Hence these expres-

sions can be used to generate loop bounds.

2



I = 1, 1
1 I = 2, 5

1

I = 6, 5
1

I = 1, 9
2

I = 1, 6−I
2 1

I = 7−I , 3+I
2 1 1

I = 4+I , 9
2 1 I = 1, I−4

2 1
I = I−3,13−I
2 1 1

I = 14−I , 9
2 1

S
1

S
2

1
I = 9, 9

I = 1, 9
2

S
1

S
2

S
2

S
2

S
2

S
2

Figure 1: Tree representation of NLS

Now consider the system obtained by forming all in-

equalities L � U , for lower-bounds L and upper-

bounds U from the previous step, together with all

inequalities from the original system not involving I

n

.

In case the coe�cients of I

n

di�er from 1, inequal-

ities must be normalized �rst. After these replace-

ments, a system of inequalities is obtained involving

I

1

; : : : ; I

n�1

only. Hence we can recursively continue

the process, �nally ending with a system of inequal-

ities which consist only of the variable I

1

and con-

stants. In this paper we do not elaborate on Fourier-

Motzkin elimination further. The reader is referred

to [Ban93, BW95a, DE73, LP92] for more details.

Let [[C]] = fx 2 R

n

: '

1

(x) ^ � � � ^ '

k

(x)g. We say

that C is inconsistent i� [[C]] = ;. We say that an

inequality ' is redundant for C i� [[C[f'g]] = [[C]]. The

Fourier-Motzkin elimination algorithm can be used to

decide whether C is inconsistent. We also have that '

is redundant for C if and only if C[f:'g is inconsistent.

Next we de�ne a class of loop structures which will

be delivered by the transformations we propose in

this paper. This class has been introduced by Cham-

ski [Cha94b].

De�nition 2.2 The class of nested loop sequences is

inductively de�ned as the smallest class of loop struc-

tures closed under

1. Any block of statements is a (trivial) nested loop

sequence.

2. If L and L

0

are two nested loop sequences, then so

is L;L

0

(L followed by L

0

).

3. If L is a nested loop sequences, then so is the fol-

lowing loop, where I is a new loop variable.

DO I = L; U

L

ENDDO

A nested loop sequence is called well-formed i� all

bounds are a�ne expressions over the loop counters

of the surrounding loops. In the sequel we will only

consider well-formed nested loop sequences which we

will call simply a nested loop sequences, NLS for short.

Note that any perfectly nested loop can be considered

as a NLS. Note also that two di�erent NLSs N and N

0

can scan the same iteration space in the same order,

executing the same statements in each iteration point.

For instance, N

0

may be obtained from N by iteration

space partitioning, as is illustrated below with a simple

example:

N : DO I = 1, 100

DO J = 1, 50

S(I,J)

ENDDO

ENDDO

N

0

: DO I = 1, 100

DO J = 1, 25

S(I,J)

ENDDO

DO J = 26, 50

S(I,J)

ENDDO

ENDDO

We call such loop structures N and N

0

(semantically)

equivalent.

We also need the following notion. Consider a block

of statements (which may be a loop) in a nested loop

sequence. Then we can construct a perfectly nested

loop from the enclosing loops of the block. We call this

loop nest the local nest of the block. A convenient way

of representing nested loop sequences is by means of

a �nitely branching, �nite tree [Cha94b, Cha94a]. We

will use these tree structures in our algorithms below.

A node in this tree is a tuple hI; L; U; bodyi, where

� I is the loop variable;

� L and U are the lower- and upper-bound of the

loop, respectively;

� body is a list containing (pointers to) representa-

tions of the statements in the loop body.

3



The leaves of the tree contain pointers to (blocks of)

assignment statements, IF-statements, etc. Interior

nodes contain pointers to representations of nested

loop sequences. In �gure 1 such a representation for

the NLS in �gure 5 is given. Using this tree repre-

sentation of nested loop sequences, a local nest can be

represented as a path through this tree.

We call loops (interior nodes in the tree) having the

same parent siblings. They are loops having the same

local nest.

