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Abstract { Sentences of visual languages may often be regarded as assemblies of pictorial objects

like \circles", \arrows" or \strings" with spatial relations like \above" or \contains" between

them, i.e. their underlying structure is a kind of directed graph. Therefore, graph grammars are a

natural means for de�ning the syntax of visual languages. Their main drawback until now is the

lack of general enough and e�ciently working parsing algorithms. All published graph grammar

or |more general| visual language parsing algorithms are only able to deal with context-free

graph grammars, where the left-hand side consists of a single nonterminal vertex only. This makes

syntax de�nitions of visual languages hard to read, prohibits the use of complex pattern matching,

and disallows graph-grammars which specify transformation processes.

We have developed the �rst parsing algorithm for context-sensitive graph grammars which

allows left- and right-sides of productions to be almost arbitrary graphs. The algorithm is divided

into two phases, where the �rst one constructs bottom-up a set of all eventually useful production

applications. The second one extracts top-down viable derivations from the computed set of

production applications. This separation into two phases leads to more comprehensible algorithms.

Furthermore, it allows for independent optimization e�orts in the form of heuristics which reduce

the algorithm's exponential time and space requirements dramatically for \real world" examples.

1 Introduction

1.1 Parsing visual languages

Just as there are many di�erent textual languages, many visual languages do exist. Nassi-Shneiderman

diagrams or control ow diagrams are used as graphical pseudo code representations, database man-

agement systems are extended with visual data de�nition and query languages as front-ends, and

CASE tools o�er a large variety of diagrammatic languages for specifying software requirements and

designs. Especially the number of already existing entity relationship diagram, data ow diagram,

and �nite state automaton dialects is unsurveyable. It is remarkable that almost all of these visual

languages come without a formal de�nition of their underlying syntax (and semantics).

Everybody knows for instance that \
1 a 2

" is a well-de�ned Finite State Automaton

(FSA) as well as

�
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v1: DoubleArrow

v2: Circle

v3: String

v4: Arrow

v5: String

v6: Circle

v7: Circle

v8: String

e1: ends
e2: contains

e3:starts e5: ends

e4: labels
e6: contains

e7: contains

1 a 2

Figure 1: Translation of automaton into spatial relationships graph
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" is not a legal FSA. But where are the formalisms which allow us to write

precise and computer readable de�nitions of this FSA language?

In the case of textual languages, various kinds of context-free/attribute grammars are used to de�ne

their syntax. These syntax descriptions are used to generate e�ciently working parsing tools. This

allows to use ordinary text-editors to create and manipulate sentences of these languages. Afterwards,

generated parsing and analysis tools transform these sentences into decorated abstract syntax trees.

Therefore, users are not forced to stick to syntax-directed editors, which manipulate the underlying

abstract syntax tree instead of its textual representation.

In the case of visual languages, people seem to have less problems with the paradigm of syntax-

directed editing. But even then, general purpose graphical editors would be welcome for any kind

of restructuring processes, which introduce temporary syntactical inconsistencies in manipulated di-

agrams. Visual parsing is necessary after such modi�cations in order to rediscover the underlying

abstract syntax graph. Summarizing, there are real needs for visual language de�nition formalisms

and accompanying parsing algorithms.

In the sequel, we will focus our interest onto those visual languages, whose sentences may be

seen as assemblies of pictorial objects (vertices) with well-de�ned spatial relationships (edges) between

them. FSA diagrams contain for instance circles, arrows, and text labels as objects, and their spatial

relationships are \contains", \starts at" etc. Figure contains an example of the translation of a given

automaton into a spatial relationships graph. Translating arrows into vertices instead of edges, and

text labels into vertices instead of vertex labels is strictly necessary. Otherwise, we would not be able

to reason about relative positions of arrows and text labels, unless we would use a graph model which

supports edges between edges and vertex or edge labels (cf. �gure 1).

Graph grammars with their well-established theoretical background may be used as a natural and

quite powerful syntax-de�nition formalism (cf. [15]) for languages of spatial relationships graphs.

This means in turn that parsing algorithms for graph grammars may be used to check the syntactical

correctness or to recover the underlying abstract syntax of \free-hand drawings".

1.2 Graph parsing algorithms

Unfortunately, even for the most restricted classes of graph grammars the membership problem is

NP-complete [16]. As a consequence, all graph grammar parsing algorithms suggested up to now are
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either unable to recognize interesting languages of graphs, or tend to be hopelessly ine�cient when

applied to graphs with more than a few dozen nodes and edges

1

.

Even worse, all currently known graph grammar parsing algorithms [10, 16, 12, 21, 3, 22, 7] deal

with context-free productions only (where the left-hand side is a single non-terminal node). This might

be su�cient from the theoretical point of view

2

. But in practice it would be quite useful to allow

arbitrary graphs in the left-hand side of a production, which might even share a common subgraph

with its right-hand side. Such a common subgraph allows us to identify \context elements" in a graph.

Speci�cations of graph languages by means of these context-sensitive graph grammars tend to be more

compact and easier to understand than their context-free counterparts.

The graph parsing algorithm proposed within this paper deals with context-sensitive graph gram-

mars and consists of two major phases: A so-called bottom-up phase searches the graph for matches

(redices) of right-hand sides of productions. For every redex found, it extends the given input graph

with the corresponding production's left-hand side and generates a potential production instance. A

top-down phase inspects the generated collection of production instances and selects a subset which

together forms a viable derivation for the graph parsed.

The separation into two phases leads to more comprehensible algorithms and allows for independent

optimization e�orts. Therefore, we have been able to incorporate a number of new heuristics into our

algorithm. These heuristics | hopefully | reduce the algorithm's worst-case complexity by orders

of magnitude, when applied to \real-world" context-sensitive graph grammars and graph sentences.

1.3 Organization of the paper

The paper is organized as follows:

� Section 2 introduces our class of context-sensitive graph grammars, which is a slightly simpli�ed

and restricted version of the algebraic double pushout graph grammar approach [6].

� Section 3 presents our new graph grammar parsing algorithm and proves its correctness. Fur-

thermore, it introduces the notion of search plans for �nding matches of right-hand sides of

productions.

� Section 4 discusses possible optimizations for the basic parsing algorithm of Section 3. Among

other things, we discuss a priority queue mechanism, as well as heuristics and cost functions

which help us to �nd good search plans for productions.

� Section 5 presents an example of a graph grammar which de�nes the syntax of a visual language

and shows the intermediate and �nal data structures as would be generated by our parsing

algorithm on an example sentence.

� Section 6 compares our new parsing approach with related research with respect to the ex-

pressiveness of the supported formalism and the worst-case analysis of the presented parsing

algorithms.

� Section 7 summarizes the paper and discusses possible future work in this direction.

1.4 About the length of this paper

The ideas behind this paper have been conceived in the summer of 1994, while Andy Sch�urr visited

Leiden University for four months. Unfortunately, the paper has become quite long. This lengthiness

is mainly caused by the complicated nature of the developed algorithm: this has required a large

1

For further details see Section 6.

2

Since certain types of context-free graph grammars have the same expressiveness as their context-sensitive counter-

parts, cf. [13]
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collection of basic de�nitions, has made quite some explanation next to the algorithms necessary, and

has obliged us to prove a number of important lemmata. Furthermore, we felt the need to introduce a

number of improvements and optimizations, to withstand the exponential complexity of the problem

solved. All this has lead again to a complicated example.

In retrospect, we acknowledge that the paper is long, but do not see what could be left out without

having the entire building collapse; neither do we see how to split the paper up in parts which solve

interesting subproblems. We hope that readers will be interested enough in our solution to the hard

problem of context-sensitive graph parsing, such that they will bear with us and will be willing to

follow the entire line of thought.

2 Basic de�nitions

This section introduces the basic vocabulary of graphs and graph grammars, as well as some additional

de�nitions for the parsing algorithm presented in the next section. As we will see later on, the de�ned

class of graph grammars is equivalent to the algebraic double pushout approach [6], with modest

additional requirements concerning the form of left- and right-hand sides of productions. These

requirements simplify the parsing algorithm and guarantee its termination. Future extensions with

respect to vertex (and edge) attributes as well as embedding rules (from algorithmic graph grammar

approaches [13]) are planned. One very convenient extension is already part of this proposal: the

introduction of a class hierarchy over vertex and edge labels. Such a class hierarchy is a prerequisite

for the formulation of \generic" productions, where labeled vertices and edges match all vertices and

edges in a host graph with the same or a more speci�c label. These generic productions do not

improve the expressiveness of graph grammars (as long as label sets are �nite), but they may reduce

the number of necessary productions for the de�nition of a graph language considerably.

2.1 Graph grammar

De�nition 2.1 Two (�nite) sets L

V

; L

E

together with two binary relations isa

V

� L

V

� L

V

and

isa

E

� L

E

�  L

E

are termed hierarchical vertex and edge label sets i� isa

V

and isa

E

are both

(reexive) partial orders. In the sequel, we will often omit the subscripts \V" or \E" if they are clear

from context. 2

De�nition 2.2 G := (V;E; l

V

; l

E

; s; t) is a graph over (hierarchical) label sets L

V

; L

E

with:

� V (G) := V is a (�nite) set of vertices,

� E(G) := E is a (�nite) set of edges,

� l

V

(G) : V!L

V

is the labeling function for vertices,

� l

E

(G) : E!L

E

is the labeling function for edges,

� s(G) : E!V assigns each edge its source, and

� t(G) : E!V assigns each edge its target.

� l(G) := l

V

(V ) [ l

E

(E) will be used as an abbreviation for the set of all vertex and edge labels

in a graph G.

Furthermore, we will omit the su�x \V" or \E" of labeling functions whenever it is clear from context,

and we will use x 2 G as an abbreviation for x 2 V (G) _ x 2 E(G). 2
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a

Automaton

DoubleArrow

consists
State

Circle

covers

L RK

ends

b

Automaton State

Circle DoubleArrow

consists

covers::=
State

Circle

covers

ends

LnR K = L \R RnL

v

a

: Automaton v

s

: State v

d

: DoubleArrow

e

c

: v

a

consists

�! v

s

v

c

: Circle e

e

: v

d

ends

�!v

c

c e

cov

: v

s

covers

�! v

c

Figure 2: A production (depicted in three ways)

The graph model de�ned above has as main advantage that both vertices and edges (in the sequel

called graph elements) are identi�able objects. This allows to treat both kinds of elements in a similar

manner and simpli�es the following de�nitions and constructions considerably. Nevertheless, only

minor modi�cations are necessary to adapt the parsing algorithm of section 3 to a data model without

edge identi�cation.

De�nition 2.3 A (graph grammar) production is a tuple of graphs p := (L;R) over the same

alphabets of vertex and edge labels L

V

and L

E

. Graphs L and R may have a common subgraph K if

the following restrictions are ful�lled:

� 8e 2 E(L) \E(R)) s(e) 2 V (L) \ V (R) ^ t(e) 2 V (L) \ V (R),

i.e. sources and targets of common edges are common vertices of L and LR.

� 8x 2 L \E ) l(L)(x) = l(R)(x),

i.e. common elements of L and R do not di�er with respect to their labels in L and R.

Under these circumstances the common subgraph K, also called interface graph is de�ned as follows:

� V (K) := V (L) \ V (R)

� E(K) := E(L) \E(R)

� The functions l

V

, l

E

, s and t of K are those of L and R restricted to V (K) and E(K). 2

The common subgraph de�ned above has the same purpose as the explicit interface graph of double

pushout productions in [6]. It identi�es all those context elements in a host graph

3

which have to be

present, but are not deleted by the application of the production.

Figure 2 shows three ways to represent the same production. 2.a shows the overlap between L

and R the most clearly, but, as is it is sometimes inconvenient to �nd a way to depict the overlap, we

mainly use the notation of 2.b, which uses dotting to indicate the interface graph. The notation of

2.c is of textual nature, and is convenient if node and edge identi�ers matter mostly. Do note that L,

R and K are proper graphs, but that LnR and RnL may have dangling edges.

For the de�nition of the application of a graph grammar production p to a given graph G, a precise

de�nition of the match of the left-hand side of p in a given host graph G is necessary. Such a match, in

the sequel termed redex, is a special case of a morphism between two graphs over the same alphabets

of vertex and edge labels L

V

and L

E

(which will be assumed �xed in the sequel).

