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Abstract

We present the hybrid query language HQL/EER for an Extended Entity-Relationship

model. As its main characteristic, this language allows a user to use both graphical and

textual elements in the formulation of one and the same query. We demonstrate the look-

and-feel of this query language by means of examples, and show how syntax and semantics

of this language are formally de�ned using programmed graph rewriting systems. Although

we present the language in the context of the EER model, the concept of hybrid languages

is applicable in the context of other database models as well. We illustrate this claim by

discussing a prototype implementation of a Hybrid Query Tool based on an object-oriented

approach, namely the Object Modeling Technique (OMT).

1 Introduction

The database research e�orts of the past decade have provided us with a wide range of both

database models and systems, allowing the user to perform complex manipulations on data struc-

tures of high modeling power.

This development has strengthened the need for ad-hoc query languages [6] as well as better

end user interfaces, fully exploiting the two-dimensional nature of computer screens. In the late

eighties, the observation that object schemes and instances allow for a natural graphical repre-

sentation, inspired a number of researchers to develop graph oriented database models, in which

notions from graph theory are used to uniformly de�ne not only the data representation or scheme

part of the model, but also its data manipulation and query language(s) [5, 10, 14, 20, 23, 28, 35]

(in the sequel, we use the term operations to denote both queries and data manipulations). In

these models, it is investigated to what extent operations may be expressed in a purely graphical

way. One may conclude from this research that the expressive power that may be obtained with

pure graph based languages is unlimited [4].

However, one also gets the impression that some of this research overshoots its mark in the

sense that the pure graphical formulation of an operation quite often looks even more complex

than its textual equivalent. The solution to this problem which we present in this article, is to

combine the \best of both worlds", that is, to develop hybrid languages that allow those parts

of an operation that are most clearly speci�ed graphically respectively textually, to be indeed

speci�ed graphically respectively textually.

1

In a sense, Zloof's Query-By-Example [36], which

is commonly considered to be one of the �rst attempts at \two-dimensional" query languages,

�
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The term \hybrid" was inspired by hybrid syntax-directed editors, where the user can freely choose between a

syntax-directed and a free style of editing [16].
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already o�ers facilities along this line. Indeed, while join conditions and selections are entered

\graphically" (that is, in table skeletons), complex conditions involving e.g., aggregate functions,

should be entered in plain text in a so-called \condition box". Similar facilities are o�ered in

prototype interfaces for semantic database models, like SNAP's \node restriction" [7]. In more

recent proposals, like [25, 26], tools are presented which give the user a (limited) choice between

graphical and textual speci�cation of operations, limited in the sense that graphics and text may

not be mixed within the same operation.

A major design decision made in the de�nition of the hybrid language presented in this article

is to consciously restrict the set of language constructs (such as declarations, atomic formulas,: : :)

which may be represented graphically to the set of symbols used for graphically representing

schemes. Consequently, concepts such as negation and aggregate functions cannot be incorporated

into the graphical part of a hybrid operation. As demonstrated in among others [5, 10, 23, 35], it

is perfectly possible to invent a graphical representation for these additional concepts. However,

it is our conviction that it is precisely the abundance of graphical primitives in many of these

fully graphical languages, which makes expressions in them often harder to understand than their

textual counterpart. This very observation led us to considering the notion of hybrid languages.

In summary, it is our aim in this article to introduce a hybrid query language, in which queries

are expressed by means of a mixture of graphical and textual elements. As a framework for

presenting this language, we use an extended version of the Entity Relationship model [15] (named

\EER"-model in the sequel), which we choose basically for two reasons. First, EER schemes allow

for a natural graphical representation of schemes. A second reason was the availability of a formally

de�ned and highly expressive SQL-like query language, named SQL/EER [22]. This language was

inspired by some proposals made for query languages for the Entity Relationship model [8, 13], as

well as proposals to extend SQL to cope with features of other database models than the relational

one [17, 29]. The Hybrid Query Language for the Extended Entity Relationship model (called

HQL/EER in the sequel) is an extension of SQL/EER with graphical alternatives for some of

its language constructs, where, as already mentioned, the set of these graphical alternatives is a

subset of those employed in the graphical representation of EER schemes.

We stress the fact that we extended SQL/EER with alternatives, rather than replacing textual

by graphical constructs. As a major consequence, the user of HQL/EER may freely choose between

textual and graphical expression of those language constructs for which graphical alternatives are

o�ered.

The graphical part of HQL/EER is formally de�ned by means of a speci�cation in the lan-

guage PROGRES, a very high level operational speci�cation language based on the concepts of

programmed attributed graph rewriting systems [32]. The speci�cation de�nes both

� the syntax of the graphical part of HQL/EER, that is, the set of graphs that correspond to

\valid" queries; and

� the semantics of the graphical part of HQL/EER, by translating it into a (possibly incom-

plete) SQL/EER statement.

Consequently, this de�nition is quite analogous to that of SQL/EER itself. Indeed, both syntax

and semantics of SQL/EER are de�ned by means of an attributed string grammar [22]. In the

attribute part of this grammar, SQL/EER queries are translated into expressions of a formally

de�ned calculus for the EER model [19].

The remainder of this article is organized as follows. In Sections 2 and 3, we repeat the

basic concepts of respectively the Extended Entity Relationship model and its query language

SQL/EER. After an informal introduction of HQL/EER by means of examples in Section 4, we

show in Section 5 how the language is formally de�ned in PROGRES, a short overview of which

may be found in Appendix A. Finally, in Section 6, we discuss a prototype Hybrid Query Tool

currently under development. The fact that in this tool the (object model of) Object Modeling

Technique [30] is used in replacement of the EER model, illustrates how the concept of hybrid

languages is also applicable in the context of languages for other (object-oriented) database models.
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2 The Extended Entity-Relationship Model

In this Section, we sketch briey the main concepts of the Extended Entity-Relationship (EER)

model [15]

2

. It is based upon the classical Entity-Relationship model [9] and extended with the

following concepts known from semantic data models [24]:

� components, i.e., object-valued attributes to model complex structured entity types:

� multivalued attributes and components to model association types;

� the concept of type construction in order to support specialization and generalization;

� several structural restrictions like the speci�cation of keys, cardinality constraints,: : : , which

are, however, of no interest to this article.

Let us illustrate the EER model and its features by means of a small example. The EER diagram

of Figure 1 models the world of sur�ng people who surf on di�erent kinds of waters.

First of all, one easily recognizes the basic concepts of the ER model. These are entity

types like PERSON, relationship types like surfs on river, and attributes like Name (of PERSON)

or Times/Year (of surfs on river).

The concept of type construction provides means to construct new entity types (called output

types) from already existing entity types (called input types). This means that each object in the

set of instances of a constructed entity type also belongs to the set of instances of the input types.

Type constructions are represented by triangles, where all input types are connected by edges with

the baseline, and the output types with the opposite point. For instance, the type construction

spec1 represents the special case of a specialization. It has one input type PERSON and one

output type SURFER, i.e. PERSON is specialized to SURFER. Then, SURFER in turn is specialized

to PRO(fessional), this time by spec2. This means that each PRO is a surfer and therefore also a

person.