Finally, we need some preliminaries form geometry and

linear algebra. A set H � R

d

consisting of all points

represented by the position vector ~x satisfying the lin-

ear inequality ~a�~x � b for a �xed nonzero vector~a 2 R

d

and b 2 R is called a closed half-space in R

d

:

H = f(x

1

; : : : ; x

d

) 2 R

d

ja

1

x

1

+ � � �+ a

d

x

d

� bg

Consequently, a half-space consists of all points within

and on one side of a hyperplane. For example, in �g-

ure 3 we show the half-spaces in R, R

2

and R

3

de-

�ned by the inequalities x

1

� 1, x

1

+ x

2

� 3 and

x

1

+ x

2

� 3, respectively. In these cases, hyperplanes

x

1

= 1, x

1

+ x

2

= 3 and x

1

+ x

2

= 3 correspond to a

point, line and a plane parallel to the x

3

-axis, respec-

tively. In R and R

2

the corresponding half-space is

usually referred to as a half-line and half-plane.

Any set PS � R

d

consisting of the intersection of a

�nite number of closed half-spaces in R

d

is called a

polyhedral set. A bounded polyhedral set forms a con-

vex polytope. Instances of convex polytopes in R, R

2

and R

3

are formed by line segments, convex polygons

and convex polyhedra respectively. For example, in

�gure 2 we show a convex polyhedron formed by the

intersection of the half-spaces de�ned by the inequali-

ties x

3

� 0, x

1

� 2, x

2

� 2 and x

1

+ x

2

+ x

3

� 8.

x2

x3

x1

5

5

5

Figure 2: Convex Polyhedron

x1

x2

x1

x2

x3

x10

Figure 3: Half-Spaces in R, R

2

and R

3

Obviously, since loops having admissible bounds give

rise to systems of linear inequalities, the iteration

spaces considered in this paper consist of all the dis-

crete points within a convex polytope.

3 Isolating a polytope inside an-

other polytope

In this section we show how to isolate a polytope P

0

de�ned by a system of linear inequalities arising from a

loop L

0

inside another polytope P de�ned by another

loop L. The goal is to generate a loop structure that

scans all discrete points in P , but that executes a dif-

ferent block of statements in the intersection of P and

P

0

than in the remainder of P . We present an algo-

rithm for computing this loop structure given L and

L

0

. Together with Fourier-Motzkin elimination, this

algorithm forms the backbone of the theory presented

in this paper.

We proceed as follows. First we show how to intersect

L with a half-space de�ned by an inequality of the

form L � I, or I � U. The half-space of the �rst

form is called a lower half-space, and the half-space

of the second form an upper half-space. We show for

both cases how the isolation of the half-space in L can

be computed. Then we show how a convex bounded

polytope, which can be considered as the intersection

of a number of half-planes, can be isolated in L.

Assume that we want to execute S

1

for all iterations

in the original iteration space outside the half-space,

and S

2

for all iterations in the intersection of original

iteration space and the given half-space. Then we can

generalize index set splitting [BW95b, Wol89, ZC90].

Lower half-spaces Consider a polytope given by

L � I � U, and a half-space given by L

0

� I, where

L

0

is simple.

Then the following code scans �rst the part of the poly-

tope which lies outside the half-space, and then the

intersection of the polytope and the half-space.

4



In the �rst part, we execute a block of statements S

1

and in the second part (the intersection) a block S

2

.

We call the �rst part the pre-loop, and the second part

the intersection loop.

DO I = L;min(L

0

� 1; U)

S

1

ENDDO

DO I = max(L; L

0

); U

S

2

ENDDO

Upper half-spaces Likewise, for a half-space given

by I � U

0

with U

0

simple, we generate the following

code.

The �rst loop scans the intersection of the polytope

and the half-space, and the second loop scans the re-

mainder of the polytope. In the intersection we exe-

cute a block S

2

and in the remainder of the polytope

a block S

1

. We call the �rst loop the intersection loop,

and the second loop the post-loop.

DO I = L;min(U; U

0

)

S

2

ENDDO

DO I = max(L; U

0

+ 1); U

S

1

ENDDO

Since both L

0

and U

0

are assumed to be simple, the re-

sulting loop bounds are admissible. Please note that

irrespective of the position of the half-space and the

polytope, the loops as de�ned above precisely scan

the correct portion of the entire space. Note also that

some of the loops may be empty. Using these observa-

tions we arrive at the following algorithm for isolating a

polytope inside another polytope, resulting in a nested

loop sequence scanning this space. This algorithm is

based on a technique described in [BW95b].