3

The \host graph" is the graph to which a production is applied.
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De�nition 2.4 A pair of functions h := (h

V

; h

E

) is a graph morphism from a graph G to a graph

G

0

(denoted as h : G!G

0

) with G := (V;E; l

V

; l

E

; s; t) and G

0

:= (V

0

; E

0

; l

0

V

; l

0

E

; s

0

; t

0

) i�:

� h

V

: V!V

0

and h

E

: E!E

0

are total mappings,

� 8v 2 V : l

0

V

(h

V

(v)) isa

V

l

V

(v),

� 8e 2 E : l

0

E

(h

E

(e)) isa

E

l

E

(e),

� 8e 2 E : s(h

E

(e)) = h

V

(s(e)), and

� 8e 2 E : t(h

E

(e)) = h

V

(t(e)).

In the sequel, we will often use h(x) instead of h

V

(x) or h

E

(x), if the omitted subscript is clear from

context. 2

Beside these de�nitions of graphs, productions, and graph morphisms, the usual de�nition of the

image of a graph under a graph morphism as being a subgraph of that graph, as well as the operations

\, [, and n for intersection, union, and di�erence of two graphs with a common subgraph will be

used from now on. Please note that the straightforward de�nition of the di�erence of two graphs as

the di�erence of their vertex and edge sets may produce \dangling edges". We will use this de�nition

nevertheless in order to be able to reason about dangling edges, while for example de�nition 2.5 below

excludes them for the purpose of \sound" graph rewriting.

De�nition 2.5 A morphism h := (h

V

; h

E

: L!G identi�es a redex of L in G with respect to another

graph R i�:

� Dangling edge condition:

8 v 2 V (L)nV (R); e 2 E(G) :

(s(e) = h

V

(v) _ t(e) = h

V

(v)) ! 9 e

0

2 E(L)nE(R) : h

E

(e

0

) = e.

� Identi�cation condition:

8 x 2 LnR; x

0

2 L : h(x) = h(x

0

) ! x = x

0

:

� Labeling condition:

8 x 2 LnR : l(L)(x) = l(G)(h(x)):

Furthermore, a morphism is called a potential redex if the identi�cation condition and the labeling

condition are ful�lled, but the dangling edge condition is not taken into account. 2

The three additional conditions for a redex are a necessary precondition for the inversion of a

production p := (L;R) and, thereby, for parsing graph grammars (see de�nition 2.6). The dangling

edge condition prevents the deletion of vertices which have incident edges not mentioned in the pro-

duction's left-hand side L. These edges would have to be guessed during parsing independent from

the fact whether they connect two matched vertices or whether they connect a matched vertex with

a vertex of the \surrounding" remaining host graph. The identi�cation condition has a rather similar

purpose. It states that context elements only are allowed to share their matches in G. This means

that any element in LnR matches and deletes its own element in G, and reconstruction of deleted

elements becomes feasible. The labeling condition �nally ensures that deleted elements have just the

labels denoted within the left-hand side of productions and not a more special label with respect to

isa

V

and isa

E

. Without this restriction, we would have di�culties again to reconstruct deleted graph

elements or more precisely, to reconstruct their labels. Finally note that the forthcoming de�nition

of the application of a production ensures that the image of its right-hand side in the resulting graph

is a redex with respect to the production's left-hand side (exchange the roles of L and R in de�nition

2.5 above).
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2.2 Production instance

During parsing, which is more or less the inverse application of productions, we have to check whether

potential matches of right-hand sides are indeed redices. Checking the \labeling condition" and the

\identi�cation condition" is possible without taking other production instances into account. But

the \dangling edge condition" needs knowledge about the existence of incident edges, i.e. we have

to know which edges are already recognized (deleted) by inverse applications of other production

instances. As already mentioned before, our parsing algorithm of the next section will be divided

into two phases. The �rst phase has not enough knowledge about applicable production instances

for checking \dangling edge" conditions. It is only able to �nd a collection of potential production

instances. The second phase is afterwards able to eliminate { among other things { those potential

production instances violating the \dangling edge" condition, and it creates a subset of production

instances which generate the given input graph (if existent).

De�nition 2.6 A production instance of a production p := (L;R) is a tuple pi := (p; h; h

0

) such

that h : L!G and h

0

: R!G

0

de�ne the application of p to a graph G with result G

0

, where:

� h is a redex of L in G with respect to R,

� h

0

is a redex of R in G

0

with respect to L,

� hj

K

= h

0

j

K

, with K the interface graph of L and R, and

� G n ( h(LnR) ) = G

0

n ( h

0

(RnL) )

The application of a production p to a graph G with result G

0

will be denoted as G

p

) G

0

.

Furthermore, the uniquely de�ned morphism

4

h for a given redex h

0

of R in G

0

will be denoted as

left-extend

p

(h

0

) (needed in algorithm 1.3). 2

Figure 3 depicts a production instance for the production of Figure 2. It is applied to graphs G

and G

0

with morphisms h and h

0

.

De�nition 2.7 A potential production instance is a production instance (p; h; h

0

) for which h

and h

0

are potential redices, which do not necessarily conform to the \dangling edge" condition of

de�nition 2.5. 2

Please note that any pair of morphisms which stem from the application of a production p to a

graph G build a potential production instance, but not the other way round. The overall idea of our

parsing algorithm is to create �rst a dependency graph of potential production instances. Afterwards

a DAG within this dependency graph will be selected such that its production instances do not conict

among each other and create indeed the given input graph.

2.3 Graph language

Based on the de�nition of productions and their application to graphs, graph grammars and their

language are de�ned as follows:

De�nition 2.8 A graph grammar gg is a tuple (A;P), with A a nonempty initial graph (the

axiom), and P a set of graph grammar productions. To simplify forthcoming de�nitions, the initial

graph A will be treated as a special case of a production with an empty left-hand side �.

The set of all potential production instances for a given graph grammar gg := (A;P) is abbreviated

with PI(gg). It includes morphisms from the initial graph A into another graph as an instance of an

arti�cial production (�;A). 2

4

Uniquely de�ned up to isomorphism
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::=

Automaton

consists

State

Circle

coversp:

v2: Circle v4: Arrow

v5: String

v6: Circle

v9: Statev11: State

v13: Automaton

e3:starts e5: ends

e4: labels

e8: coverse10: covers

e13: consists
G:

h:

v1: DoubleArrow

v2: Circle v4: Arrow

v5: String

v6: Circle

v9: Statev11: State

e1: ends

e3:starts e5: ends

e4: labels

e8: coverse10: covers

State

Circle

DoubleArrow

covers

ends

G’:

h’:

Figure 3: A production instance depicted
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De�nition 2.9 Let gg := (A;P) be a graph grammar. Its language L(gg) is de�ned as follows:

� for graphs G and G

0

: G) G

0

() 9p 2 P : G

p

) G

0

,

� )

�

is the transitive and reexive closure of ), and

� G 2 L(gg) () A)

�

G. 2

2.4 Layering

The above de�nitions of a graph grammar and its language are unusual with respect to vertex and

edge labels. Up to now, we have made no distinction between terminal and non-terminal labels, and,

therefore, also no distinction between intermediate derivation results, i.e. sentential graph forms, and

�nal results, i.e. elements of the generated language. The reason for this omission is that we need a

more �ne-grained decomposition of our label alphabets into a number of so-called layers, instead of

the usual decomposition into two layers a set of terminals and set of non-terminals.

De�nition 2.10 The decomposition L

V

�

5

L

E

= L

0

� : : :�L

n

of the vertex and edge label alphabet

into n subsets is a layered label set i�:

8 l 2 L

i

; l

0

2 L

j

: l isa l

0

! i � j; 0 � i; j � n

i.e. the layering is compatible with the partial orders isa

V

and isa

E

over vertex and edge labels. We

will use a function layer in the sequel which returns for any element of a given graph G the index of

the layer to which its label belongs to, i.e.:

8x 2 G : layer(x) = i () l(x) 2 L

i

:

2

De�nition 2.11 Given a decomposition L

0

� : : :�L

n

of our label alphabet L

V

and L

E

, the language

of a graph grammar gg may be decomposed into a number of sub-languages L

0

(gg); : : : ;L

n

(gg),

such that

L

i

(gg) := fG 2 L(gg) j l(G) �

[

j�i

L

j

g:

In the case of two layers (with n = 1), the usual terminology may be used of L

0

(gg) being the \real"

graph language of gg and L

1

(gg) the set of all sentential forms of gg (with L

0

(gg) being the set

of terminals and L

1

(gg) the set of non-terminals). 2

Using label layers, we are now able to de�ne a rather general class of graph grammars which are

\parsable". For these graph grammars we will present an algorithm which solves the memberships

problem and returns for any input graph G either the answer \no" or \yes" together with one derivation

or all possible derivations of G.

De�nition 2.12 A graph grammar gg := (A;P) is called a parsable graph grammar with respect

to a global layer assignment L

0

; : : : ; L

n

to its labels, if 8p := (L;R) 2 P:

� R is a connected graph.

� The left-hand side L is non-empty.

� The right-hand side R without the elements of K is non-empty. (�-freeness

6

of the graph

grammar).

5

Disjoint union of sets

6

also called �-freeness
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� L < R with respect to the following order for graphs:

7

G < G

0

() 9 i : jGj

i

< jG

0

j

i

^ 8 j < i : jGj

j

= jG

0

j

j

with jGj

k

de�ned as jfx 2 G j layer(x) = kgj, i.e. the number of elements in G which have a

label of layer L

k

. 2

These additional restrictions give us a number of desirable properties which we need in order to be

able to parse according to a graph grammar:

� The connectedness of the right-hand side allows us to use a linearization of the right-hand side

of a production, which can be matched step by step to elements of the graph, while following

edges in this graph (see de�nition 3.1).

� The non-emptiness of left-hand sides guarantees that each application of a production (see

de�nition 2.6) \uses" graph elements that have been created by another application or that

belong to the initial graph. This implies that the \derivation history" of a graph is always a

connected acyclic graph.

� The non-emptiness of RnL implies that we do not have to guess how often such a production

has been applied in order to generate a certain graph.

� The layering condition above de�nes an ordering relation between vertex and edge labels which

guarantees the termination of the parsing algorithm of section 3, as it disallows \cyclic" gram-

mars (see lemma 2.14 below). Even better, layering of label sets and the de�nition of lll(p)

and hrl(p) (de�nition 2.13, below) allows the parsing algorithm to organize its work in a more

e�cient manner (see section 4.2).

De�nition 2.13 The lowest left layer of a production p (or lll(p)) and the highest right layer

of a production p (or hrl(p)) are de�ned as:

lll(p) := if LnR = ; then 1 else minflayer(x) j x 2 LnRg �

hrl(p) := maxflayer(x) j x 2 Rg

Therefore, lll(p) is de�ned such that p deletes only elements of lll(p) and higher layers or creates

them during parsing. hrl(p) is de�ned such that all elements which are matched by the production's

right-hand side during parsing belong to hrl(p) or lower layers. 2

Lemma 2.14 The reverse application (h; h

0

; p

�1

) of a production p := (L;R) of a parsable graph

grammar, the application of p

�1

:= (R;L) to a given graph G, produces another graph G

0

which is

always smaller than G with respect to the previously de�ned ordering of graphs.

Proof. The reverse application of the production p deletes the image of RnL and adds an image of

LnR, where each element of the two images has the same label as in L or R (cf. de�nition 2.5). The

layering condition of de�nition 2.12 implies that

L < R =) (Ln(L \R)) < (Rn(LcapR)) =) (LnR) < (RnL)

and, thereby, that

G

0

= ((G n h(RnL)) [ h

0

(LnR)) < G

since h preserves labels of LnR elements and h

0

preserves labels of RnL elements. This is independent

from the fact whether the constructed G

0

contains dangling edges or not, i.e. is a proper graph or

not. 2

7

This is a kind of multi-set ordering[4, 8].

10



The following theorem is a direct consequence of lemma 2.14.

Theorem 2.15 The element problem for a parsable graph grammar gg is decidable due to the fact

that even a naive parsing algorithm, which applies productions with exchanged left- and right-hand

sides as long as possible and backtracks when necessary, terminates.