A type construction is called specialization, if it has only one input entity type and one or

more output entity types. Another example is WATER, which is specialized into LAKE and RIVER.

In the case of specialization, all attributes are inherited from the input types to the output types.

For instance, each instance of type LAKE also has the attribute Name, de�ned for the entity type

WATER. Obviously, we do not allow a constructed entity type to be, directly or indirectly, input

type of its own type construction.

Generally, an instance of the input type(s) of a type construction is not necessarily a member

of the instance set of (one of) the output type(s). For instance, there could be surfers who are not

pros. If a total partition of the input instances is desired, the type construction triangle in the

diagram is labeled with `=' instead of `�'. For example, each instance of type WATER must be an

instance of LAKE or RIVER, but nothing else.

Complex structured entity types can be modeled by components. Roughly speaking, com-

ponents can be seen as object-valued attributes. For instance, each pro possesses one or more

surf-boards. Hence Boards is a component of PRO, which consists of a list of instances of type

SURF-BOARD. Both attributes and components can be multivalued, i.e., set-, bag-, or list-valued.

Multivalued attributes and components are represented by an oval, including a square into the

oval that is connected to the corresponding entity type or atomic value type via an arrow, which

is always labeled 2.

Single-valued components are also represented by means of an oval, labeled \singl.". As an

example, note that both the entity type PRO and its direct ancestor in the construction hierar-

chy (i.e., the entity type SURFER) have a Boards-component, but with di�erent types. Since an

ordinary surfer can only possess one surf-board, the Boards-attribute for the entity type SURFER

is singlevalued. Since professional surfers can own several surf-boards, the Boards-attribute for

2

Not to be confusedwith other extensions to Chen's original ER model, such as the EnhancedEntity Relationship

model discussed in [12].
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Figure 1: An EER diagram, modeling the world of surfers
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the entity type PRO is a list of surf-boards. This way, the known concept of overriding (both of

attributes and components) is incorporated in the EER model.

As a �nal note, we would like to stress that we use the EER model (which was motivated and

discussed at length in several foregoing publications, e.g., in [15]) merely as a vehicle to introduce

and discuss the notion of hybrid database languages.

3 SQL for the Extended Entity-Relationship Model

Based on the data model discussed in Section 2, we now informally repeat the main concepts of

the textual query language SQL/EER. A complete description of syntax and semantics of this

language can be found in [22].

SQL/EER directly supports all the concepts of the EER model, and takes into account well

known features that nowadays are an integral part of many query languages:

1. relationships, attributes of relationships, components and type constructions;

2. arithmetic;

3. aggregate functions;

4. nesting of the output;

5. subqueries as variable domains.

Analogous to relational SQL, SQL/EER uses the select-from-where clause.

As a �rst example, consider the SQL/EER query of Figure 2 (over the scheme of Figure 1). It

retrieves the name and age of all adults, i.e., persons older than 18.

select
from
where

in PERSON
p.Name, p.Age

p.Age 
p 

≥ 18

Figure 2: Name and age of adults (SQL/EER version)

In this query, the variable p is declared. It ranges over the set of currently stored persons.

The variable p is used to build terms like p.Name and p.Age, to compute the name and age of the

person p, respectively. The formula \p.Age � 18" uses the predicate \�", de�ned for the integer

data type.

Besides entity types and relationship types, any multi-valued term can also be used as range

in a declaration. For instance, in the SQL/EER query of Figure 3, the variable a1 is bound to the

�nite list of addresses of person p1.

select
from
where

p1.Name
in

and
a1 
a1 = a2 

in in p1.Addr, p1 PERSON, a2  p2.Addr, p2 in PERSON
 p2.Name = ‘John’

Figure 3: Name of persons sharing an address with John (SQL/EER version)

This query retrieves the names of all persons who share an address with a person called `John'.

Note that the result of an SQL/EER is a multiset. This means that the same name may appear
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several times in the answer of this query. By placing the reserved word distinct in front of the

term list in the select-clause, a set of distinct names is computed. Note also that since the domain

of the Addr-attribute contains complex values (namely lists of addresses, where an address is a

user-de�ned atomic value type), the equality predicate in the query stands for value equality.

The next example shows the use of inheritance and the use of relationship types as predicates

in SQL/EER. Suppose we want to know the names of those professional surfers who surf on rivers

that ow into lakes on which they also surf. Figure 4 shows the corresponding SQL/EER query.

select p.Name
from r in in in
where and p surfs_on_river r and r flows_into l

 RIVER, l  LAKE, p 
p surfs_on_lake l 

 PRO

Figure 4: Name of pros, sur�ng on rivers, owing into lakes they surf on (SQL/EER version)

Here, the variable p is declared of type PRO. As pros are \specialized" persons, the attribute

Name is also de�ned for them. Thus, p.Name is a correct term. Furthermore, relationship types

can be used as predicate names in formulas. In the case of relationships with more than two

participating entity types, pre�x notation is used instead of in�x.

Participation in a relationship is inherited, too. Therefore, a variable of type LAKE (like l) is

allowed as participant in relationship flows into within the (sub-)formula \r flows into l".

A �nal example illustrates the use of subqueries. Suppose we want to retrieve for each type of

surf-board recorded in the database, the bag of colors in which this type of surf-board is available.

This retrieval may be expressed by means of the SQL/EER-query depicted in Figure 5.

from

from
where

type, ( 
b 
b.Type = type ) 

in ( 
from
select 

in 
sb.Type 
sb 

select select 
in 

type  

b.Color 
SURF−BOARD 

 SURF−BOARD ) 

Figure 5: For each type of surf-board recorded in the database, the bag of colors in which this

surf-board is available (SQL/EER version)

This example illustrates how a subquery may be used in the select-clause of an SQL/EER-

query to obtain \structured" output. The output of this query consists of a bag of pairs, each

pair consisting of a string and a bag of strings. Note how the variable type may be used in the

subquery in the select-clause, since this subquery lies within the scope of the declaration of type

in the outermost query. At the same time this example illustrates how a subquery may be used

in the from-clause, namely as variable domain.

4 Speci�cation of Hybrid Queries

In the previous section, we discussed a fully textual query language for the EER model. In this

section, we show by means of examples how this language can be extended with graphical alterna-

tives for (some of) its language constructs. Since these graphical alternatives do not replace their

textual counterparts, but are really o�ered as alternatives, we obtain a hybrid query language. The

language resulting from this extension is therefore called the hybrid query language HQL/EER.
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Briey, a query in HQL/EER consists of an attributed labeled graph and/or a piece of text

(obeying the syntax of SQL/EER). As it is the case with the textual part, the graph generally

consists of declarations (as in the from-clause of the text), conditions (as in the where-clause

of the text), as well as selections (as in the select-clause of the text). As mentioned in the

Introduction, for expressing declarations and conditions graphically, we restrict ourselves to the

set of graphical symbols used for representing EER-schemes. For instance, variables for a river

and a water may be declared by drawing two (rectangular) nodes labeled respectively RIVER and

WATER.