Algorithm

Let L and L

0

be perfectly nested loops, scanning poly-

topes P and P

0

, respectively. Let L be de�ned by the

system of inequalities

L

1

� I

1

� U

1

: : : L

n

� I

n

� U

n

where bounds may be compound. Let L

0

be de�ned

by a collection of half-spaces

l

1

� I

1

; : : : ; l

k

� I

1

; I

1

� u

1

; : : : ; I

1

� u

m

.

.

.

l

0

1

� I

n

; : : : ; l

0

k

0

� I

n

; I

n

� u

0

1

; : : : ; I

n

� u

0

m

0

where each bound is simple. Suppose that we want to

execute a block of statements S

1

for all discrete points

in the intersection of P and P

0

, and a block S

2

for the

remaining discrete points in P � P

0

. We construct a

loop structure that performs this task as follows.

For each i from 1 to n do the following.

� Let the active loop be L

i

� I

i

� U

i

.

� For each half-space l � I

i

; : : : ; I

i

� u from P

0

do

{ If the half-space is a lower half-space, then

partition the active loop accordingly. Set the

current active loop to the intersection loop of

this partitioning.

{ If the half-space is an upper half-space, then

partition the active loop accordingly. Set the

current active loop to the intersection loop of

this partitioning.

� After this phase we have an ordered list of pre-

and post-loops, and an active loop.

{ For each pre- and post-loop, generate as its

body the loop de�ned by the bounds from L

L

i+1

� I

i+1

� U

i+1

; : : : ; L

n

� I

n

� U

n

and body S

2

.

{ If i = n, then the body of the active loop is

given by S

1

. Otherwise, its body is given the

loop structure obtained in the next iterations

over i.

End Algorithm

Example Consider the following loops L and L

0

. L is

given by the system of inequalities

�

1 � I

1

� 9

1 � I

2

� 9

L

0

is given by the system of inequalities

�

2 � I

1

� 8

max(7� I

1

; I

1

� 3) � I

2

min(I

1

+ 3; 13� I

1

)

The iteration space of L and L

0

is depicted in �gure 4.

Then the algorithm from section 3 yields the following

pre-, intersection and post-loop, respectively, for I

1

:

1 � I

1

� 1 2 � I

1

� 8 9 � I

1

� 9

For the pre- and postloop, the bounds in the second

dimension are given by 1 � I

2

� 9. Continuing with

the active loop, we obtain the following two pre-, one

intersection and two post-loops, respectively, for I

2

:

1 � I

2

� min(6� I

1

; 9)

max(7� I

1

; 1) � I

2

�

min(I

1

� 4; 9)

max(7� I

1

; 1; I

1

� 3) � I

2

�

min(3 + I

1

; 9; 13� I

1

)

max(7� I

1

; 1; I

1

� 3; 14� I

1

) � I

2

� min(3 + I

1

; 9)

max(4 + I

1

; 7� I

1

; 1; I

1

� 3) � I

2

� 9

5



2I

1 5 92 3 4 6 7 8

1

5

9

2
3
4

6
7
8

7−I1

I1

I1−3

I113− I1+3

Figure 4: Two intersecting iteration spaces

Please observe that for some values of I

1

, some of the

above loops over I

2

are empty. For example, for I

1

=

2, the second and the fourth loop are empty. Moreover,

a number of bounds are redundant, that is, are always

satis�ed given the other bounds. For example, since

1 � I

1

� 10, min(6 � I

1

; 10) = 6 � I

1

. In the next

section we discuss how to simplify the bound functions

and how to remove (partially) empty loops from the

structure.

It is clear that the code produced by the algorithm is

far from optimal with respect to the overhead asso-

ciated with the evaluation of loop bounds. It would

be possible to generate clean code immediately. How-

ever, this would be a costly and di�cult procedure (see

also the papers by Chamski [Cha94b, Cha94a] where

a related technique is discussed). Therefore, we have

chosen to generate dirty code, which can be done very

inexpensively. This code may be regarded as interme-

diate code that we can clean up afterwards. Obviously,

this is a costly operation. Considering that we have

to scan a non-convex polytope (namely, P � P

0

), this

should come as no surprise (c.f. [Cha94a]). Neverthe-

less, the necessary loop structures can all be computed

at compile time.