8

Proof. The de�ned ordering of lemma 2.14 guarantees that any sequence of reverse production

applications, which starts with a �nite graph, has a �nite length. This is due to the fact that any

derived intermediate graph instance is smaller than its predecessor and has a �nite size. Furthermore,

graphs of �nite size possess a �nite number of potential matches (redices) for a �nite set of productions.

Finally, we can compare all intermediate and �nal results of computed reverse derivation sequences

with the grammar's axiom graph, i.e. the element problem for parsable graph grammars is decidable.

2

Equipped with these results, we are now able to present a sophisticated parsing algorithm, which

solves the element problem for parsable graph grammars. Practice will show whether the imposed

restrictions for left- and right-hand sides of productions are weak enough, so that all graph languages,

which are interesting from a practical point of view, may be generated by means of parsable graph

grammars (cf. section 5).

As we will see later on, we cannot use the theorem above directly to prove the termination of

the presented parsing algorithm. The problem is that the so-called bottom-up phase of the algorithm

generates a superset of all valid (reverse) derivation sequences in the general case. Therefore, a separate

proof will be necessary to show the termination of the bottom-up phase and, thereby, for the following

top-down phase, too (cf. theorem 3.3).

2.5 Dependencies between production instances

Potential production instances (de�nition 2.7) | or better their induced applications to given host

graphs | might depend on each other or exclude each other. In order to be able to reason about

these dependencies, we �rst de�ne some abbreviations:

De�nition 2.16 We de�ne the abbreviations Xlhs, common, Xrhs, lhs, and rhs for a production

instance pi := (p; h; h

0

) with p := (L;R) as follows:

� Xlhs(pi) := h(LnR): exclusive left-hand side, the set of deleted graph elements,

� common(pi) := h(L \R) = h

0

(L \R): the set of matched but preserved graph elements,

� Xrhs(pi) := h

0

(RnL): exclusive right-hand side, the set of created graph elements,

� lhs(pi) := h(L) = Xlhs(pi) [ common(pi): the graph elements matched by the entire left-hand

side, and

� rhs(pi) := h

0

(R) = Xrhs(pi) [ common(pi): the graph elements matched by the entire right-

hand side. 2

Two (potential) production instances pi and pi

0

, which deal with common graph elements may not

be applied independently of each other. It may happen that pi must be executed before or after

pi

0

, and pi may even exclude the application of pi

0

. Both cases are characterized by the following

de�nitions. Furthermore, the following de�nitions distinguish the case that a production instance

pi

0

must be executed after another production instance pi has been executed, and the case that a

8

As a consequence parsable graph grammars cannot generate all graph languages, which may be generated by

unrestricted graph grammars (for which the left- and right-hand sides of productions are arbitrary graphs). Graph

grammarswithout any restrictions for their left- and right-hand sides are of type 0. It is well-known that the membership

problem is undecidable for type 0 languages in the general case [17].
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production instance pi

0

may be executed after another production instance pi has been executed.

Both cases restrict the order in which pi and pi

0

are executed, but the second one leaves the question

open whether pi

0

will be executed or not.

De�nition 2.17 A production instance pi

0

is a consequence of another production instance pi,

pi

0

2 consequence(pi), i� the execution of pi must be followed by the execution of pi

0

, i.e. pi

0

6= pi

and:

� Xrhs(pi) \Xlhs(pi

0

) 6= ; _

(pi creates a graph element which is deleted by pi

0

)

� common(pi) \Xlhs(pi

0

) 6= ;

(pi needs a context element which is deleted by pi

0

).

The transitive, reexive closure of consequence is consequence*. 2

De�nition 2.18 A production instance pi is above another production instance pi

0

, i� pi must be

executed before pi

0

, i.e. pi 6= pi

0

and:

� pi

0

2 consequence(pi) _

� Xrhs(pi) \ common(pi

0

) 6= ; _

(pi creates an element which pi

0

needs as context element).

� 9 e 2 E(Xlhs(pi)); 9 v 2 V (Xlhs(pi

0

)) :

s(e) = v _ t(e) = v

(pi

0

deletes a vertex which is source or target of an edge which is removed by pi. In that case pi

needs to be applied �rst in order to avoid dangling edges.)

The restriction of above to the consequences of another production instance is de�ned as follows (and

needed in de�nition 2.20):

� pi

0

above

pi

pi

00

() pi

0

; pi

00

2 consequence* (pi) ^ pi

0

above pi

00

The transitive closure of above

pi

is above

+

pi

. 2

To summarize, pi

0

2 consequence(pi) means that the application of pi must be followed by the

application of pi

0

. This is a consequence of the fact that the bottom-up phase of our parsing algorithm

will guarantee that Xlhs-elements of production instances are never Xlhs-elements of other production

instances. Therefore, any intermediate graph element, which is not part of the �nally generated graph,

must be deleted by applying a uniquely de�ned production instance. The dependency pi above pi

0

is

weaker in that it states that if both pi and pi

0

are applied, then pi must be applied earlier than pi

0

.

We must deal with transitive closure of the above relation in lemma 2.14, but have to be careful

here: pi

0

above pi

00

only needs to hold if both pi

0

and pi

00

are part of the same derivation sequence.

We, therefore, introduced pi

0

above

pi

pi

00

, which has as additional restriction that both pi

0

and pi

00

belong to the consequences of pi, and must therefore both be present if pi is present.

De�nition 2.19 A production instance pi excludes another production instance pi

0

(and vice versa)

if both production instances depend on each other or if they add the same elements to a graph (cover

same elements), i.e. pi 6= pi

0

and:

pi excludes pi

0

()

( pi above pi

0

^ pi

0

above pi ) _

Xrhs(pi) \Xrhs(pi

0

) 6= ;.
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The de�nition of excludes can be generalized to that of excludes*:

pi excludes* pi

0

()

9 pi 2 consequence* (pi); pi

0

2 consequence* (pi

0

) : pi excludes pi

0

. 2

The intuition behind these de�nitions is the following: if pi excludes pi

0

, then the choice to put

pi in the DAG inhibits the addition of pi

0

. However, incorporating pi might not be a choice, but a

necessary consequence of an earlier incorporated production instance pi

00

(if pi

00

creates an intermediate

\nonterminal" graph element which must be removed by applying pi afterwards). This leads to the

de�nition of exclude*, which will make the \real" choice points explicit in the top-down algorithm.

De�nition 2.20 A production instance pi might be inconsistent with respect to its own conse-

quences:

inconsistent(pi)()

pi excludes* pi _

9 pi

0

; pi

00

: pi

0

above

+

pi

pi

00

^ pi

00

above

+

pi

pi

0

. 2

The de�nition of the inconsistency of a production instance pi covers all those cases, where at least one

production instance in consequence (pi) is never executable. This happens if two production instances

of the consequences of pi exclude each other or if they are directly or indirectly above each other. In

that case, pi creates a graph element which can never be removed by another production instance

afterwards, i.e. graph elements which are not useful for the derivation of the given input graph.

2.6 Parse DAGS

De�nition 2.21 A set of potential production instances PI � PI(gg) for a graph grammar gg :=

(A;P) is a parse DAG for a graph G with respect to a given completion G of G i�:

1. PI is a DAG with respect to the above relation of de�nition 2.18.

2. The DAG contains one and only one production instance pi

0

of the axiom production (�;A) as

its root.

3. There exists a linear order PI := fpi

0

; : : : ; pi

n

g with pi

k

:= (p

k

; h

k

: L

k

!G; h

0

k

: R

k

!G), which

is compatible with the above relation such that:

� G

0

:= Xrhs(pi

0

) = rhs(pi

0

) = A � G, the initial graph of gg,

� lhs(pi

k

) � G

k�1

,

� G

k

:= (G

k�1

nXlhs(pi

k

) [Xrhs(pi

k

) ) � G is a graph,

� G

n

= G, the input for the forthcoming parsing algorithm. 2

The de�nition of a parse DAG is rather complicated. Especially conditions (1) and (2) seem to

be superuous in presence of condition (3). They will be used to guide the construction process of a

parse DAG. Unfortunately, these conditions are not su�cient in the general case, so that we cannot

drop the additional condition (3).

The introduction of the graph G is not understandable without some knowledge about the parsing

algorithm. The bottom-up phase of the algorithm does not delete any graph elements in G, but creates

a completion G of the input graph G. This completion contains any intermediate graph element which

might be necessary to derive G step by step. Therefore, it makes sense to require the existence of

a graph G which contains G as well as the initial graph A and all intermediate derivation results as

subgraphs. The graph G does not represent the derivation history of G, i.e. it is not equivalent to the

parse DAG of G. This is a consequence of the fact that productions over here are not context-free,
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i.e. left-hand sides of productions do not consist of single vertices only. Henceforth, we do not have

a one-to-one correspondence between applied production instances and replaced vertices of left-hand

side matches.

Theorem 2.22 Using the vocabulary of de�nition 2.21 we can prove that for any (parsable) graph

grammar gg and any graph G the following holds:

9 PI � PI(gg) and PI is a parse DAG for G () G 2 L(gg):

Proof.

(= It is obvious that any derivation sequence for a given graph G 2 L(gg) ful�lls the conditions

(2) and (3) of de�nition 2.21. Furthermore, left-hand sides of productions are never empty

(cf. de�nition 2.12). Therefore, every production instance uses graph elements created by

another production instance, and any derivation sequence of a graph forms a connected graph

of production instances with respect to the above relation. Finally, production instances, which

are part of the same graph derivation, never depend on each other. Therefore, the connected

graph of production instances is acyclic, too.

=) The condition (3) of the de�nition of a parse DAG de�nes already a derivation sequence for a

graph G if all the morphisms h

k

are redices of L

k

in G

k�1

(and not only potential redices) and

all the morphisms h

0

k

are redices of R

k

in G

k

(and not only potential redices). But h

0

k

ful�lls

the dangling edge condition \per de�nition". New vertices in G

k

may not have incident edges

which are not created simultaneously. And h

k

violates the dangling edge condition only if G

k

contains dangling edges afterwards, i.e. G

k

is not a graph. 2

3 The graph parsing algorithm

The most important (and most time consuming) part of any graph parsing algorithm consists of

searching the graph for a redex of some production. Next, when such a redex is found, the question

arises whether the production should be applied or not. De�nition 2.6 gave the de�nition of the

application of a production p := (L;R). During parsing this application is reversed and creation of

h

0

(RnL) is replaced by creation of h(LnR), and deletion of h(LnR) is replaced by deletion (or covering)

of h

0

(RnL). It can however be the case that the application of this production inhibits the application

of another production (in the case of intersecting covers) and it might cause the entire parse to fail.

This means that every production instance represents a choice point in the algorithm: we have | at

least in the general case | the alternatives to use it as part of the constructed derivation sequence or

to drop it. The overall searching for a viable derivation should not interfere with the more low-level

(and time consuming) searching for redices. We, therefore, opt for an algorithm along the following

lines:

Our parsing algorithm is divided into a bottom-up phase and a top-down phase.

� A bottom-up phase uses linearizations of the right-hand sides of productions. It searches for

redices of productions by moving a dot through these linearizations. On the recognition of an

entire right-hand side, a production instance pi is created, and the elements in Xlhs(pi) are

added to the graph. The addition of new elements to the graph might reactivate suspended

dotted rules. The result of the bottom-up phase is the collection PPI of all production instances

discovered.

� A top-down phase composes afterwards subsets of PPI which together form correct parse DAG's

for the given input graph. It starts with a production instance for the axiom production and

extends this set without violating the above restriction. Whenever a production instance is en-

countered which excludes other production instances, this marks a choice point in the algorithm.
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This means that the derivation at hand is splitted into two derivations, one for each possibility.

These derivations are developed in a pseudo-parallel fashion with a preference for depth-�rst

development.

In our approach we concentrate all work which deals with graph elements in the bottom-up phase. This

phase is not bothered with backtracking, ambiguities and alternative derivations, it just generates as

many matches as possible. The top-down phase does not consider individual graph elements, but only

deals with dependencies between entirely matches of production instances, and combines these into

viable derivation sequences. It would in theory be possible to incorporate the work of the top-down

phase into the bottom-up phase, but that would complicate the algorithms considerably.