The structural constraints applying to the construction of EER schemes, apply to the graphical

part of hybrid queries as well. For instance, the condition that we are only interested in pairs of

a river and a water such that the river ows into the water, is indicated by drawing a (diamond

shaped) node labeled flows into with (appropriately labeled) edges to both other nodes (see

Figure 6).

RIVER WATER
waterriver flows

into

Figure 6: A sample graphical part of an HQL/EER query

The remainder of this Section consists of a number of examples of hybrid queries over the

scheme of Figure 1. Figure 7 shows a possible expression of the SQL/EER query of Figure 2

in HQL/EER. It consists of both a graphical and a textual part. Intuitively, the PERSON-node

corresponds to the declaration of the variable p in the SQL/EER version, while e.g., the int-node

corresponds to the term p.Age in the SQL/EER version, since it is linked to the node corresponding

to the variable p by means of an edge labeled Age.

string
x, y
y 

select
where Age

Name x

y

PERSON

int
≥ 18

Figure 7: Name and age of adults (HQL/EER version)

Note that in the textual part of the hybrid query, the two variables x and y are used but not

declared. Instead, they refer to nodes in the graph. Hence the variable x ranges over the names

of all persons, while y ranges over their ages. This is the way in which the textual and graphical

part of a hybrid query are interrelated. The textual part speci�es that the values assigned to x

and y are retrieved, if and only if the value for y, i.e., the person's age, is larger than 18.

In the following sections, we formalize this correspondence between declarations, terms and

formulas in a textual expression on one hand, and subgraphs of a graphical expression on the other

hand.

In the example of Figure 7, the graphical part of the HQL/EER query consists simply of

a subgraph of the graphical representation of the scheme. The graphical part of the following

example is a more general graph, which however still satis�es the structural constraints imposed

by the scheme.

Figure 8 shows a way of expressing the SQL/EER query of Figure 3 in HQL/EER. The fact

that a single address-node is linked to the Addr-attributes of both PERSON-nodes indicates that

we are interested in people sharing an address.
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The graphical part of this query contains two illustrations of constructs whose graphical expres-

sion may be considered more natural than their textual counterpart. The aforementioned sharing

of the address-node as opposed to the join predicate \a1 = a2" in the SQL/EER query, is one

example. Second, the graphical arrangement of the various nodes shows the interconnection of the

persons and their respective address lists in a more straightforward manner than the declarations

in the SQL/EER version of this query.

select
where

p1.Name
p2.Name = ‘John’

Addr
list listaddress

Addr

p1 p2

∈∈
PERSON PERSON

Figure 8: Name of persons sharing an address with John (HQL/EER version I)

With another version of the SQL/EER query of Figure 3, we illustrate hybrid queries consisting

merely of a graph (see Figure 9). The fact that the Name-attribute of one of the persons should

have the string value `John' is indicated by adding this value under the corresponding node. The

shading of the other string-node indicates the information to be retrieved, i.e., the names of the

persons who share an address with John.

Addr
list listaddress

Addr∈∈
PERSON PERSON

string

Name

John
string

Name

Figure 9: Name of persons sharing an address with John (HQL/EER version II)

Figure 10 shows another example of an entirely graphical speci�cation of a query, namely

that of Figure 4. Note that an entity of type LAKE plays the role of a water in the relationship

flows into, illustrating how inheritance is used in HQL/EER, in a manner similar to SQL/EER.

Since LAKE inherits the participation in the flows into relationship from WATER, the graphical

part of this query is still considered to satisfy the structural constraints imposed by the scheme

(analogously for PRO and surfs on lake and SURFER).

Note also how each of the graph increments consisting of a diamond node and the two rectangles

it is connected to, corresponds to a conjunct in the where-clause of the textual expression.

We continue this collection of examples with a slightly more involved one, illustrating our

claim that HQL/EER allows those parts of a query that are most clearly speci�ed graphically

respectively textually, to be indeed speci�ed graphically respectively textually. The hybrid query

of Figure 11 retrieves the address lists of surfers, who have a relative (i.e., a person with the same

name)

� being a professional windsurfer;

� owning a board of the same type as the (single) board owned by the surfer;

� not sur�ng on dangerous lakes.

Since it was our design decision to restrict the set of query-elements (such as declarations, atomic

formulas,: : :) which may be represented graphically to the set of symbols used for graphically
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Name
string

flows
into

surfs

river
on

profi

river river lake

RIVER LAKE

surfs

lake
on

pro
PRO

Figure 10: Names of pros, sur�ng on rivers, owing into lakes they surf on (HQL/EER version)

representing schemes, we cannot express negation graphically. Hence we have to leave the part of

the query involving negation in the textual part, and express everything else graphically.

where not exists in and LAKE : ( l.Dangerous  l 

Addr

Type

Boards

SURFER Name string Name Windsurfer bool
true

list

BOARD
string

∈

p

Boards

singl.

BOARD
Type

∈

list

 p surfs_on_lake l )

PRO

SURF− SURF−

Figure 11: \Involved" hybrid query

In contrast, Figure 12 shows an SQL/EER version of the same query. Note how in this textual

query, related information is again dispersed over e.g., the declarations in the from-clause and

the join-predicates in the where-clause. Note by the way that this SQL/EER query is itself an

HQL/EER query with an empty graphical part!

select
from

s.Addr

where not exists in and LAKE : ( l.Dangerous  l 
and p.Name = s.Name and p.Windsurfer
and

 SURFER, pb inins in p.Boards, p 

 s.Boards.Type = pb.Type

 p surfs_on_lake l )
 PRO

Figure 12: \Involved" textual query

We conclude this Section with an example of a hybrid query involving subqueries. Figure 14

presents a totally graphical version of the query whose formulation in SQL/EER is depicted in

Figure 5. In recapitulation, this query (shown once more in Figure 13) retrieves, for each type of

surf-board recorded in the database, the bag of surf-boards that have this type.
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from

from
where

type, ( 
b 
b.Type = type ) 

in ( 
from
select 

in 
sb.Type 
sb 

select select 
in 

type  

b.Color 
SURF−BOARD 

 SURF−BOARD ) 

Figure 13: For each type of surf-board recorded in the database, the bag of surf-boards that have

this type (SQL/EER version)

Type

∈

BOARD
string

bag

Type
string

bag

string
Colortype SURF−

BOARD

SURF−

Figure 14: For each type of surf-board recorded in the database, the bag of surf-boards that have

this type (HQL/EER version)
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Although Figure 14 at �rst glance does not look much like an EER diagram, a closer look

reveals that it is still composed of nothing but graphical primitives also present in EER diagrams.

The basic idea behind the graphical representation of subqueries is that, since subqueries return

a bag (of either entities or values), we may as well use the graphical convention used in EER-

diagrams for depicting a bag, namely an oval with bag inscribed in it. In addition, we put the

graphical equivalent of the subquery inside the oval.

Let us now have a look at how these ideas are incorporated into the example query of Figure 14.