4 Simplifying loop bounds

In this section we discuss techniques for reducing over-

head associated with the evaluation of loop bounds.

Furthermore, we illustrate each techniques with a sim-

ple example.

4.1 Empty loops

Consider a (local) loop nest L, and a loop L in the nest

on depth k. Suppose the bounds of this loop are L

k

and U

k

, respectively. Then the loop is empty i� for no

values of I

1

; : : : ; I

k�1

within their bounds, the lower-

bound of the loop L

k

is smaller than or equal to the

upper-bound U

k

. This means that the loop is empty

i� the following system of inequalities has no integer

solutions.

L

1

� I

1

� U

1

; : : : ; L

k�1

� I

k�1

� U

k�1

; L

k

� U

k

We can use the Omega test by Pugh [Pug92] to decide

whether this system of inequalities has integer solu-

tions. On the other hand, we may check whether the

system is inconsistent using Fourier-Motzkin elimina-

tion. This provides a conservative test, since inconsis-

tency implies that there are no integer solutions, but

not necessarily vice versa.

If the loop L is empty and the nest L is a stand alone

perfectly nested loop, then L can be removed entirely.

Possibly some code needs to be generated for giving

the loop counters the correct value after the execution

of the loop. For example, since application of Fourier-

Motzkin elimination to the system of inequalities 1 �

I � 10 and 10 � I� 1 yields 11 � 10, the original

system is inconsistent. Hence, the following perfectly

nested loop can be eliminated:

DO I = 1, 10

DO J = 10, I - 1

: : :

ENDDO

ENDDO

If the nest L is part of some surrounding NLS N , we

proceed as follows. Consider the tree representation of

N , and the path through this tree that represents the

local nest L. The loop L is the kth node on this path.

Let k

0

be the largest number such that L has siblings in

N on level k

0

, or k

0

= 0 if there are no siblings. Then

the path through N that represents L can be removed

from level k

0

downwards.

4.2 Redundant bounds

Consider a (local) loop nest L, and a loop L in the

nest on depth k. Suppose the bounds of this loop are

L

k

and U

k

, respectively. Suppose furthermore that the

upper-bound U

k

is compound, that is, is of the form

min(e

1

; : : : ; e

m

) for some simple bounds e

1

; : : : ; e

n

over

the variables I

1

; : : : ; I

k�1

.

6



Then the simple bound e

i

is redundant i� for all val-

ues of I

1

; : : : ; I

k�1

within their bounds, the value of

e

i

(I

1

; : : : ; I

k�1

) is larger than or equal to the values of

the other simple bounds. Hence e

i

can be removed

from U

k

, thereby simplifying the evaluation of this

bound. We can check whether e

i

is redundant by show-

ing that the following system of inequalities has no in-

teger solutions:

L

1

� I

1

� U

1

; : : : ; L

k�1

� I

k�1

� U

k�1

; e

i

< min

j 6=i

e

j

Conservatively, we can check whether the system is

inconsistent using Fourier-Motzkin elimination.

Consider, for example, the following loop:

DO I = 1, 100

DO J = 1, MIN(I,100)

: : :

ENDDO

ENDDO

Because the last inequality in the system 1 � I � 100

and 100 < I can be rewritten into 101 � I, application

of Fourier-Motzkin elimination yields the inconsistent

system 101 � 100. Hence, the upper bound of the

J-loop can be simpli�ed into I.

The case for redundant expressions in lower-bounds

is treated analogously. More examples are given

in [BW95a].

4.3 Partially empty loops

Consider a (local) loop nest L, and a loop L in the

nest on depth k. Suppose the bounds of this loop are

L

k

and U

k

, respectively. Suppose that L is not empty,

but neither that for all values of I

1

; : : : ; I

k�1

it is the

case that L

k

� U

k

. In this case, we want to isolate

that part of the iteration space de�ned by L in which

it holds that L

k

� U

k

. In this subspace, the loop L has

to be executed, in the remainder of the iteration space

L can be removed. Hence this transformation ensures

that the bounds of L are only evaluated in iterations

in which L is non-empty.