3.1 Preliminary de�nitions for the bottom-up phase

One of the most severe problems of any graph rewriting system or graph parsing algorithm is to keep

track of all potential redices of a given set of productions, and to incrementally construct these while

the graph is modi�ed. We apply a method which constructs a linear search plan for every production's

right-hand side, with a result that predetermines the order in which the redex must be constructed.

Another approach to this problem is the RETE approach, which is discussed in Section 6.

The following de�nitions introduce search plans for right-hand sides of productions without stating

anything about how to select a \good" search plan among the many possible search plans for a right-

hand side. Section 4 considers afterwards the problem how to estimate the costs of search plans, which

provides an indication for this choice.

De�nition 3.1 The right-hand side of a production p := (L;R) can be linearized into a search

plan, which is a sequence [md

0

;md

1

; : : : ;md

n

] of pattern matching directives. The �rst item of

the sequence, md

0

, has the form

� < head(y : l) >: �nd a vertex with label l and call it y,

and each of the remaining items md

i

, for 1 � i � n, has one of the following forms:

� < z : x

k

�!(y : l) >: start at an already known vertex x of R, follow an edge with label k to a

target vertex with label l, and call the edge z and its target vertex y,

� < z : x

k

 �(y : l) >: start at an already known vertex x of R, follow an edge with label k in

inverse direction to a source vertex with label l, and call the edge z and its source vertex y, or

� < z : x

k

�!y >: check the existence of an edge with label k between two already known vertices

x and y of R, and call it z.

Furthermore, left(md) returns the variable name x of a matching directive md; left(md) is unde�ned

for the head of a search plan. 2

The following sequence of pattern matching directives is a search plan for the production of Figure 2:

< head(v

d

: DoubleArrow) >

< e

e

: v

d

ends

�!(v

c

: Circle) >

< e

cov

: v

c

covers

 � (v

s

: State) >

The conditions for consistency and completeness of search plans are rather straightforward and

have been omitted in de�nition 3.1. Consistency means that pattern matching directives correspond

to nodes and edges of a production's right-hand side R, vertex identi�ers play only once the role of a

y variable, and edge identi�ers play only once the role of a z variable. Completeness means that the
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sequence of pattern matching directives covers the whole right-hand side R. It is always possible to

create such a search plan due to the requirement in de�nition 2.12 that R is a connected graph.

As already mentioned above, the set of consistent and complete search plans for a distinct pro-

duction p is in general quite large. It is rather di�cult to �nd a \best" search plan within this set.

The quality of the choice depends to some extend on heuristics of the expected number of vertices

and edges with the same label in the considered language of graphs. We will for now assume that a

function SP (p) selects at least a \good" search plan. A �rst attempt to de�ne such a function based

on estimated costs of search plans may be found in section 4.

Search plans are used by the �rst phase of our parsing algorithm, which step by step extends

matchings of right-hand sides of productions by \pumping" dotted rules through the graph. A dotted

rule represents a partially executed search plan.

De�nition 3.2 A tuple dr := (p;M; i; h; s) is a dotted rule with respect to a given graph G, which

is an already constructed completion of an input graph G, i�

� p := (L;R) is a production of a parsable graph grammar,

� M := SP (p) is a sequence [md

0

; : : : ;md

n

] of matching directives which are a good search plan

for p,

� i, with 1 � i � n, is the position of the \dot" in the dotted rule. The matching directives

md

0

; : : : ;md

i�1

are already ful�lled, the matching directives md

i

; : : : ;md

n

still have to be ful-

�lled in the selected order of the search plan,

� h : R!G is a partial potential redex of R in G with respect to L, binding graph elements of

R to already discovered graph elements in G as the result of processing matching directives

md

0

; : : : ;md

i�1

, and

� s represents the state of a dotted rule, which can be active or suspended. If active, md

i

still has

to be checked against G. If suspended, md

i

can only be ful�lled when an appropriate edge is

added to G. 2

The parsing algorithm stores these dotted rule instances as attachments to vertices in G. A dotted

rule (p; [md

0

; : : : ;md

n

]; i; h; s) will be attached to the vertex h(left(md

i

)) of G, which is the already

known vertex x of the next pattern matching directive md

i

.

3.2 The bottom-up phase of the parsing algorithm

Algorithm 1 (Main loop of bottom-up parsing phase) The bottom-up phase of our parsing al-

gorithm extends matchings of right-hand side of productions step by step by \pumping" dotted rules

through the graph. The main loop of the bottom-up parser (algorithm 1) starts with a call to create-

initial-dotted-rules (sub-algorithm 1.2). Next, it repeatedly checks whether there are dotted rules

which can extend their matches (with aid of function ok, sub-algorithm 1.1), and if so, calls routine

proceed (sub-algorithm 1.3) with a discovered possible extension of an already known match. If this re-

sults in a completely recognized production, proceed extends the graph, calls create-initial-dotted-rules

for all vertices created, and calls reactivate-dotted-rules (sub-algorithm 1.4) for all edges created.

function CreatePotentialProductionInstances( in G : graph) : set of potential production instances=

G := G

PPI := ; (potential production instances)

for every vertex v 2 G do

create-initial-dotted-rules(G; v)
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od

while 9 v 2 G with dr := (p;M; i; h; active) attached to v do

M = [: : : ;md

i

; : : :]

if md

i

is of the form < z : x

k

�!(y : l) > then

for every edge e : v

k'

�!v

0

2 G do

if ok (h; y!v

0

) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fy!v

0

; z!eg; active))

�

od

else if md

i

is of the form < z : x

k

 �(y : l) > then

for every edge e : v

k'

 �v

0

2 G do

if ok (h; y!v

0

) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fy!v

0

; z!eg; active))

�

od

else if md

i

is of the form < z : x

k

�!y > then

for every edge e : v

k'

�!v

0

2 G do

if v

0

= h(y) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fz!eg; active))

�

od

�

change the state of dr from active to suspended

od

return PPI

Sub-algorithm 1.1 (OK | Check identi�cation condition and labels)

Returns true i� the planned extension of the morphism h : R!G with a binding of the variable var { a

vertex or edge identi�er in R { to a vertex or edge identi�er id in G does not violate the identi�cation

condition of de�nition 2.5 (with respect to a production p := (L;R)). Furthermore, the label of the

variable var has to be compatible with the label of id (cf. use of isa

V

and isa

E

in de�nition 2.4 and

labeling condition of de�nition 2.5).

function ok ( in h : R!G : partial morphism; in var!id : new binding ) : boolean =

if 9 var

0

2 R with h(var

0

) being de�ned ^ (identi�cation condition)

h(var

0

) = id ^

(var

0

2 RnL _ var 2 RnL) then

return false

else if var 2 RnL ^ l(id) = l(var) _ (labeling condition)

var 2 R \ L ^ l(id) isa l(var) then

return true

else

return false

�

Sub-algorithm 1.2 (Create initial dotted rules) If a new vertex v is added to the graph, then

an initial dotted rule is created for all productions which have a search plan with a matching head.

proc create-initial-dotted-rules( inout G : graph ; in v : vertex ) =

for every production p : (L;R) 2 gg with
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search plan M = [< head(y : l) >; : : :] do

h := completely unde�ned (partial) morphism

if ok (h; y!v) then

attach (p;M; 1; h[ fy!vg; active) to v in G

�

od

Sub-algorithm 1.3 (Proceed with a dotted rule) Matching directive md

i

has been ful�lled. If

md

i

is not the last one of the matching directives, a new dotted rule is attached to the vertex from

which matching directive md

i+1

needs to originate. Otherwise, the production p := (L;R) has been

recognized completely, in which case the left-hand side must be added to the graph and can be

processed further on.

proc proceed( inout G : graph; in (p;M; i; h

0

; s) : dotted rule) =

M = [md

0

; : : : ;md

n

]

if i < n then

attach (p;M; i+ 1; h

0

; s) to h

0

(left(md

i+1

))

else

h := left-extend

p

(h

0

) (see de�nition 2.6)

if not inconsistent( (p; h; h

0

) ) then (see de�nition 2.20)

PPI := PPI [ f(p; h; h

0

)g

G := G[ h(LnR)

for every vertex v 2 V (h(LnR)) do

create-initial-dotted-rules(G; v)

od

for every edge e 2 E(h(LnR)) do

reactivate-dotted-rules(G; e)

od

�

�

Sub-algorithm 1.4 (Reactivate suspended dotted rules) If we add a new edge e from v to v

0

to the graph, then it might be the case that there are suspended dotted rules attached to v or v

0

which can proceed their pattern matching process with this edge. These suspended rules need to be

re-activated.

proc reactivate-dotted-rules( inout G : graph; in e : edge) =

v := s(e)

v

0

:= t(e)

for every dr := (p;M; i; h; suspended) attached to v do

M = [: : : ;md

i

; : : :]

if md

i

is of the form < z : x

k

�!(y : l) > ^

ok (h; y!v

0

) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fy!v

0

; z!e; g; active))

else if md

i

is of the form < z : x

k

�!y > ^

v

0

= h(y) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fz!eg; active))

�

od

for every dr := (p;M; i; h; suspended) attached to v

0

do

M = [: : : ;md

i

; : : :]
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if md

i

is of the form < z : x

k

 �(y : l) > ^

ok (h; y!v) ^ ok (h; z!e) then

proceed(G; (p;M; i; h[ fy!v; z!eg; active))

�

od

The simplest way to reactivate a suspended dotted rule would be to change its state from suspended to

active and have it eventually be reconsidered by the main loop of the parser. That would be incorrect

however: say, we have a dotted rule dr attached to vertex v

1

which has its dot before an edge labeled

by k. Assume furthermore that an edge labeled by k exists in the graph from v

1

to v

2

. Then dr

may already have been processed by the main loop of the parser, which means that it deposited an

incremented version of itself at v

2

and suspended itself. Afterwards, a new edge with label k from v

1

to v

3

is added to the graph. This means that dr needs to be reactivated, but only for the new route

to v

3

, not for the already inspected route to v

2

. That is what happens in algorithm 1.4 above.

3.3 Correctness of the bottom-up phase

Before turning our interest to the top-down phase of the parsing algorithm, we have to show that the

algorithms for the bottom-up phase are correct. The most di�cult part of this proof shows that the

algorithm terminates if it is provided with a parsable graph grammar and a �nite input graph. Given

the layering condition for parsable graph grammars (De�nition 2.12), and the fact that the above

algorithms take great care not to perform double work (initial dotted rules are only created for newly

created nodes, dotted rules only proceed over newly created edges), termination of the bottom-up

phase should be rather straightforward. It might however also be the case that a dotted rule proceeds

over results which have been generated by alternative matches of itself. This is illustrated by the

following production:

A B

A

A

Here a successful match of the right-hand side adds elements to the graph which can be used to

for yet another successful match of the same right-hand side. This case is prohibited by the check for

consistency in routine proceed (sub-algorithm 1.3). All of these considerations have to be taken into

account in the proof of the termination lemma:

Lemma 3.3 The algorithm 1 terminates always, when it is provided with a �nite graph G and a

parsable graph grammar gg as input. This is equivalent to the fact that the produced set PPI of

production instances is �nite.

Proof. We assume that the produced set PPI is in�nite, and we select a production instance pi 2 PPI

for any natural number n such that:

consequence* (pi) = fpi

0

; : : : ; pi

n

g

with

pi

k

above

+

pi

pi

l

! k � l :

i.e. the consequences of pi may be ordered with respect to the above relation restricted to the set of

consequences of pi (cf. de�nition 2.18).

This is always possible, since:

� An in�nite number of production instances in PPI requires an in�nite number of completion

steps of the input graph G to an in�nite graph G. Each of these completions relies on graph
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elements added by previously accomplished completions, i.e. we are able to �nd consequence

chains of arbitrary length in PPI.

� The ordering of a consequence* set of a production instance pi with respect to above+ is always

possible since:

pi

k

above

+

pi

pi

l

^ pi

l

above

+

pi

pi

k

for two di�erent production instances pi

k

; pi

l

2 consequence* (pi) is a contradiction to the incon-

sistency check of sub-algorithm 1.3 and de�nition 2.20 of an inconsistent production instance.