The large oval in the bottom right corner of the picture corresponds to the subquery in the

from-clause of the SQL/EER query. Indeed, the query depicted inside this oval selects the Type-

attribute of every surf-board in the database. The 2-labeled edge denotes the fact that the string

depicted in the top left corner of the picture (which, as indicated super�cially in the picture,

corresponds to the variable type in the SQL/EER-query) ranges over this subquery.

The large (shaded) oval in the top right corner of the picture corresponds to the subquery in the

select-clause of the SQL/EER-query. The lighter shading of the node labeled string indicates

that this subquery selects a bag of strings. The Type-labeled edge connecting the node labeled

SURF-BOARD (which corresponds to the variable b in the SQL/EER query) to the string depicted

in the top left corner of the picture, expresses precisely the condition \b.Type = type" in the

SQL/EER-query.

5 De�nition of the Hybrid Query Language

In Section 4, we introduced the ideas and concepts behind HQL/EER by means of examples.

In this section, we outline the formal de�nition of syntax and semantics of HQL/EER. A full

de�nition of HQL/EER may be found in [2].

Formalization of HQL/EER involves the representation of the graphical part of hybrid queries

as labeled, attributed graphs. Such a graph represents the (abstract) syntactical structure of a

query. Node labels correspond to scheme elements, like entity type names. Node attributes

3

are

used for a double purpose, namely the storage of

1. non-structural information which is part of the query, such as atomic values, and

2. (SQL-)declarations, formulas and terms corresponding to nodes.

This latter information is combined with the textual part of the hybrid query into a complete

SQL/EER-query, whose semantics is de�ned to be the semantics of the hybrid query itself.

As an example, consider Figure 15, which shows the graph corresponding to the graphical part

of the hybrid query of Figure 8. In informal terms, Figure 8 corresponds to what a user would

see on the screen of a tool supporting HQL/EER, while Figure 15 corresponds to the internal

representation of (the graphical part of) the query.

Within each node, its (unique) node identi�er and its node label are depicted. Table 1 shows

the attributes of some of the nodes in the graph depicted in Figure 15. The precise meaning of

the di�erent labels and attributes is explained in the remainder of this Section.

Our need for an expressive graph model motivates our choice of the graph rewriting formal-

ism PROGRES [31]. PROGRES is a very high level operational speci�cation language based on

PROgrammed Graph REwriting Systems. A PROGRES speci�cation consists of two compo-

nents:

1. a graph scheme, declaring the types of nodes and edges, as well as node attributes, which

may occur in a graph, and

3

Note that the word \attribute" is now used in two di�erent meanings : one in the context of graphs, and the

other in the context of the EER-model.
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Figure 15: Graph representation of the hybrid query of Figure 8

Id. Label Att.Name Attribute Value

257 sqb SFW-Term select from a1 in p1.addr person, a2 in

p2.addr person, p1 in person, p2 in person

where a2 = a1

465 person Declaration p2 in person

Term p2

425 list of address Term p2.addr person

441 address Declaration a1 in p1.addr person, a2 in p2.addr person

Term a1

Formula a2 = a1

473 constituent Declaration a1 in p1.addr person

Term a1

Formula a2 = a1

489 list of address Term p1.addr person

449 person Declaration p1 in person

Term p1

Table 1: Attributes of some nodes from Figure 15
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2. a set of graph rewrite rules or productions (obeying the type restrictions imposed by the

graph scheme) which specify the connection between the components de�ned in the graph

scheme.

Such an operational speci�cation de�nes a graph language, in which a syntactically correct graph

is yielded by applying a sequence of productions to an initial empty graph. A more elaborate

description of PROGRES, based on a small example speci�cation, is given in Appendix A.

A major motivation for choosing the PROGRES formalismwas that the entire speci�cation of

the graphical part of HQL/EER could consequently be made using the PROGRES-system [27].

Concretely, the speci�cation was entered using this system's syntax-directed editor [33], which

allowed the speci�cation to be analyzed by the system's incrementally working type-checker and

executed by the system's integrated interpreter. The graph shown in Figure 15 is the result of

such an interpretation (that is, the execution of a sequence of productions), and was generated

using the PROGRES system.

Formalizing the graphical part of HQL/EER queries by means of a PROGRES speci�cation

is done by means of a two step process. In a �rst step (see Section 5.1), the syntactic structure

of the graphical part of HQL/EER queries is captured in a PROGRES speci�cation. This speci-

�cation is extended in a second step (see Section 5.2) to de�ne also the semantics. This is done

by extending the speci�cation resulting from the �rst step with additional node attributes and

attribute derivation rules. These rules translate the graphical part of the HQL/EER query into a

(possibly incomplete) SQL/EER query, which in turn may be combined with the textual part of

the hybrid query into a full SQL/EER-query, de�ning the semantics of the original hybrid query.

5.1 The Syntax of HQL/EER

To start the syntax de�nition of HQL/EER, we formalize (part of) the graphical notation intro-

duced in Section 4 in terms of a PROGRES graph scheme. Such a graph scheme consists of two

parts:

1. an EER scheme independent part, which for instance expresses the fact that there are nodes

for representing entities and nodes for representing values.

2. an EER scheme dependent part extending the EER scheme independent part, which among

others expresses the fact that there are entities of type SURFER, and values of type address.

Figure 16 shows part of this scheme.

The node class NODE is the root-class of (most of) the node class hierarchy. The class VALUE is

a direct subclass of NODE, and has (among others) the classes ATOMIC VALUE and COMPLEX VALUE

as direct descendants. Nodes of class ATOMIC VALUE have an attribute Value in which the \actual

value" is stored. For simplicity, we assume all values are stored as strings. The only subclass of

COMPLEX VALUE shown in Figure 16 is MVALUE, which stands for \Multi-VALUE". This name is in

turn explained by its two subclasses, namely LIST VALUE and BAG VALUE: one and the same value

or entity may be an element of a list or bag than once.

Figure 17 exempli�es the usage of the classes ENTITY, ATTRIBUTE and LIST VALUE, as well as

of the edge types attribute2er and attribute2v. This �gure shows the graph-representation of

a list-valued attribute of an entity.

Figure 18 exempli�es the usage of the classes MVALUE and MMEMBER (which stands for \Multi-

MEMBER"), as well as of the edge types contains mm and mm is n (which stands for \mmem-

ber is node"). This �gure shows the graph representation of membership of a multi-value. Nodes

of type MMEMBER are necessary for representing multiple membership in one and the same multi-

value, since (in the PROGRES formalism) it is impossible to draw multiple edges between di�erent

nodes.