We can compute the relevant part of the iteration space

by solving the following system of inequalities:

L

1

� I

1

� U

1

; : : : ; L

k�1

� I

k�1

� U

k�1

; L

k

� U

k

The solution de�nes a loop L

0

. We now have two sit-

uations.

1. If the nest L is a stand alone perfectly nested loop,

then we may safely replace L by L

0

. In this way we

have removed spurious iterations for which some

inner-loop is empty.

2. If the nest L is part of a surrounding NLS N , then

we may proceed as follows. First, we isolate L

0

in

L as described in section 3. We obtain, for each

level, a collection of pre- and postloops, and an

intersection loop. We have to adapt the algorithm

with respect to the code generated in these loops.

Note that in the pre- and postloops the loop L is

empty and hence these loops should contain code

in which L is deleted. In the intersection loop the

loop L does contain iterations and hence has to

be executed.

Consider the tree representation of N and the

path leading to L. For each node on this path,

let N

l

be the subtree of N starting with the node

on level l of this path. LetM

l

be the tree obtained

by deleting L from this subtree.

We want to generate the following code. Level 1 of

N contains a number of nodes, one of which is the

root of L. The isolation algorithm has partitioned

this node into a number of other nodes, namely,

the collection of preloops, intersection loop, and

postloops. The pre- and postloops should be

copies of M

1

with the loop bounds on level 1 ob-

tained from the pre- and postloops. Now consider

the intersection loop on level 1. On level 2 in this

intersection loop, all level 2 siblings of L in N

should be present, ordered as they are in N .

The pre- and postloops should be copies of M

2

with bounds obtained from these pre- and post-

loops, etc. Only on the lowest level the loop L is

generated in the intersection loop, together with

its siblings. We leave the details to the reader.

Consider, for example, the following perfectly nested

loop in which one iteration is empty:

DO I = 1, 100

DO J = 1, I - 1

: : :

ENDDO

ENDDO

Since one step of Fourier-Motzkin elimination to 1 �

I � 100 and 1 � J � I � 1 yields max(1; 2) � I �

100, the previous loop can be safely rewritten into the

following loop:

7



DO I = 2, 100

DO J = 1, I - 1

: : :

ENDDO

ENDDO

4.4 Compound bounds

Consider a (local) loop nest L, and a loop L in the

nest on depth k. Assume that the upper-bound of L

is given by a compound bound

U = min(e

1

; : : : ; e

m

)

where each e

i

is a simple upper-bound over the index

variables fI

1

; : : : ; I

k�1

g. For each 1 � i � m, we

want to isolate that part of the iteration space of L in

which the value of U is equal to the value of e

i

. We

obtain this subspace by solving the following system of

inequalities:

L

1

� I

1

� U

1

; : : : ; L

k�1

� I

k�1

� U

k�1

;

e

i

� e

1

; : : : ; e

i

� e

m

This gives us a loop L

0

, in which the upper-bound U

of L can be replaced by e

i

. We proceed by isolating L

0

in L. In the pre- and post-loops we have a version of

L with upper-bound

U

0

= min(e

1

; : : : ; e

i�1

; e

i+1

; : : : ; e

m

)

In the active part we have a version of L with upper-

bound U

0

= e

i

.

For example, this idea enables the following rewriting:

DO I = 1, 100

DO J = 1,MIN(I,100-I)

: : :

ENDDO !

ENDDO

DO I = 1, 50

DO J = 1, I

: : :

ENDDO

ENDDO

DO I = 51, 100

DO J = 1, 100-I

: : :

ENDDO

ENDDO

The case for compound lower-bounds containing max

functions is treated analogously.

The above procedure constitutes the elementary step

for removing min and max functions. Please observe

what this step has achieved. First, we have parti-

tioned the iteration space in such a way that in one

part the complexity of evaluating a compound upper-

bound is reduced to the complexity of evaluating one

simple bound. Second, in the remainder of the iter-

ation space, the complexity is reduced to evaluating

n� 1 simple bounds, instead of n.

Please observe also that by using this procedure we

may have introduced compound bounds on the levels

1 through k�1. This means that we have `pushed out'

the complexity of the bounds to higher levels. Hence,

by iterating the above procedure, we can remove all

occurrences of compound bounds altogether.