Any sequence fpi

0

; : : : ; pi

n

g de�ned as above is a \reverse" derivation of a completion G of the input

graph G

0

:= G such that

G

k+1

:= G

k

nXrhs(pi

k

) [Xlhs(pi

k

)

as long as \dangling edges" are ignored. This is true, since rhs(pi

k

) � G

k

:

� 8 x 2 rhs(pi

k

) x 2 G _ 9

1

pi

0

2 consequence* (pi

k

) n fpi

k

g � fpi

0

; : : : pi

k�1

g :

x 2 Xlhs(pi

0

),

i.e. all elements needed for the reverse application of pi

k

are either already elements of G or

they are created by reverse application of pi

0

; : : : pi

k�1

.

� 8 l < k :

x 2 Xrhs(pi

l

)! (pi

l

above pi

k

) _ (pi

l

excludes pi

k

),

i.e. all needed elements, which are created by reverse application of pi

0

; : : :pi

k�1

are not re-

moved by pi

0

; : : : pi

k�1

. This would be a contradiction to the initial requirement for the selected

sequence of production instances that pi

l

above

+

pi

pi

k

does not hold and that pi

l

and pi

k

do not

exclude each other.

Therefore, we are able to construct reverse derivation sequences of arbitrary length, which is a con-

tradiction to the layering condition of de�nition 2.10 and lemma 2.14. That means that the initial

assumption of in�niteness of PPI was wrong. 2

Based on the lemma above and the assumption that the construction of search plans works correctly

(cf. de�nition 3.1), we are now able to prove the correctness of the bottom-up phase of our parsing

algorithm 1:

Theorem 3.4 Provided with a parsable graph grammar gg := (A;P) and a �nite input graph G,

algorithm 1 produces a �nite set PPI which contains all potential derivation sequences of G (up to

isomorphism).

Proof. The proof is based on the construction of an inverse graph grammar

gg

�1

:= (G;P

�1

) with P

�1

:= f(R;L) j (L;R) 2 Pg:

We know that

G 2 L(gg)() A 2 L(gg

�1

);

since the application of a production is symmetric with respect to its left- and right-hand side and its

redices in given host graphs (cf. de�nition 2.6).

Therefore, it is su�cient to prove that PPI contains any potential derivation sequence of gg

�1

starting with graph G, under the assumption that production instances of PPI remove their exclusive

right-hand sides from a given input graph instead of just completing the input graph with their

exclusive left-hand sides:
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� Completeness: The execution of search plans in the parser's main loop �nds all matches (poten-

tial redices) of productions' right-hand sides in the current completion G of G. The critical step

of this part of the proof is to verify that G contains \enough" active dotted rules attached to

vertices. This is guaranteed by sub-algorithm 1.2, create-initial-dotted-rules, and sub-algorithm

1.4, reactivate-dotted-rules.

� Non-redundancy: The activation and reactivation of dotted rules takes even care that any

computed match of a right-hand side di�ers at least with respect to one graph element from an

already computed match. This is a consequence of the fact that a dotted rule is only reactivated,

when its next pattern matching directive corresponds to a new graph element.

� Correctness: The sub-algorithm 1.1, ok, guarantees that all computed matches (redices) for

right-hand sides respect the \identi�cation" and the \labeling" condition of de�nition 2.5 (both

conditions for the left-hand sides are guaranteed by the completion process of G in sub-algorithm

1.3 proceed). Therefore, any element of PPI is a potential production instance with respect to

a regarded completion G.

� Termination: Finally, the constructed set PPI remains �nite (cf. lemma 3.3). This has the

consequence that the resulting completionG is �nite, too. Furthermore, any �nite graph contains

only a �nite number of partial matches for a �nite number of productions (their right-hand sides).

This guarantees the termination of the main loop of algorithm 1. 2

Please note that the theorem above does not guarantee that PPI contains indeed a derivation

sequence (parse DAG) for the given graph G. Elements of PPI may exclude each other, and G

may contain graph elements which are not covered (created) by any production instance of PPI.

Even worse, the theorem does not guarantee that elements of PPI, which are not excluded by other

production instances, are part of at least one derivation sequence. \Dangling edges" and missing

graph elements of left-hand side matches may prevent the execution of production instances. This is

a consequence of the fact that the bottom-up phase does not check the \dangling edge" condition,

and that a computed completion G may contain uncovered \nonterminal" graph elements (production

instances of PPI do not create these elements if executed in forward direction). The following top-

down phase of the parsing algorithm has to take care of these problems.

3.4 The top-down phase of the parsing algorithm

The overall idea is to start at a production instance for the axiom production and extend the derivation

with production instances which do not violate condition (3) of de�nition 2.21. However, in doing so

choices are made: once pi is added to the derivation, it is no longer possible to add pi

0

if it is excluded

by pi. This means that it might happen that a choice in the past turns out to be a wrong one, and

that no pi

0

can be found anymore which would not violate condition (3). There are two, quite similar,

ways to deal with this situation:

� Perform a backtrack at the moment the derivation stucks: go back to the most recent choice

and try another alternative. The main drawback of this method is that the backtrack operation

itself is expensive to perform as applied production instances have to be undone again.

� It is also possible to develop alternative derivations in parallel and simply discard a stuck deriva-

tion and continue with an alternative right away. A consequence is that alternative derivations

must be stored.

It is open in a parallel method whether these alternatives are developed in a breadth-�rst or

depth-�rst way; that just depends on the way in which the next derivation is selected to perform

a step in.
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It makes sense for both the backtrack method and the parallel method to postpone the application

of a production instance which excludes another production instance as long as possible: in that case

alternative derivations share as much work as possible before they split.

The backtrack method is most attractive if one is interested in a single derivation for the graph;

parallel development of alternative derivations is to be preferred over the backtrack method if all

viable derivations need to be produced, as it theoretically allows to take derivations together at the

moment a conict has been solved.

9

We are mainly interested in �nding a single derivation for a

graph, but will for sake of clarity of the explanation present an algorithm which creates parse DAG's

in parallel. This algorithm works in a depth-�rst manner and returns the �rst parse DAG found.

The top-down phase receives the collection of potential production instances PPI as generated by

the bottom-up phase and needs to produce a viable parse DAG which is a certain subset of PPI . The

algorithm maintains a collection of active derivations:

De�nition 3.5 A tuple (G

c

;API

c

;EPI

c

) is a derivation. G

c

is the graph as built till now by the

applied production instances in API

c

. The selection of certain production instances excludes other

production instances, which are kept in EPI

c

. The sets API

c

and EPI

c

are both subsets of the original

collection of potential production instances PPI . We will sometimes refer to PPI

c

as abbreviation for

PPIn(API

c

[ EPI

c

), the production instances which can still be applied. 2

Algorithm 2 (create-parse-DAG) The top-down algorithm keeps its collection of active deriva-

tions in a stack, as this facilitates to pursue derivations in a depth �rst manner. A production

instance may be applied in a derivation if its lhs is present in G

c

, the application of it does not intro-

duce dangling edges, and if it is not yet excluded by already applied production instances. We use the

dependency relations between production instances to determine the candidate production instances

which ful�ll all of these requirements.

If a to be applied production instance pi has an excludes* relation with any of the not yet applied

production instances, the application of pi indicates a choice point in the algorithm. Therefore, we

push two derivations on the stack of derivations: �rst one in which pi is simply excluded, next one in

which pi is applied. This allows us to continue with the alternative derivation(s) if the choice turns

out to be wrong.

The algorithm uses two cleanup sub-algorithms (cf. sub-algorithms 2.1 and 2.2) for getting rid

of any production instance which is useless from the very beginning of the top-down parsing phase,

or which turns out to be useless later on. Furthermore, it calls Apply (cf. sub-algorithm 2.3) for

computing the e�ects of a eventually selected production instance within its main loop.

function CreateParseDAG( in G : graph ; in PPI : set of possible production instances) : parse DAG =

D := emptystack

PPI := initial-cleanup(PPI)

for every pi := ((;; A); h; h

0

) 2 PPI do

D := push(Apply(pi; (;; ;; ;)); D)

od

while :empty(D) do

d := (G

c

;API

c

;EPI

c

) = top(D); D := pop(D)

d := cleanup(d)

Candidates := f pi 2 PPI

c

j

9 pi

0

2 API

c

: pi

0

above pi ^

8 pi

00

2 PPI : pi

00

above pi! (pi

00

2 API

c

_ pi

00

2 EPI

c

) g

if Candidates = ; ^G

c

= G then

return API

c

successful derivation

else if Candidates = ; then

9

Such as for example done in the Generalized LR parsing algorithm of Tomita[20] for ambiguous textual grammars.
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do nothing dead-end derivation

else if 9 pi 2 Candidates : :9 pi

0

2 PPI

c

: pi excludes* pi

0

then

D := push(Apply(pi; d); D) simple step

else

select some production instance pi from Candidates

D := push((G

c

;API

c

;EPI

c

[ fpig); D) choice point

D := push(Apply(pi; d); D)

�

od

return ; no successful derivation found

Sub-algorithm 2.1 (initial-cleanup) Removes all production instances pi 2 PPI with elements

in their left-hand sides which are not generated by any other pi

0

2 PPI . These pi are dead-end

production instances which can never become part of any successful parse DAG. By removing them,

we reduce the search space for the top-down phase.

proc initial-cleanup( inout PPI : set of possible production instances) =

while 9 pi 2 PPI : x 2 lhs(pi) ^ :9 pi

0

2 PPI : x 2 Xrhs(pi

0

) do

PPI := PPI nfpig

od

return PPI

Sub-algorithm 2.2 (cleanup) Disables all those production instances pi 2 PPI with elements in

their left-hand sides which are not generated by any other pi

0

2 PPI nEPI

c

. Furthermore, it disables

those pi which have a vertex v in their left-hand side, while there are edges e in the graph which have

v as source or target, and which cannot be deleted anymore by any production instance. Application

of pi would otherwise lead to dangling edges.

This routine is a potential source of ine�ciency as it deals with individual graph elements and

is executed as part of every iteration of the top-down algorithm's main loop. We, therefore, do not

consider all production instances for cleanup, but only those which are immediately reachable from

the production instances in API

c

. All remaining production instances are not yet considered within

the forthcoming candidate selection process of the main loop.

function cleanup( in d = (G

c

;API

c

;EPI

c

) : derivation) : derivation =

while 9 pi 2 PPI

c

; 9 pi

00

2 API

c

: pi

00

above pi ^

( x 2 lhs(pi) ^

:9 pi

0

2 (PPI nEPI

c

) : x 2 Xrhs(pi

0

) ) _

( 9v 2 V (Xlhs(pi)); 9e 2 E(G

c

) :

(s(e) = v _ t(e) = v) ^

:9 pi

0

2 PPI

c

: e 2 E(Xlhs(pi

0

)) ) do

d := (G

c

;API

c

;EPI

c

[ fpig)

od

return d

Sub-algorithm 2.3 (Apply) Returns a derivation d

0

, which is the incoming derivation d on which

production instance pi has been applied.

function Apply( in pi = ((L;R); h; h

0

) : potential production instance; in d = (G

c

;API

c

;EPI

c

) : derivation) =

G

n

:= G

c

nh(L) [ h

0

(R)

API

n

:= API

c

[ fpig

EPI

n

:= EPI

c

[ fpi

0

2 PPI j pi excludes* pi

0

g

return (G

n

;API

n

;EPI

n

)
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The top-down phase relies heavily on the dependency relations above and excludes. These can best

be pre-computed on the basis of the entire collection of potential production instances PPI during or

after the bottom-up phase.

3.5 Correctness of the top-down phase

The top-down algorithm selects the production instance pi, it applies, solely on the basis of checking

above and exclude relations. Therefore, we have to prove that any selected production instance is

indeed applicable, i.e. that pi 2 Candidates implies:

1. :9 pi

0

2 API

c

: pi

0

excludes pi

It may not happen that some pi is a candidate, while there exists another pi

0

2 API

c

with

pi

0

excludes* pi. In that case pi would try to create already existent graph elements. This is

trivial, since application of pi

0

(by sub-algorithm 2.3) is accompanied by moving all produc-

tion instances which have an excludes* relation with pi

0

to EPI

c

, the set of already excluded

production instances.

2. 8 x 2 lhs(pi) : x 2 G

c

Any selected candidate pi is a production instance whose left-hand side is part of the current

graph G

C

. We will prove this fact in lemma 3.6.