The class SQB stands for (Sub)QueryBag, and has a single type sqb. Nodes of type sqb

represent a query or subquery. SQB is a subclass of BAG VALUE, since (the result of) a (sub)query

13



section FixedGraphScheme
node class NODE end;
node class PART_OF_COMPLEX is a NODE end;
node class ENT_REL is a NODE end;
node class ENTITY is a ENT_REL, PART_OF_COMPLEX  end;
node class VALUE is a NODE end;
node class VALUE_PART_OF_COMPLEX is a VALUE, PART_OF_COMPLEX end;
node class ATOMIC_VALUE is a VALUE, VALUE_PART_OF_COMPLEX

intrinsic
         Value : string := "";

end;
node class COMPLEX_VALUE is a VALUE

derived
         Elem_Type : type in NODE;

end;
node class MVALUE is a COMPLEX_VALUE end;
node class BAG_VALUE is a MVALUE end;
node class SQB is a BAG_VALUE, VALUE_PART_OF_COMPLEX end;
node type sqb : SQB

redef derived
     Elem_Type =
    (( self.=oPartNode=>:CONSTITUENT[1:1]).-cons_is_n->:NODE[1:1]). type;

end;
node class LIST_VALUE is a MVALUE end;
node class MMEMBER is a NODE

intrinsic
         Index : integer := 0;

end;
node type mmember : MMEMBER end;
edge type contains_mm : MVALUE -> MMEMBER;
edge type mm_is_n : MMEMBER -> NODE [1:1];
node class CONSTITUENT is a NODE

intrinsic
         Output : boolean := false;

end;
node type constituent : CONSTITUENT end;
edge type is_defined_by : SQB -> CONSTITUENT;
edge type cons_is_n : CONSTITUENT -> NODE [1:1];
edge type orig_cons : NODE -> CONSTITUENT;
node class ATTRIBUTE end;
edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute2v : ATTRIBUTE -> VALUE [1:1];

end;

Figure 16: EER scheme independent part of the PROGRES graph scheme for HQL/EER

ENTITY ATTRIBUTE LIST_VALUE
attribute2er attribute2v

Figure 17: Graph-representation of a list-valued attribute of an entity

MVALUE MMEMBER NODE
contains_mm mm_is_n

Figure 18: Graph-representation of membership of a multi-value
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is itself a bag. Type constituent is the single type of class CONSTITUENT. Nodes of this type

(together with edges of type is defined by and cons is n) are used to link a node of type sqb to

a node that constitutes part of the de�nition of the considered (sub)querybag. For instance, if a

certain query involves a certain entity, then the graph representation contains the graph depicted

in Figure 19. The Output-attribute is set to true if the node reachable by means of the outgoing

cons is n-edge is selected in the query corresponding to the node reachable by means of the

outgoing is defined by. Since nodes may be constituents of more than one (sub)querybag (in

case of subqueries), selection for output has to be indicated on the constituent-nodes, rather

than on the nodes themselves.

is_defined_by
SQB CONSTITUENT ENTITY

cons_is_n

Figure 19: Graph-representation of constituents of a (sub)querybag

In Section 5.2, it is shown how in the attributes of nodes of type sqb, information (that is,

declarations, terms and formulas) is \collected" from all over the graph, which is combined with

the textual part of the hybrid query into a fully textual query.

Classes depicted in Figure 16 but not mentioned in the explanation above, are either introduced

to ensure that the inheritance-hierarchy is a lattice (like the class PART OF COMPLEX), or as coercions

of node classes which allow for a more concise expression of other parts of the speci�cation (like

the class ENT REL, which is a common superclass of the classes ENTITY and RELSHIP, which share

several common properties).

As announced previously, the second part of the formalization of HQL/EER in terms of a

PROGRES speci�cation, consists of an extension of the EER scheme independent part of the

graph scheme outlined above, with an EER scheme dependent part. Figure 20 shows part of the

PROGRES graph scheme corresponding to the EER scheme depicted in Figure 1.

The extra node classes are introduced to cope with inheritance relationships between entity

types, present in the EER scheme. On one hand it is not possible to specify inheritance relation-

ships between node types, so we have to use a class for each entity type in the EER scheme. On

the other hand, actual nodes have to belong to a type, so for each class we have to declare a type

of each of these classes. Note also how attributes and roles are uniformly modeled using node

types. The meaning of the attribute Elem Type will be explained when we discuss productions.

The collection of declarations in the graph scheme described above, is in itself insu�cient to

completely describe the syntax of the graphical part of hybrid queries. Indeed, the part of the

speci�cation given so far, for instance, does not enforce that any node representing an entity,

a relationship or a value, should be connected to a node representing a (sub)query. Hence we

still need to specify which con�gurations of nodes

4

and edges are allowed. As PROGRES is

an operational speci�cation language, this is done by means of a set of productions

5

. Correct

HQL/EER graphs are those graphs that may be obtained as a result of the application of any

sequence of these productions to an initial empty graph.

The complete speci�cation includes about twenty productions, three of which are discussed

below.

First reconsider Figure 15, depicting the graph representation of the hybrid query of Figure 9.

Construction of this (and of any other) graph starts with the creation of an sqb-labeled node,

representing the query. Next, we need two nodes representing entities (persons, in the case of the

4

Other than those enforced by the edge type declarations

5

Note that this does not imply that the user of HQL/EER should look upon the execution of a query as graph

rewriting on the database (as opposed to e.g., the formalism discussed in [3]). In HQL/EER, graph rewriting is

only used for the de�nition of the query language.
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section VariableGraphScheme
section NodeClasses

node class PERSON is a ENTITY end;
node class SURFER is a PERSON end;
node class PRO is a SURFER end;

end;
section NodeTypes

node type person : PERSON end;
node type surfer : SURFER end;
node type pro : PRO end;
node type surfs_on_lake : RELSHIP end;
node type surfer_surfs_on_lake : ROLE end;
node type address : ATOMIC_VALUE end;
node type list_of_address : LIST_VALUE

redef derived
            Elem_Type = address;

end;
node type text : ATOMIC_VALUE end;
node type int : ATOMIC_VALUE end;
node type bool : ATOMIC_VALUE end;
node type name_person : ATTRIBUTE end;
node type addr_person : ATTRIBUTE end;

end;
end;

Figure 20: EER scheme dependent part of the PROGRES graph scheme for HQL/EER

example), which are created using the production Add ER labeled node. This production adds a

new entity (or relationship) to a given (sub)querybag.

6

production Add_ER_labeled_node
      ( s : SQB ; VarName : string ; ERtype : type in ENT_REL ;

out E : ENT_REL ; out C : CONSTITUENT )
 =

     ::=

return E := 3’;
          C := 2’;
end;

‘1 = s

is_defined_by
1’ =‘1

cons_is_n

2’ :constituent

orig_cons

3’ :ERtype

Construction of the graph of Figure 15 continues with the addition of certain attributes (in

the EER sense of the word \attribute") like name and address to the newly created entities. This

is done using the production Add Attribute.

6

Note that in the graph depicted in Figure 15, multiple edges between two nodes (like orig mm and m is n)

appear as one edge with an arrowhead on both sides.
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production Add_Attribute
   ( Er : ENT_REL ; s : SQB ; Att : type in ATTRIBUTE ;
     Val : type in VALUE ; out v : VALUE ; out C : CONSTITUENT )
   =

   ::=

return v := 4’;
          C := 5’;
end;

‘1 = Er
cons_is_n

‘3 : CONSTITUENT
is_defined_by

‘2 = s

1’ =‘1
cons_is_n

3’ =‘3
is_defined_by

is_defined_by

2’ =‘2

cons_is_n

5’ :constituent

attribute2er

attribute2v

6’ :Att

orig_cons

4’ :Val

This production adds an attribute to an entity (or relationship). Note how the newly created

value-node (with node identi�er 4') is linked to both the entity as well as the (sub)querybag.