This procedure of `iterating until no more changes'

may be expensive. This reects that we have, in a

certain sense, moved the cost of evaluating compound

bounds from run time to compile time. On the other

hand, it is easy to see that each step reduces the total

cost of evaluating compound bounds, if the kth di-

mension of the loop has enough iterations. It is easy

to see that this number will be small in general. Hence

each step reduces the overhead in the computation of

the loop bounds. We can easily control the number

of times this step may be executed, and still gaining

execution time.

We arrive at the following proposition.

Proposition 4.1 Given a nested loop sequence N , we

can construct a semantically equivalent NLS N

0

such

that N

0

contains no zero trip loops, and all bounds in

N

0

are simple.

5 Removing a�ne IF statements

In this section we show how to remove certain kinds of

IF-statements from nested loop sequences.

We call IF-statements having a�ne conditions a�ne

IF-statements.

De�nition 5.1 Let L be a perfectly nested loop with

loop indices I

1

; : : : ; I

n

.

1. A condition of the form e � e

0

where e and e

0

are a�ne expressions over I

1

; : : : ; I

n

, is called a

simple a�ne condition for L.

2. The conjunction of one or more simple a�ne con-

ditions for L is called an a�ne condition for L.

3. An IF-statement of which the condition is an

a�ne condition is called an a�ne IF-statement

for L.

Note that we can express other comparison operations

on integers by the following identi�cations:

8



n < m i� n+1 � m; n = m i� n � m and m � n; and

n � m i� m � n.

Suppose we have a (local) loop nest containing an a�ne

IF-statement.

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

IF (e

1

� e

0

1

& � � �& e

m

� e

0

m

) THEN

S

1

ELSE

S

2

ENDIF

ENDDO

� � �

ENDDO

Then the a�ne condition (e

1

� e

0

1

& � � �& e

m

� e

0

m

)

determines a subspace of the iteration space of this

loop. The basic idea is to extract this subspace from

the iteration space. In this subspace, the statement S

1

has to be executed. In the rest of the iteration space

statement S

2

needs to be executed. We proceed as

follows.

Consider the system of inequalities given by the loop

bounds and the a�ne conditions:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

; e

1

� e

0

1

; : : : ; e

m

� e

0

m

We have three possibilities.

1. The system is inconsistent. This means that for no

value of the loop variables within the loop bounds,

the condition holds. Hence we may replace the IF-

statement with its ELSE-part without a�ecting its

semantics.

2. The a�ne condition is redundant with respect

to the system of inequalities de�ned by the loop

bounds. This means that for every value of the

loop variables within the loop bounds the condi-

tion holds. Hence we can replace the IF-statement

with its THEN-part without a�ecting the semantics

of the nest.

3. The system is neither inconsistent, nor is the con-

dition redundant. This is the most interesting and

probably most frequent case. In this case, the

THEN-part of the IF-statement has to be executed

in part of the iteration space of the loop, and the

ELSE-part in the remainder.

Using Fourier-Motzkin elimination we can rewrite

the system of inequalities given by the loop

bounds and the a�ne conditions to the form

L

0

1

� I

1

� U

0

1

; : : : ; L

0

n

� I

n

� U

0

n

This system de�nes a convex polytope within the

original iteration space. In this subspace the con-

dition holds. Hence it de�nes that part of the it-

eration space in which S

1

has to be executed. We

can use the algorithm from section 3 to isolate L

0

in L and hence to isolate the THEN and the ELSE

part of the conditional.

Until now we have discussed how to eliminate a�ne

IF-statement in perfectly nested loops. However, the

result of this elimination is a nested loop sequence.

Hence, if we want to continue the process of eliminating

a�ne IF-statement, we have to extend the theory to

the case of nested loop sequences. Briey, we can apply

the following strategy.

� Given an a�ne IF-statement in a nested loop se-

quence N , �rst construct its local nest. This is a

perfectly nested loop L.

� Eliminate the a�ne IF-statement from L using

the above procedure, yielding a nested loop se-

quence N

0

.

� Replace the local nest L in N by the nested loop

sequence N

0

. Since N

0

scans exactly the same

iteration space as L does, this is straightforward:

Consider the path throughN that de�nes L. Each

node on this path on level k has to be replaced by

the collection of nodes in N

0

on level k. Moreover,

if a node on the path has children not on the path,

these children have to be copied below each of the

nodes (from N

0

) that replace this node.