3. 8 v 2 V (Xlhs(pi)) :

:9 e 2 E(G

c

) : (s(e) = v _ t(e) = v) ^ e 62 Xlhs(pi)

Any selected candidate pi does not only respect the identi�cation and labeling condition of

de�nition 2.5 but also the required dangling edge condition. In order to ensure this condition,

we rely on the fact that the de�nition of above is conscious of these dangling edges, just as the

sub-algorithm cleanup is. We will prove this fact in lemma 3.7.

Lemma 3.6 Any chosen candidate production instance may be applied to the given host graph, i.e.

pi 2 Candidates) 8 x 2 lhs(pi) : x 2 G

c

.

Proof. The proof consists of two parts: (1) every element in lhs(pi) has once been added to G

c

, and

(2) no element in lhs(pi) has been removed from G

c

.

1. The algorithm continuously performs cleanup. That guarantees 8x 2 lhs(pi) : 9pi

0

2 PPInEPI

c

:

x 2 Xrhs(pi

0

). This implies in turn that pi

0

above pi. We also know from the second condition

for Candidate that pi

0

2 API

c

_ pi

0

2 EPI

c

, which implies that pi

0

2 API

c

. The latter implies

in turn that all x 2 Xrhs(pi

0

) have been added to G

c

at the moment pi

0

was applied and added

to API

c

.

2. Remains the question whether x is still part of G

c

or whether it is already deleted by another

production instance, i.e. 9 pi

00

2 API

c

with x 2 Xlhs(pi

00

) ? In this case we know that

x 2 lhs(pi) ^ x 2 Xlhs(pi

00

), which implies one of the following two conditions:

� x 2 Xlhs(pi) ^ x 2 Xlhs(pi

00

) :

This is impossible due to the way in which the bottom-up phase works (see sub-algorithm

1.3): if the redex of a production instance pi has been recognized, pi is added to PPI

and new graph elements are created in G for Xlhs(pi). This means that two production

instances can never have common elements in their Xlhs

� x 2 common(pi) ^ x 2 Xlhs(pi

00

) :

This would imply pi above pi

00

. However, in that case pi

00

is not yet applied; the candidate

condition for pi

00

requires that all production instances above have already been applied or

excluded. Neither is the case for pi.
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This implies that x is still present in G

c

. 2

Lemma 3.7 None of the chosen candidate productions will cause a dangling edge in the host graph,

i.e.:

pi 2 Candidates )

8 v 2 V (Xlhs(pi)) :

:9 e 2 E(G

c

) : (s(e) = v _ t(e) = v) ^ e 62 Xlhs(pi)

Proof. We assume the contrary:

pi 2 Candidates ^

9v 2 V (Xlhs(pi)) :

9e 2 E(G

c

) : (s(e) = v _ t(e) = v) ^ e 62 Xlhs(pi)

The considered edge e 2 G

c

of the assumption above has a vertex v as source or target which

is deleted by the production instance pi. Therefore, v is not a terminal element of the input graph

G. As a consequence, e itself may not be a terminal element of G. This implies the existence

of another production instance pi

0

which deletes this edge (introduced this edge during parsing):

9 pi

0

2 PPI : e 2 E(Xlhs(pi

0

)) ^ (s(e) = v _ t(e) = v).

Due to the structure of the bottom-up phase, we know that only one such pi

0

may exist. From the

de�nition of above (third condition of de�nition 2.18), we also know that pi

0

above pi holds.

Furthermore, we assume that e 2 G

c

. Therefore, pi

0

has not been applied yet, i.e. pi

0

62 API

c

.

This means that pi

0

2 EPI

c

_ pi

0

2 PPI

c

.

� pi

0

2 EPI

c

) pi

0

62 PPI

c

, which means that sub-algorithm cleanup would have disabled pi

altogether. This contradicts the assumption that pi 2 Candidates .

� if pi

0

2 PPI

c

(PPI

c

= PPI n(API

c

[EPI

c

)) then pi would not be disabled by cleanup. However,

one of the conditions for pi to become a candidate is:

8 pi

0

2 PPI : pi

0

above pi! (pi

0

2 API

c

_ pi

0

2 EPI

c

)

Knowing that pi

0

62 EPI

c

we can conclude pi

0

2 API

c

. However, this implies that e would

have been removed from G

c

, at the moment pi

0

was added to API

c

. This contradicts with the

assumption that e 2 E(G

c

).

This means that the assumption does not hold and proves the lemma. 2

Using the lemmata above and the previously shown correctness of the bottom-up phase, we can

now prove the overall correctness of our two-phase parsing algorithm.

Theorem 3.8 Let G be a graph with respect to de�nition 2.2 and gg a parsable graph grammar with

respect to de�nition 2.12. Then

algorithms 1 and 2 return a parse DAG for G () G 2 L(gg):

Proof. We have to show that any result of the parsing algorithm is a parse DAG for G, that the

algorithm �nds any existing parse DAG, and that the algorithm terminates under any circumstances.

This proof consists of �ve steps:

1. Theorem 2.22 proves that:

G 2 L(G) () 9 parse DAG PI � PI(gg) for G:
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2. Theorem 3.4 proves already that

PI is a parse DAG for G =) PI � PPI

with PPI being the set of possible production instances which is the output of the bottom-up

phase.

3. The top-down phase extracts a subset PI from PPI such that PI is either the empty set or:

� PI is a DAG with respect to the above relation and with an instance of the grammar's

axiom as its root (cf. algorithm 2).

� Any incorporated production instance into PI was successfully applied to an intermediate

derivation result graph (see lemmata 3.6 and 3.7).

� Finally, the algorithm's 2 \exit" condition ensures that the returned set PI derives indeed

the given graph G.

As a consequence, any nonempty set PI of the top-down phase is indeed a parse DAG for G.

4. Furthermore, we are able to conclude that algorithm 2 �nds any parse DAG PI � PPI, since

excludes* relationships and cyclic above relationships are the only reasons which may prevent

the incorporation of possibly useful production instances from PPI in PI. The algorithm deals

with excludes* relationships between production instances by testing all possible variations via

depth-�rst search. Furthermore, cyclic above relationships may be ignored, since production

instances depending on each other may never be part of a valid graph derivation(cf. de�nition

2.18 and 2.19). Therefore, the algorithm returns the empty set if G is not an element of L(gg).

5. The termination of the top-down phase is guaranteed by the termination of the bottom-up phase,

which implies that its resulting set of possible production instances PPI is �nite.

Furthermore, testing the \parse DAG" property for any subset PI of PPI may be done in �nite

time. 2

4 Possible extensions to the parsing algorithm

Up to now, we explained the basic principles of our parsing algorithm, which has an exponential time

and space complexity. The main reasons for its ine�ciency are (beside the NP-completeness of the

problem it has to solve):

� The number of active dotted rules tends to explode in the algorithm's bottom-up phase, if their

underlying search plans are not carefully selected. Section 4.1 discusses a cost function for search

plans.

� The number of suspended dotted rules becomes inmanageable, if processing of active dotted

rules is such that a large number of dotted rules is waiting for results of other dotted rules.

Section 4.2 discusses a priority queue mechanism which minimizes the number of suspended

dotted rules and provides a decision criterion for discarding partially recognized dotted rules

altogether.

4.1 Selecting good search plans

We need a cost function for search plans in order to be able to distinguish between good and bad

search plans. The problem with such a cost function is that \`real" cost of processing a search plan

depends on the characteristics of a given input graph. We will try to model these characteristics by

introducing a number of functions which return probabilities for the existence of certain vertices and

edges within a graph. These probabilities will be rough estimates only, since
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� probabilities may vary from one instance of a graph language to another instance of the same

language or even from one subgraph within an input graph to another subgraph considerably,

and

� probabilities for the existence of certain graph elements are not independent of each other but

will be treated as being independent for reasons of simplicity.

Nevertheless, experiences with a related approach for de�ning costs of search plans [25] show that

even rather vague estimates of probabilities are very helpful and allow the selection of excellent search

plans.

In order to determine the cost of a search plan, we have to determine the probability that a

single search plan directive (cf. de�nition 3.1) will succeed. These probabilities can be estimated by

averaging over a number of sample graphs, or by some analysis of the regarded graph grammar. Given

these probabilities p(md

i

), the costs of a search plan is determined by:

costs([md

0

;md

1

; : : : ;md

n

]) = p(md

0

) � (1 + p(md

1

) � (1 + : : :))

This function is such that search plans which start looking for elements with low probability are

assigned the lowest cost. This gives preference to search plans which fail as early as possible. For

further details about heuristics for the selection of good search plans, the reader is referred to [24].

4.2 A priority queue for active dotted rules

The main loop of algorithm 1 picks the dotted rule to be processed without any preference. However,

using our knowledge about label layers and occurrences of labels within productions, a signi�cant

improvement of the bottom-up phase is possible.

We extend the parsing algorithm with a priority queue ActiveRuleQueue which will be used to

store active dotted rules. The dotted rules in ActiveRuleQueue are ordered such that (see de�nition

2.13):

a dotted rule for production p is before another one for p

0

()

lll(p) < lll(p

0

) _ (lll(p) = lll(p

0

) ^ hrl(p) < hrl(p

0

)).

Furthermore, we propose as an additional requirement for the assignment of labels to layers that a

maximum number of productions p should ful�ll the condition lll(p) > hrl(p). In that case, a pro-

duction's right-hand side matches always graph elements of lower layers then created by its left-hand

side. As a result dotted rules which produce graph elements from lower layers will be processed before

those which produce elements from higher layers. Processing dotted rules in this order streamlines

the parser, as it minimizes the number of dotted rules which need to be suspended in order to be

activated later on.

Furthermore, if some dotted rule dr needs an element from layer L

i

and the dotted rule at the head

of ActiveRuleQueue is for production p with lll(p) > i, then we are sure that the required element from

layer L

i

will never be generated anymore and dr can be discarded safely. Checking for this condition

takes little time and might reduce the number of suspended dotted rules considerably.

Finally, it seems to be useful to order dotted rules in the ActiveRuleQueue, which belong to the

same layer, with respect to their remaining search plan costs. Rules with higher remaining search plan

costs tend to create more dotted rule instances than others. Therefore, prefering dotted rules with

minimal remaining costs is another good strategy to minimize the average number of (suspended)

dotted rules over time.

5 Example

We take the language of the diagrams of Finite State Automata as an example. We will present a

grammar for this language, compute reasonable choices for label layers and search plans, and activate
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Figure 4: A grammar for Finite-State Automata

the bottom-up parsing algorithm for an example sentence. Finally, we will show how the top-down

algorithm �nds a a valid parse DAG in the set of potential production applications returned from the

bottom-up phase.

5.1 A grammar for FSA's

It turned out to be quite hard to develop the grammar for the reasonably simple language of FSA

diagrams, because we had to be careful not to violate the \dangling edge" condition of de�nition 2.5.

Moving to a graph grammar approach with embedding rules would certainly be helpful. In that case

it would be possible to redirect and relabel all incident edges of vertices we are going to delete within

a single graph rewrite step.

Our grammar for FSA diagrams is given in �gure 4, using the same graphical notation as in �gure

2 of section 2. Its overall idea is the following: States and transitions are meaningful objects of the

underlying abstract syntax of FSA diagrams. Circles, strings, and arrows are just the basic elements of

an actual representation of FSA diagrams on a sheet of paper or a screen. Therefore, during generation

of these graphs, transition vertices need to be replaced by arrows and their strings, and state vertices
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by circles and strings (and the other way round during parsing). Unfortunately, we cannot delete a

state vertex as long as it is the source or the target of an unknown number of transitions, and we

cannot replace transitions between states by arrows between circles, as long as these circles are not

already generated. Therefore, states and their circles have to coexists for a while and are connected

to each other by temporarily existing covers edges.

Productions p

2

and p

3

are very similar. They di�er in the fact that p

2

builds a spanning tree of the

graph, where p

3

makes this tree into a graph by introducing additional connections between states.

We will see in the sequel that various possibilities to identify spanning trees in a graph lead to parsing

ambiguities which are hard to avoid.