As a �nal example of a production, we discuss the production Add to MValue, which puts a

value or entity into a multi-value (in the case of the example, to put an address into a list of

addresses). Note how the newly created PART OF COMPLEX-node (with node identi�er 4') is linked

to both the complex value as well as the (sub)querybag. In the condition-clause, it is checked

whether the given value or entity has the correct type, using the attribute Elem Type.

production Add_to_Mvalue
   ( Mv : MVALUE ; s : SQB ; Cp : type in PART_OF_COMPLEX ; VarName : string ;

out c : PART_OF_COMPLEX ; out C : CONSTITUENT ; out M : MMEMBER )
      =

         ::=

condition ‘1.Elem_Type = Cp;
return c := 4’;

          C := 5’;
          M := 6’;
end;

‘1 = Mv
cons_is_n

‘3 : CONSTITUENT
is_defined_by

‘2 = s

cons_is_n
3’ =‘3

is_defined_by

contains_mm

1’ =‘1

mm_is_n
6’ :mmember

is_defined_by

2’ =‘2

cons_is_n

5’ :constituent

orig_cons

4’ :Cp
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To conclude this Section, note that if a given EER scheme is mapped as exempli�ed in Figure 20

to an extension of the PROGRES graph scheme as outlined above, it is guaranteed that any

application of a PROGRES production results in a graph that obeys the structural constraints

imposed by this scheme. For instance, the production for creating entities may be used to create

a node of type person, since this type is declared (indirectly) of class ENTITY. Analogously,

the production for the addition of attributes may be used to link a new node of type text to

an existing node of type person by means of a node of type name person. The \instantiated"

production for specifying the name of a person is shown in Figure 21.

7

production 

::=

1’=’1

’1=p
’3:

3’=’3

name_person
6’:

‘2=s

2’=‘2

4’:
text

5’:

attribute2er

attribute2v

return t := 4’;

end;

out out AddAttribute  ( p : person ; s : sqb ; t : text ; c : constituent ) =

c := 5’;

constituent

constituent

cons_is_n

cons_is_n

cons_is_n

is_defined_by

is_defined_by

is_defined_by

orig_cons

Figure 21: An instantiation of a PROGRES production

5.2 The Semantics of HQL/EER

We now de�ne the semantics of HQL/EER queries in terms of the (formally de�ned) semantics of

SQL/EER [22]. As announced previously, we therefore �rst of all extend both the declarations of

the graph scheme and the productions by attribute derivation rules,

8

which translate the graphical

part of the query into a (possibly incomplete) SQL/EER-query. Secondly, this SQL/EER-query

is combined with the textual part of the hybrid query into a full SQL/EER-query, de�ning the

semantics of the hybrid query.

The graph scheme depicted in Figure 22 includes the auxiliary attribute declarations and

derivation rules needed for de�ning the semantics of hybrid queries. In the speci�cation of the

node class NODE, two attributes are declared which are to be used for storing the term corresponding

to a node. If this term is computed in the production that creates this node, then the (intrinsic)

attribute Term is used. If the term is computed \automatically" by means of a derivation rule, the

(derived) attribute SFW Term is used. Likewise, the attributes (SQB )Formula and Declaration

contain formulas and declarations corresponding to a certain node.

Probably the single most important sentence in the entire speci�cation is the derivation rule for

the attribute SFW Term as given in the declaration of the node type sqb. In this rule, information

gathered from all over the graph is combined into a (possibly incomplete, in case of a hybrid query

7

Note that such an instantiated production is just an intuitive notion, and has no formal meaning.

8

We refer once more to Appendix A for an explanation of the usage of attributes in PROGRES speci�cations.
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section FixedGraphScheme
node class NODE

intrinsic
         Formula : string := "true";
         Declaration : string := "";
         Term : string := "";

derived
         SFW_Term : string = "";
         SQB_Formula : string = "";

end;
node class PART_OF_COMPLEX is a NODE end;
node class ENT_REL is a NODE end;
node class ENTITY is a ENT_REL, PART_OF_COMPLEX end;
node class VALUE is a NODE end;
node class VALUE_PART_OF_COMPLEX is a VALUE, PART_OF_COMPLEX end;
node class ATOMIC_VALUE is a VALUE, VALUE_PART_OF_COMPLEX

intrinsic
         Value : string := "";

end;
node class COMPLEX_VALUE is a VALUE

derived
         Elem_Type : type in NODE;

end;
node class MVALUE is a COMPLEX_VALUE end;
node class BAG_VALUE is a MVALUE end;
node class SQB is a BAG_VALUE, VALUE_PART_OF_COMPLEX end;
node type sqb : SQB

redef derived
     Elem_Type =
    (( self.=oPartNode=>:CONSTITUENT[1:1]).-cons_is_n->:NODE[1:1]). type;
     SFW_Term =
      "select " & concom (
                  concom ( "", all self.=oPartNode=>.Term ),
                  concom ( "", all self.=oPartSQB=>.SFW_Term ) ) &
      " from " & concom ( "", all self.-is_defined_by->.Declaration )&
      " where " & conand (
                  conand ( "true", all self.=PartNode=>.Formula ),
                  conand ( "true", all self.=PartSQB=>.SQB_Formula ));

end;
node class LIST_VALUE is a MVALUE end;
node class MMEMBER is a NODE

intrinsic
         Index : integer := 0;

end;
node type mmember : MMEMBER end;
edge type contains_mm : MVALUE -> MMEMBER;
edge type mm_is_n : MMEMBER -> NODE [1:1];
node class CONSTITUENT is a NODE

intrinsic
         Output : boolean := false;

end;
node type constituent : CONSTITUENT end;
edge type is_defined_by : SQB -> CONSTITUENT;
edge type cons_is_n : CONSTITUENT -> NODE [1:1];
edge type orig_cons : NODE -> CONSTITUENT;
node class ATTRIBUTE end;
edge type attribute2er : ATTRIBUTE -> ENT_REL [1:1];
edge type attribute2v : ATTRIBUTE -> VALUE [1:1];

end;

Figure 22: Full PROGRES graph scheme for HQL/EER, including all attribute declarations
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with a non-empty textual part) SQL/EER query. The actual gathering of the information is

expressed by means of path expressions, such as \all self.=oPartNode=>.Term". The declaration

of the path oPartNode is shown below.

path oPartNode : SQB -> CONSTITUENT [1:n] =
         ‘1 => ‘2 in

condition ‘2.Output;
end;

‘2 :CONSTITUENT
is_defined_by

‘1 :SQB

Informally speaking, the above path-expression results in the set of all Term-attributes of all

constituent-nodes reachable from the considered sqb-labeled node, which have been selected

for output by means of their Output-attribute. Likewise, relevant declarations and formulas are

gathered, and transformed into comma- or \and"-separated lists (by means of the functions concom

and conand), and put in their proper place in the select-from-where-statement.