We arrive at the following proposition.

Proposition 5.2 Given a nested loop sequence N

containing a�ne IF-statements, we can construct a se-

mantically equivalent nested loop sequence N

0

without

a�ne IF-statements.

6 Example

In this section, some of the techniques presented in this

paper are illustrated with the following loop L:

DO I

1

= 1; 9

DO I

2

= 1; 9

IF I

2

� max(7 � I

1

; I

1

� 3)

& I

2

� min(I

1

+ 3; 13 � I

1

) THEN

S

1

ELSE

S

2

ENDIF

ENDDO

ENDDO

9



First, we show how we can remove the IF-statement

from this loop. That is, we have to isolate the part of

the iteration space in which the condition of the IF-

statement holds. This gives rise to a loop L

0

. Using the

techniques of section 3, we have that L and L

0

are given

by the following systems of inequalities. L is given by

1 � I

1

� 9; 1 � I

2

� 9, and L

0

is given by 2 � I

1

�

8; max(7� I

1

; I

1

� 3) � I

2

� min(3 + I

1

; 13� I

1

).

In the example in section 3 we have shown that iso-

lating L

0

in L gives rise to the following system of in-

equalities.

1 � I

2

� min(6� I

1

; 9)

max(7� I

1

; 1) � I

2

�

min(I

1

� 4; 9)

max(7� I

1

; 1; I

1

� 3) � I

2

�

min(3 + I

1

; 9; 13� I

1

)

max(7� I

1

; 1; I

1

� 3; 14� I

1

) � I

2

� min(3 + I

1

; 9)

max(4 + I

1

; 7� I

1

; 1; I

1

� 3) � I

2

� 9

We now show how to clean up the generated structure,

which will result in the loop structure given in �gure 5.

The body of the pre- and post-loops consists of the

block S

2

; the body of the intersection loop consists of

S

1

. We now show how the techniques from sections 4

and 5 can be used to obtain a simple nested loop se-

quence. First, observe that a number of bounds is

redundant. For instance, the upper bound of the �rst

I

2

-loop above is redundant.

After removing all redundant bounds, we obtain the

following bounds for the intersection loop.

1 � I

1

� 8

1 � I

2

� 6� I

1

max(7� I

1

; 1) � I

2

� I

1

� 4

max(7� I

1

; I

1

� 3) � I

2

� min(3 + I

1

; 13� I

1

)

14� I

1

� I

2

� min(3 + I

1

; 9)

4 + I

1

� I

2

� 9

Now we remove the max function from the intersection

loop. That is, we have to determine the values for I

1

such that

I

1

� 3 � 7� I

1

or, I

1

� 5. We obtain the following two loops.

2 � I

1

� 5

1 � I

2

� 6� I

1

max(7� I

1

; 1) � I

2

� I

1

� 4

7� I

1

� I

2

� min(3 + I

1

; 13� I

1

)

14� I

1

� I

2

� min(3 + I

1

; 9)

4 + I

1

� I

2

� 9

and

6 � I

1

� 8

1 � I

2

� 6� I

1

max(7� I

1

; 1) � I

2

� I

1

� 4

I

1

� 3 � I

2

� min(3 + I

1

; 13� I

1

)

14� I

1

� I

2

� min(3 + I

1

; 9)

4 + I

1

� I

2

� 9

Now we can compute that in the �rst loop structure,

the second and fourth loop on I

2

are empty. Like-

wise, we can remove two empty loops from the second

loop structure. After removing redundant bounds, we

arrive at the nested loop sequence equivalent to L de-

picted in �gure 5.

7 Discussion

In this paper we have discussed several techniques for

reducing overhead in loops. We have shown that these

techniques can restructure a non-trivial loop contain-

ing an a�ne IF-statement into a nested loop sequence

with only simple bounds and no IF-statement. This

is achieved by partitioning the iteration space of the

loop. Note that this process has the drawback that it

may cause code explosion. It even may (partially) un-

roll loops. However, the operations of removing empty

loops and redundant bounds can always be applied,

since these do not copy code, and even may remove

code. So it seems to be a good strategy to always try

and remove empty loops after isolating one polytope

inside another. Another strategy is given by always

trying to transform local loop nests with the largest

iteration space and compound bounds or a�ne IF-

statements in their inner loops. In these loops most

bene�t will be gained by the techniques presented here.