5.2 Layers induced by the FSA grammar

First of all, we have to assign the labels of this grammar to layers such that for each production

p := (L;R), L < R holds (see de�nition 2.12). We neglected the de�nition of an algorithm which

determines the layer assignments automatically, but the assignments of �gure 6 ful�ll all conditions

imposed by de�nition 2.12:

The assignment of layers to labels leads to an assignment of the lowest left layer lll(p) and the

highest right layer hrl(p) for each production p, according to de�nition 2.13. Figure 5 provides the

FSA grammar once more in a textual form, extended with identi�ers. It also shows the lll and hrl

values for all productions, given the above assignment of layers to labels.

This again results in the ordering of before relations between dotted rules of various productions,

as de�ned in the context of priority queueing as proposed in section 4.2. For the FSA grammar, this

leads to the following before relations:

fp

0

; p

1

; p

3

g > p

2

> p

4

> p

5

> fp

6

; p

7

g:

Finally note that the running toy example does not make any use of isa-relationships. Therefore,

their de�nitions were omitted over here.

5.3 The chosen search plans

Next, we have to develop the search plans of de�nition 3.1 for each of the right-hand sides. We opt

for the ones as depicted in �gure 7 which might not be the most optimal ones according to the cost

functions of section 4.1, but allow us to demonstrate more interesting cases in the description of the

bottom-up phase.

Note that �gure 7 contains two sets of productions with search plans which have a common pre�x:

SP (p

2

) and SP (p

3

) share a common pre�x of four matching directives, just like SP (p

6

) and SP (p

7

)

share their �rst two matching directives. It could be worthwhile to exploit this by handling these

search plans simultaneously as long as possible, just like it is done in the graph pattern matching

algorithm of Bunke [3] and in any LR parsing technique for textual grammars. Whether the increase

in e�ciency will out-weight the additional complexity of the algorithm depends on the kind of graph

grammars commonly processed. Exploiting common pre�xes also has consequences for the choice of

search plans, which should then also maximize the number of common pre�xes among productions.

All this needs to be studied in more depth.

5.4 Parsing actual graphs

We will present the steps taken by our algorithms on the spatial relations graph of the following, almost

trivial, automaton: \ 1 a 2 ". If we provide this diagram to a visual scanner, it generates the

graph of vertices and spatial relations between them as depicted in �gure 8 (see [15] for a more detailed

explanation of spatial relations).
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Figure 5: The grammar of �gure 4 extended with identi�ers and the assignment of lll and hrl
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Figure 6: Reasonable de�nitions of label layers
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Figure 7: The search plans chosen for the FSA grammar
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Figure 8: The initial graph G to be parsed
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5.4.1 The bottom-up phase

We apply algorithm 1 to the given spatial relations graph and explain important steps of its execution.

� Initially, for all productions with matching head vertex in their search plan the following dotted

rules are created in the priority queue ActiveRuleQueue:

(p

4

; SP (p

4

); 1; fv

d

!v

1

g; active) ) ppi

4

(p

5

; SP (p

5

); 1; fv

a

!v

4

g; active) ) ppi

3

(p

6

; SP (p

6

); 1; fv

c

!v

2

g; active) ) ppi

2

(p

6

; SP (p

6

); 1; fv

c

!v

6

g; active) fails

(p

6

; SP (p

6

); 1; fv

c

!v

7

g; active) ) ppi

1

(p

7

; SP (p

7

); 1; fv

c1

!v

2

g; active) fails

(p

7

; SP (p

7

); 1; fv

c1

!v

6

g; active) ) ppi

0

(p

7

; SP (p

7

); 1; fv

c1

!v

7

g; active) fails

In this queue, the bottom-most dotted rule is the �rst to be processed, and if new dotted rules

are added, the new elements are inserted as low as possible without violating the conditions

imposed by the before relations. The second column of the above queue indicates what the next

to be described steps of the bottom-up parser will lead to. This provides us with an overview

of its forthcoming results.

� The algorithm then takes the �rst element out of this queue, which is

(p

7

; SP (p

7

); 1; fv

c1

!v

7

g; active)

and for which md

1

is < e

c1

: v

c1

contains

�! (v

c2

: Circle) > with v

c1

already bound to v

7

of G. Vertex

v

7

has a single outgoing edge labeled by contains, but this edge e

7

has vertex v8 : String as

target, which is not as requested by md

1

. This means that the dotted rule cannot proceed and

can be suspended.

However, this dotted rule needs an edge and a vertex of layer L

0

, and the next to be processed

dotted rule is for production p

7

. The lowest left layer of p

7

is 1, which means that vertices of

layer 0 will never be generated anymore (see explanation in section 4.2). Therefore, the currently

regarded dotted rule becomes useless; it can be discarded altogether.

� The next element in the queue is

(p

7

; SP (p

7

); 1; fv

c1

!v

6

g; active)

for which md

1

is the same as above. Now md

1

succeeds, as G has an edge e

6

: v

6

contains

�! v

7

) to a

circle node v

7

. This causes proceed to be called. It discovers that the dot is not at the end yet,

and puts the following dotted rule

(p

7

; SP (p

7

); 2; fv

c1

!v

6

; e

c1

!e

6

; v

c2

!v

7

g; active)

in the priority queue again. Next, the main loop can discard the original dotted rule for the

same reason as the �rst dotted rule could be discarded instead of suspended.

� The main loop proceeds with the next dotted rule, which is the just added one. Matching

directive md

2

of p

7

is < e

c2

: v

c2

contains

�! (v

t

: String) >, which succeeds. Therefore, proceed is

called with

(p

7

; SP (p

7

); 2; fv

c1

!v

6

; e

c1

!e

6

; v

c2

!v

7

; e

c2

!e

7

; v

t

!v

8

g; active)

Now the dot has reached the end which means that p

7

has been applied successfully. This has

as consequence that
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Figure 9: Graph G after the �rst match

{ G is extended with a vertex v

9

: State and an edge e

8

: v

9

covers

�! v

6

.

{ PPI is extended with a �rst potential production instance

10

:

ppi

0

= (p

7

; fv

s

!v

9

; e

cov

!e

8

g;

fv

c1

!v

6

g;

fv

c2

!v

7

; v

t

!v

8

; e

c1

!e

6

; e

c2

!e

7

g);

{ Algorithm create-initial-dotted-rules is called with the new vertex v

9

: State. SP (p

1

) has

< head(s : State) > as its �rst pattern matching directive, which leads to a new dotted

rule in the priority queue:

(p

1

; SP (p

1

); 1; fv

s

!v

9

g; active)

As p

1

has many productions before it, this dotted rule oats to the top of the queue and

will only be processed when all other dotted rules have been processed.

Figure 9 shows G, extended with the new vertex and edge, and it depicts the matching of ppi

0

in it.

� Dotted rule (p

7

; SP (p

7

); 1; fv

c1

!v

2

g; active) also tries to recognize a �nal state where there is

none, so it fails and can be discarded.

� Dotted rule (p

6

; SP (p

6

); 1; fv

c

!v

7

g; active) can be applied and will �nally recognize an ordinary

state in the inner circle v

7

and the string v

8

of the just recognized �nal state. This means that

G is extended with vertex v

10

: State and edge e

9

: v

10

covers

�! v

7

, and PPI is extended with

ppi

1

= (p

6

; fv

s

!v

10

; e

cov

!e

9

g; fv

c

!v

7

g; fv

t

!v

8

; e

c

!e

7

g):

and an initial dotted rule

(p

1

; SP (p

1

); 1; fv

s

!v

10

g; active)

is added to the queue.

The top-down phase will have to discover that production instances ppi

0

and the just created

ppi

1

exclude each other, and are a choice point in the parse algorithm. It will also discover that

ppi

1

on itself cannot be combined with any of the other production instances to become part of

a parse DAG which covers the entire input.

10

We depict the morphisms of a potential production instance in a di�erent fashion as before, in order to avoid the

repetition of the common parts of the left-hand side and right-hand side morphisms
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Figure 10: G after the states have been recognized

� Dotted rule (p

6

; SP (p

6

); 1; fv

c

!v

6

g; active) fails.

� Dotted rule (p

6

; SP (p

6

); 1; fv

c

!v

2

g; active) can be applied successfully and creates vertex v
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and edge e
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with Circle v

2

as target. This creates ppi
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and leads to another dotted rule for

production p
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.
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Figure 10 shows G after these parsing steps, and shows the matchings of ppi

1

and ppi

2

in it.

� Dotted rule (p

5

; SP (p

5

); 1; fv

a

!v

4

g; active) is next in queue, and it will be able to recognize

Transition v
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and e
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in a number of intermediate steps. Furthermore, it extends
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g)

\Transition" is the label of the head of the search plans for productions p

2

and p

3

and the two

initial dotted rules are added to the priority queue.

� The next dotted rule to be handled is:

(p

4

; SP (p

4

); 1; fv

d

!v

1

g; active)

which recognizes an Automaton object by matching the DoubleArrow v

1

, and it creates

ppi

4
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!v

13
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!e

13
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; e
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1

g):

The new Automaton vertex triggers the creation of an initial dotted rule for the Axiom produc-

tion p

0

:

(p

0

; SP (p

0

); 1; fv

a

!v

13

g; active):

As a result of the steps above, the ActiveRuleQueue now contains:
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Figure 11: The potential production instances created by the bottom-up phase

v1: DoubleArrow

v2: Circle

v3: String

v4: Arrow

v5: String

v6: Circle

v7: Circle

v8: String

v10: State

v9: Statev11: State v12:Transition

v13: Automaton

e1: ends
e2: contains

e3:starts e5: ends

e4: labels
e6: contains

e7: contains

e9: covers

e8: covers

e11: from
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e12: to

e14: consists

e13: consists

Figure 12: The �nal graph G created by the bottom-up phase

In order to shortcut this exhaustive description of the bottom-up phase, we now provide a complete

list of potential production instances created by the continuation of the algorithm in �gure 11. In this

overview, we have omitted the node and edge identi�ers internal to the production instances, as we

do not need them anymore in the sequel of the discussion. The �nal graph G is shown in �gure 12.

5.4.2 The dependency relations

The potential production instances of �gure 11 as created by the bottom-up phase lead to the de-

pendency relations between production instances as depicted in Figure 13. These dependencies are

not manually computed but were created by a Prolog implementation of their de�nitions in section

2. The top-down phase needs just the relations above and excludes*. Nevertheless, we provide all of

others too in order to illustrate the dependencies between them and to allow the reader to check the

presented results.

These dependency relations reveal that ppi

7

is inconsistent, and should have been discarded right

away by the bottom-up phase. This clearly shows that dependency relations should be developed in

an incremental manner during the bottom-up phase, instead of afterwards as we do in this example.
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Figure 13: The dependency relations between the potential production instances of �gure 11

5.4.3 The steps of the top-down phase

Input for the top-down phase are the potential production instances of �gure 11 minus the inconsistent

production instance ppi

7

, and the dependency relations of �gure 13. In the sequel, we will refer to

graphs G

i

, which are all depicted in �gure 14.

� The top-down phase starts with the execution of cleanup, which removes ppi

1

from PPI, as

this production instance has graph elements v

10

and e

8

in its left-hand side, while there is no

production instance which has these in its right-hand side. All remaining production instances

are part of the �nally constructed derivation, so that all forthcoming cleanup attempts will have

no e�ects.

This means that PPI , which will be used in the rest of the algorithm, contains:

fppi

0

; ppi

2

; ppi

3

; ppi

4

; ppi

5

; ppi

6

; ppi

8

; ppi

9

g:

� The only production instance for the axiom production p

0

is ppi

6

, so we start with a single

derivation:

D := f(G

0

; fppi

6

g; ;)g

� This derivation is popped from stack. The set of candidate production instances is fppi

8

; ppi

9

g,

neither of which has an excludes* relation. We choose ppi

8

to apply. This leads to the following

derivation to be pushed on stack:

(G

1

; fppi

6

; ppi

8

g; ;):

� Now Candidates = fppi

9

g which can simply be applied to create the following derivation:

(G

2

; fppi

6

; ppi

8

; ppi

9

g; ;)

� For this derivation Candidates is fppi

5

g. Application of ppi

5

leads to the following derivation

to be pushed on stack:

(G

3

; fppi

6

; ppi

8

; ppi

9

; ppi

5

g; ;):
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Figure 14: Various intermediate graphs of the top-down phase.
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� The latter is again the �rst derivation to be popped, and the above relations indicate two

candidate production instances for it, ppi

3

and ppi

4

, neither of which have an excludes* relation.