Some attributes needed in the translation of a hybrid query into its textual equivalent cannot

be derived by means of such rules, since they depend on \externally provided" information (such

as variable names) and hence have to be set in productions. For instance, in the complete version

of production Add ER labeled node, the Term-attribute of the newly created entity or relationship

is assigned a given Var(iable)Name. The Declaration-attribute is set accordingly. Note that \&"

stands for string-concatenation, while the function string converts a type-name to a string. Both

the Term and Declaration attribute are copied to those of the corresponding (new) constituent-

node. The latter copying operation is necessary in case the entity (or relationship) gets merged

with another one to express an equality condition.
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production Add_ER_labeled_node
      ( s : SQB ; VarName : string ; ERtype : type in ENT_REL ;

out E : ENT_REL ; out C : CONSTITUENT )
 =

     ::=

transfer 3’.Term := VarName;
            3’.Declaration := VarName & " in " & string ( ERtype );
            2’.Term := VarName;
            2’.Declaration := VarName & " in " & string ( ERtype );

return E := 3’;
          C := 2’;
end;

‘1 = s

is_defined_by
1’ =‘1

cons_is_n

2’ :constituent

orig_cons

3’ :ERtype

In the complete version of the production Add Attribute, the Term of the newly created node

is assigned the string concatenation of the term of the given entity or relationship, a dot and the

string representation of the given attribute name. Once more, this information is copied to the

Term-attribute of the corresponding constituent-node.

production Add_Attribute
   ( Er : ENT_REL ; s : SQB ; Att : type in ATTRIBUTE ;
     Val : type in VALUE ; out v : VALUE ; out C : CONSTITUENT )
   =

   ::=

transfer 4’.Term := ‘1.Term & "." & string ( Att );
            5’.Term := ‘1.Term & "." & string ( Att );

return v := 4’;
          C := 5’;
end;

‘1 = Er
cons_is_n

‘3 : CONSTITUENT
is_defined_by

‘2 = s

1’ =‘1
cons_is_n

3’ =‘3
is_defined_by

is_defined_by

2’ =‘2

cons_is_n

5’ :constituent

attribute2er

attribute2v

6’ :Att

orig_cons

4’ :Val

21



Since adding an element to a multi-value corresponds to the declaration of a variable, just as in

the case of adding an entity or relationship, the transfer-clause of (the complete version of) the

production Add to Mvalue is quite similar to that of the production Add ER labeled node. Only,

because this production may also be used to link nodes to sqb-nodes representing subqueries, it

has to be checked if the given multi-value is a subquerybag or not.

production Add_to_Mvalue
   ( Mv : MVALUE ; s : SQB ; Cp : type in PART_OF_COMPLEX ; VarName : string ;

out c : PART_OF_COMPLEX ; out C : CONSTITUENT ; out M : MMEMBER )
      =

         ::=

condition ‘1.Elem_Type = Cp;
transfer 4’.Term := VarName;

            4’.Declaration := VarName & " in " & [ ‘1. type = sqb :: ‘1.SFW_Term
                                                 | ‘1.Term ]                   ;
            5’.Term := VarName;
            5’.Declaration := VarName & " in " & [ ‘1. type = sqb :: ‘1.SFW_Term
                                                 | ‘1.Term ]                   ;
            6’.Term := VarName;
            6’.Declaration := VarName & " in " & [ ‘1. type = sqb :: ‘1.SFW_Term
                                                 | ‘1.Term ]                   ;

return c := 4’;
          C := 5’;
          M := 6’;
end;

‘1 = Mv
cons_is_n

‘3 : CONSTITUENT
is_defined_by

‘2 = s

cons_is_n
3’ =‘3

is_defined_by

contains_mm

1’ =‘1

mm_is_n
6’ :mmember

is_defined_by

2’ =‘2

cons_is_n

5’ :constituent

orig_cons

4’ :Cp

As a �nal step in the semantics de�nition of HQL/EER, we provide a translation algorithm

which transforms a hybrid query consisting of a textual and a graphical part into a purely textual

SQL/EER query. Consider an HQL/EER query with a textual part \select T from D where

F" (with T a list of terms, D a list of declarations, and F a formula), and graphical part G. As a

result of the attribute evaluations in the PROGRES speci�cation outlined above, we already have

a (possibly incomplete) SQL/EER-query Q, stored in the SFW Term-attribute of the sqb-labeled

node corresponding to the hybrid query. Then the following algorithm shows how to combine Q

with the textual part, resulting in an SQL/EER query. The semantics of the HQL/EER query is

then de�ned as the semantics of this SQL/EER query.

1. In both T, D and F, substitute any variable referring to a node in the graphical part, by the

Term-attribute of this node;

2. Append T (with a comma) to the select-clause of Q;

3. Append D (with a comma) to the from-clause of Q;

4. Append F (with an \and") to the where-clause of Q.
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select
where

p1.Name
p2.Name = ‘John’

select
from
where

p1.Name
inin in in p1.Addr, p1  p2.Addr, p2  PERSON

Addr

list listaddress

Addr

p1 p2

∈∈

PERSON PERSON

attributed graph
representation

SFW_Term
of sqb−node

a1  PERSON, a2 
a1 = a2 and p2.Name =‘John’

+ Table 1

Figure 23: Translating a hybrid into a textual query
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As shown in Figure 5.2, application of this algorithm to the hybrid query of Figure 8 results

in the textual query of Figure 3.

Finally, note that since

� each HQL/EER query can (by de�nition) be translated into an equivalent SQL/EER query,

and

� each SQL/EER query is (by de�nition) itself an HQL/EER query

HQL/EER and SQL/EER have precisely the same expressive power.

6 Implementation E�orts

Our claims about the advantages of a hybrid language over purely textual or purely graphical

languages undoubtedly require validation, preferably in the form of the development and testing

of a prototype implementation. Hence we are currently in the process of implementing a prototype

Hybrid Query Tool that supports the speci�cation and execution of hybrid queries [34]. In this

Section we briey discuss the major design issues and functionality of this tool.

A major design decision was to base the Hybrid Query Tool on the Object Modeling Tech-

nique [30] rather than on the EER model, mainly in order to demonstrate the applicability of

the concepts of hybrid languages to other data models. From this experiment, we deduced the

following two criteria a data model must satisfy, if one wants to de�ne a hybrid query language

on top of it:

1. the data model must allow for a natural and modular graphical expression of schemes; and

2. a closed textual query languages must be available.

Obviously, OMT satis�es the �rst criterion, but to our knowledge, no expressive closed query

language has yet been developed based on OMT. Hence a �rst task preceding the design and

implementation of a Hybrid Query Tool based on OMT, consisted in \translating" (a sublanguage

of) SQL/EER to the context of OMT [34].

In its current state, the Hybrid Query Tool o�ers a (dummy) editor for hybrid queries. The

editor was implemented in C++, using the Interviews 3.1 Toolkit. Figure 24 shows a screendump

of the tools' user interface.