As far as the authors are aware, the only other paper

dealing with simplifying loops in the manner presented

in this paper, is a paper by Chamski [Cha94b]. In that

paper, an algorithm based on the Parametric Integer

Programming tool by Feautrier [Fea88] is presented.

Like in our approach, his algorithm partitions the it-

eration space in blocks where the minimum or maxi-

mum functions appearing in bounds can be replaced by

one of their arguments, and iterating this step until no

more changes occur. The advantage of our approach

over the approach by Chamski is that we de�ne a num-

ber of elementary steps which have to be iterated in

order to obtain the full e�ect of the transformation.

Hence the application of the transformation discussed

in this paper can easily be controlled in an interactive

compilation environment.

10



DO I

1

= 1; 1

DO I

2

= 1; 9

S

2

ENDDO

ENDDO

DO I

1

= 2; 5

DO I

2

= 1; 6� I

1

S

2

ENDDO

DO I

2

= 7� I

1

; 3 + I

1

S

1

ENDDO

DO I

2

= 4 + I

1

; 9

S

2

ENDDO

ENDDO

DO I

1

= 6; 8

DO I

2

= 1; I

1

� 4

S

2

ENDDO

DO I

2

= I

1

� 3; 13 � I

1

S

1

ENDDO

DO I

2

= 14 � I

1

; 9

S

2

ENDDO

ENDDO

DO I

1

= 9; 9

DO I

2

= 1; 9

S

2

ENDDO

ENDDO

Figure 5: Resulting loop structure

References

[Ban90] U. Banerjee. Unimodular transformations of

double loops. In Proceedings of Third Work-

shop on Languages and Compilers for Par-

allel Computing, 1990.

[Ban93] U. Banerjee. Loop Transformations for Re-

structuring Compilers. Kluwer Academic

Publishers, Norwell, 1993.

[Ban94] U. Banerjee. Loop Parallelization. Kluwer

Academic Publishers, Boston, 1994.

[BW95a] Aart J.C. Bik and Harry A.G. Wijsho�.

Implementation of Fourier-Motzkin elimina-

tion. In Proceedings of the ASCI 95 Confer-

ence, 1995. to appear.

[BW95b] Aart J.C. Bik and Harry A.G. Wijsho�. On

strategies for generating sparse codes. Tech-

nical Report no 95-01, Department. of Com-

puter Science, Leiden University, 1995.

[Cha94a] Z. Chamski. Enumeration of non-convex

sets???? Manuscript, 1994.

[Cha94b] Z. Chamski. Nested loop sequences: To-

wards e�cient loop structures in automatic

parallelization. In Proc. 27th Hawaii Int.

Conf. on System Sciences, pages 14{22,

1994.

[DE73] G.B. Dantzig and B.C. Eaves. Fourier-

Motzkin elimination and its dual. J. of Com-

binatorial Theory, 14:288{297, 1973.

[Fea88] P. Feautrier. Parametric integer program-

ming. Operations Research, 22(3):243{268,

1988.

[Kuc78] David J. Kuck. The Structure of Computers

and Computations. John Wiley and Sons,

New York, 1978. Volume 1.

[LP92] Wei Li and Keshav Pingali. A singular loop

transformation framework based on non-

singular matrices. In Proceedings of the Fifth

Workshop on Languages and Compilers for

Parallel Computing, 1992.

[Pug92] W. Pugh. The Omega test: A fast and

practical integer programming algorithm for

dependence analysis. Comm. of the ACM,

8:102{114, 1992.

[WL91] Michael E. Wolf and Monica S. Lam. A

loop transformation theory and an algo-

rithm to maximize parallelism. IEEE Trans-

actions on Parallel and Distributed Algo-

rithms, pages 452{471, 1991.

[Wol89] Michael J. Wolfe. Optimizing Supercompilers

for Supercomputers. Pitman, London, 1989.

[ZC90] H. Zima and B. Chapman. Supercompilers

for Parallel and Vector Computers. ACM

Press, New York, 1990.

11