We randomly choose ppi

3

to apply, which leads to the following derivation:

(G

4

; fppi

6

; ppi

8

; ppi

9

; ppi

5

; ppi

3

g; ;):

� Now ppi

0

and ppi

4

are candidates, of which we choose ppi

4

to apply:

(G

5

; fppi

6

; ppi

8

; ppi

9

; ppi

5

; ppi

3

; ppi

4

g; ;):

� When we pop this derivation from stack again, the candidates are ppi

0

and ppi

2

, which we apply

in two steps to come up with the derivation:

(G

6

; fppi

6

; ppi

8

; ppi

9

; ppi

5

; ppi

3

; ppi

4

; ppi

0

; ppi

2

g; ;):

� For this derivation, Candidates = ; and G

c

� G, which means that the following sequence of

production instances constitutes a successful derivation:

ppi

6

; ppi

8

; ppi

9

; ppi

5

; ppi

3

; ppi

4

; ppi

0

; ppi

2

The generation of this parse DAG was extremely straightforward: all production instances of PPI

have been applied, and we simply had to �nd the right order to do so. This was to be expected, as it

is quite hard to �nd alternative derivations in the input graph \
1 a 2

". Still, the top-down

phase did have a number of choices in which production instance to apply �rst, but none of these

choices lead to alternative derivations, as the top-down phase knew from the excludes* relations that

these choices were non-critical.

It would be interesting to look into the handling of ambiguous FSA diagrams, such as the diagram

"

1
a

2
b ". This diagram will be ambiguous as two possible spanning trees can be identi�ed.

Our top-down phase is able to generate both interpretations. The diagram "

1 a b
2

3
" is inter-

esting also, as it contains a lexical ambiguity: it is unclear to which arrows the labels must be bound.

Our graphical parsing algorithm is almost able to handle such ambiguities, we only have to replace

the test G

c

= G of algorithm 2 by the less strict equality: V (G

c

) = V (G) ^E(G

c

) � E(G). We will

not discuss these examples however, as this section is too long already.

6 Related work

Up to now, only a \handful" of proposals are published on how to parse graph-like data structures

generated by graph grammars [10, 16, 12, 21] or related formalisms like plex grammars [3], relational

fringe grammars [22], or picture layout grammars [7]. These approaches fall into two classes with

respect to the overall organization of the parsing algorithm. On one side, we have Earley-style [5]

approaches [3, 22] which start at a single node of the given input graph and extend the already

examined part of the graph step by step. Each extension step is guided by the structure of the input

graph. It consumes one element of the input graph and updates a set of all partially recognized

production instances. Afterwards, the current set of production instances is completed with new

production instances, which might be needed in the future to extend already found partial matches or

to process the eventually forthcoming results of the current set of production instances. In contrast,

all remaining approaches { including our approach { are parallel bottom-up algorithms such as the
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Paper Left Side Context Embedding Restrictions Complexity

Kaul[11] 1 node no restricted severe linear

Golin[7] 1 node terminal no severe poly.

Rozenberg/Welzl[16] 1 node no restricted severe poly.

Lamshoeft[12] 1 node no complex moderate exp.

Wills[21] 1 node no complex unclear exp.

Wittenburg[22] 1 node no restricted severe exp.

Bunke/Haller[3] 1 node no restricted no exp.

our algorithm graph yes no layering exp.

Table 1: A comparison between various graph parsing algorithms

Generalized LR algorithm by Tomita [20] and the Cocke-Younger-Kasami algorithm [23, 9] for context-

free textual grammars, which process all nodes of the input graph simultaneously. They update a

subset of all partial matches of a single production in each basic recognition step.

Both solutions have signi�cant advantages and disadvantages, and further investigations are nec-

essary to compare the e�ectiveness of their accompanying heuristics. Earley-style approaches start

with a small set of partially recognized production instances, but this set tends to explode in the

algorithm's completion phase. They have to keep track of an exponentially growing set of all even-

tually forthcoming partial matches. Bottom-up algorithms, on the other hand, start with a large set

of production instances which is proportional to the size of the graph. It depends on the quality of

selected search plans how fast the initial set of production instances grows (or shrinks). Nevertheless,

it is often the case that the set of all �nally created production instances has a size proportional to

the number of input graph elements. Unfortunately, these bottom-up algorithms need a second phase

to extract a consistent set of production instances out of the set of all production instances, created

in the �rst phase.

When studying the above mentioned approaches in more detail we have to consider the following

questions about their parsing algorithms and their underlying grammar formalisms:

� Is the left-hand side of a production restricted to a single (nonterminal) node, which will be

replaced by its right-hand side (context-free production)?

� Allows the formalism references to additional context-elements which have to be present but

remain unmodi�ed during the application of a production?

� Has the proposed type of grammar more or less complex embedding rules, which establish con-

nections between new elements (created by a production) and the surrounding structure?

� Are there additional restrictions for the set of productions or the form of graphs, which do not

fall in the above mentioned categories, like \bounded edge degree" or our \layering condition"?

� Is the time and space complexity of the proposed algorithm linear, polynomial, or even expo-

nential with respect to the size of the input graph?

Table 1 provides an overview of our related work studies with respect to the above mentioned questions.

Kaul [10, 11] introduced a parsing algorithm with linear time and space complexity. This algo-

rithm is able to deal with so-called precedence graph grammars. Their productions have a single node

as their left-hand side (and no context elements) and use a restricted form of monotonic embedding

rules to get around the \dangling edge problem". The parsing process is a kind of handle rewriting,

where graph handles (subgraphs of the input graph) are identi�ed by means of three disjoint prece-

dence relationships. These relationships are sets of (vertex label, edge label, vertex label) triples.

Unfortunately, the \disjoint precedence relationship" requirement is very restrictive, and prevents the

de�nition of many interesting graph languages by means of precedence graph grammars.
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The other two remaining approaches with non-exponential time and space complexity impose also

more or less severe restrictions on the form of allowed productions and their graph languages. The

parsing approach for picture layout grammars by Golin [7] considers a data model with attributed

objects but without explicit relationships between them. All relationships between objects (nodes) are

implicitly de�ned by means of \matching" attribute values. The proposed parsing algorithm works if

the following conditions are met:

� Two objects with the same label, created during the derivation of a language element have at

least one di�erent attribute value.

� The number of used attribute values within derivations is restricted, a requirement which is

more or less equivalent to a bounded edge degree requirement.

� An additional restriction concerning the use of context elements has to be ful�lled: only terminals

may be used as context elements.

� Covering conicts due to ambiguous (sub-)derivations do not occur, since they cause the parser's

immediate termination with a fatal error.

The main problem with these restrictions is that they are not checked before runtime. Even worse,

their violation may lead to nonterminating computations or to wrong parsing results.

Rozenberg and Welzl [16] propose a parsing algorithm with polynomial complexity for graphs

with unlabeled edges and bounded edge degree. It does not consider the question how to organize

pattern matching for right-hand sides. Furthermore, its context-free productions with rather primitive

embedding rules are restricted as follows: nonterminals in their right-hand sides may not be neighbors.

The approach presented by Wills [21] is the most ambitious one of those which remain for dis-

cussion. Its embedding rules are fairly general, and it even uses linear search plans in the form of

dotted rules for guiding the pattern matching process. Unfortunately, the presentation of the pars-

ing algorithm is on a very informal level and necessary restrictions for guaranteeing correctness and

termination are not precisely de�ned.

The master thesis of Lamshoeft [12] suggests a number of extensions to the parsing algorithm

of Rozenberg and Welzl [16]. By means of these extensions, the parser is able to deal with a more

general class of context-free graph grammars with rather powerful embedding rules. This class of

graph grammars has no restrictions for the right-hand sides of productions, but requires that the

grammar is conuent with respect to the e�ects of embedding rules.

The following two entries in the table contain references to \Earley-style" parsing approaches. The

�rst one by Wittenburg [22] uses dotted rules as we do, but without presenting any heuristics how to

select good ones. Furthermore, it is restricted to the case of graphs, where sets of edges with the same

label de�ne partial orders, i.e. do not build cyclic paths in the graph. The second one by Bunke and

Haller [3] uses plex grammars, which are a kind of context-free graph grammars with rather restricted

forms of embedding rules. Both approaches have an exponential worst case complexity, but they are

claimed to be reasonably e�cient in the average case.

Both approaches are somehow related so-called RETE-network matching techniques [2], which are

the most essential part of the execution machinery of the rule-oriented language OPS-5 [1]. Such a

network stores information about all potential matches of all considered productions at the same time.

Its main advantages are:

� A single (sub-)network �nds the matches for all isomorphic subgraphs of all relevant graph

patterns

11

in parallel.

� The network contains information about all potential partial matches of all graph patterns.

11

A \graph pattern" is a production's left-hand side for graph generation and a production's right-hand side for graph

parsing
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The second advantage is also the main disadvantage of this approach. It has the consequence that the

network has at least in the general case a number of states, which grows exponentially with the size

of its graph patterns. Even worse, all of these states carry a number of tokens which are proportional

to the number of tokens of their direct predecessor states times the edge fan-out at certain vertices.

Otherwise, the network would not be able to keep track of all recognized partial matches at the same

time.

Our parsing approach avoids this problem by constructing a linear search plan instead of a network

of search plans. Such a search plan is a path within a RETE-network which contains one state for

each element of a considered graph pattern. The main drawback of this solution is its ignorance of

partial matches which are not \compatible" with the selected search plan. On the other hand, the

concentration on a distinct path in a RETE-network | instead of pursuing them all in parallel |

has an invaluable advantage: we are able to get rid of bad search plans corresponding to linear paths

in the RETE-network which create (too) many tokens. In practice, it is often the case that the time

and space complexity of linear search plans for a �xed graph pattern of size m and a host graph of

size n varies from O(n) to O(n

m

).

To summarize, all presented approaches are either very restricted with respect to the graph lan-

guages they are able to de�ne or have an exponential worst case complexity. Furthermore, average case

complexity results with respect to suggested heuristics are more or less unknown for all approaches.

Therefore, we are not able to provide the reader with more detailed information about the e�ciency

of discussed parsing algorithms, when they are applied to \real world" examples.

7 Conclusions and future work

Graph grammars are a very powerful tool for de�ning the syntax of visual languages or for de�ning

transformation processes between instances of di�erent visual languages in the form of pair graph

grammars [19]. Their main drawback until now was the lack of nice notations and, especially, of

e�ciently working parsing algorithms. All algorithms, which were discussed in the previous section,

are only able to deal with context-free graph grammars, where the left-hand side consists of a single

nonterminal vertex only. This makes the syntax de�nitions of visual languages hard to read and

prohibits the de�nition of complex pattern matching and transformation processes at all.

Our graph grammar parsing algorithm is the �rst one for productions which

� may delete more than one nonterminal node at the same time,

� may delete nothing at all, i.e. extend the graph only,

� take care of label hierarchies, and

� may require arbitrarily complex context graphs.

We were even able to de�ne a class of parsable graph grammars together with an e�ciently imple-

mentable decision criterion whether a given graph grammar is parsable or not. Furthermore, we

presented a proof that termination and correctness of the presented parsing algorithm is guaranteed

for any given parsable graph grammar and any input graph. Finally, we suggested many heuristics on

how to reduce the overall search space of the algorithm, and how to prune failing derivation attempts

as early as possible. Their e�ectiveness as well as the overall e�ciency of the proposed parsing algo-

rithm is unknown up to now. The algorithms need to be implemented and analyzed by feeding them

with carefully selected test cases, as well as \real world" examples. Their implementation will be part

of a parsing toolkit for visual languages[15], and of the already existing graph grammar programming

environment progres [24, 18, 14]

Finally note that our layering condition, which guarantees the algorithm's termination, imposes

only very liberal restrictions for the de�nition of graph languages. But we have to admit that the
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dangling edge condition together with the lack of embedding rules makes the de�nition of many graph

languages really awkward. Therefore, an extended version of our parsing algorithm is in preparation

which deals with embedding rules, too. By means of these embedding rules productions will be able

to redirect and relabel sets of edges from deleted nodes to created nodes.
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