The interface includes the following four major components:

� a menubar (at the top), including six menus from which all operations o�ered by the tool

may be activated;

� a palette (on the left hand side), from which the most commonly used operations o�ered by

the tool may be activated;

� a scheme subwindow (at the top right side) into which an OMT diagram is displayed; and

� a query subwindow (at the bottom right side) in which a hybrid query can be constructed.

Speci�cation of a hybrid query starts by loading an OMT diagram (produced by means of

some other tool) into the scheme subwindow. In the scheme subwindow of the tool as depicted in

Figure 24, an OMT diagram is depicted which models part of the running example scheme of this

article.

Composition of the hybrid query in the query subwindow then proceeds by sequential applica-

tion of some of the following editing operations:

� Copy & Paste of arbitrary subdiagrams from the scheme subwindow to the query subwindow

(Buttons 1,3)
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Figure 24: The user interface of the Hybrid Query Tool
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� Showing/Hiding of attributes in a class-box in the query subwindow (Button 8)

� Merging of class-boxes in the query subwindow, to express equality conditions or to make

inheritance of participation in associations explicit (Button 11)

� Linking attributes with edges labeled with an (in)equality predicate (Button 12)

� Textual speci�cation of an atomic condition on a single attribute (Button 10)

� Selection for output of a single attribute (Button 9)

� Assignment of a variable to an attribute or class (Button 7)

Pressing Button 13 pops up a window in which the textual part of the hybrid query may be

entered.

Most other buttons (such as the ones labeled \Move", \Undo", \Redo", \Delete" and \Clear

HBQuery") are quite self-explaining.

Although the editor is syntax-directed to a certain degree (only correct \OMT-like" diagrams

can be constructed in the query subwindow) there is still a need for a facility to explicitly check

the syntax of a hybrid query (Button 14). A simple example of an incorrect query which could

be build using the tool is that of a totally graphical one, in which nothing has been selected for

output.

In its current state, the Hybrid Query Tool only allows syntax-directed editing of hybrid queries.

A back-end for this tool, which will allow the actual execution of hybrid queries, is currently under

development. Although the main topic of this article is the formal de�nition of HQL/EER, we

nevertheless included this short description of the tool's (intended) functionality in order to give

the reader an idea of how a tool can support usage of a hybrid query language.

7 Conclusions

In this article, we introduced the Hybrid Query Language for the Extended Entity Relationship

Model. We formally de�ned both its syntax and semantics using programmed graph rewriting

systems. Our future plans mainly concern the further development of the Hybrid Query Tool

(briey discussed in Section 6 of this article). Once this tool becomes available, we intend to

thoroughly test both its functionality as well as the actual merits of the very notion of hybrid

(query) languages by means of experiments with end-users.
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A An overview of PROGRES

PROGRES is an operational speci�cation language based on PROgrammed Graph REwriting

Systems. We demonstrate the major characteristics of PROGRES by means of a small example

speci�cation, namely for a simple list data structure (see Figures 25, 26 and 27).

The basis of a PROGRES speci�cation is a graph scheme. Such a graph scheme speci�es a set

of graph properties (i.e., structural integrity constraints and attribute dependencies) common to

a certain collection of graphs. The following components of a graph scheme are distinguished:

� type declarations: these are used to introduce labels for nodes and edges in the considered

collection of graphs, to declare and initialize node attributes;

� class declarations: these denote coercions of node types with common properties by means

of multiple inheritance, hence they play the role of second order types. Class declarations

may also include attribute declarations.

In the example (see Figure 25), three node classes are speci�ed, namely NODE, and its two

direct subclasses LIST ELEM and LIST HEADER. The latter two classes each have a single node

type, namely lheader of class LIST HEADER and lelem of class LIST ELEM.

Furthermore, Figure 25 shows three edge type declarations. Like in many ER dialects, expres-

sions of the form [n:m] denote cardinality constraints. For example, the constraint [0:1] in the

declaration of the edge type lfirst indicates that each node of class LIST HEADER, may have at

most one (but possibly no) outgoing edge of type lfirst. Intuitively, the edge labeled lfirst (if

existent) leaving a node labeled lheader (which is the only type of class LIST HEADER) points to

the �rst element in the list (which is represented by a node of type lelem).

In the derived-clause of node class declarations, attributes of nodes of this class (or of its

subclasses) are declared, whose value may be derived automatically. Actual derivation rules for

these attributes are provided either in the declaration of subclasses, or in productions. For example,

the attribute No of elements of class LIST HEADER is derived by counting the number of elements

(by means of the function card) in the set of all incoming edges labeled elem of. The latter set

is denoted by means of the expression self.<-elem of-.

In the intrinsic-clause, attributes are declared whose value depends on a user-supplied pa-

rameter of the production (see below) which creates the node. For example, each node of class

NODE has an \externally" supplied Name (which is also a key-attribute), while every node of class

LIST ELEM contains some externally supplied Information.

The class de�nition also speci�es a default value for all attributes.

Productions specify how graphs are constructed by substituting an isomorphic occurrence of

one graph (called the left-hand side of the production) by an isomorphic copy of another graph

(called the right-hand side of the production). Productions are parametrized by node classes (and

atomic values).

In the example speci�cation (see Figure 25), the production Create New List has an empty

left-hand side, and is therefore applicable to any graph. Hence it adds a node of type lheader

to the graph to which it is applied. The production Add Last (see Figure 26) appends a new

element to an existing list. The list is passed to the production using the input parameter l.

While matching the left-hand side to the graph, the node with identi�er `2 will match the last

element of the list, as a result of the restriction isLast, which restricts the set of all nodes of class

LIST ELEM to those that have no outgoing edges labeled next (captured in the formula not def

-next->).

Whereas restrictions determine a subset of a given set of nodes, path expressions determine a

subset of a given set of pairs of nodes, hence they may be considered as \virtual edges". As an

example, the path-expression follows (whose declaration is shown at the bottom of Figure 26)

de�nes a \virtual" edge between two nodes n1 and n2, if there exists a non-empty sequence of

next-edges from n2 to n1.
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spec Lists

section Graph_Scheme

node class NODE
intrinsic

key Name : string := "";
end;

node class LIST_HEADER is a NODE
derived

            No_of_elements : integer = 0;
redef derived

            No_of_elements = card ( self.<-elem_of- );
end;

node class LIST_ELEM is a NODE
intrinsic

            Info : string := "";
end;

node type lheader : LIST_HEADER end;

node type lelem : LIST_ELEM end;

edge type lfirst : LIST_HEADER -> LIST_ELEM [0:1];

edge type elem_of : LIST_ELEM -> LIST_HEADER [1:1];

edge type next : LIST_ELEM -> LIST_ELEM [0:1];
end;

section Productions

production Create_New_List ( n : string ; out l : LIST_HEADER )
      =

         ::=

transfer 1’.Name := n;
return l := 1’;

end;

1’ : lheader

Figure 25: A PROGRES speci�cation for lists I
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production Add_First ( n1 : string ; n2 : string ; i : string )
      =

         ::=

condition ‘1.Name = n1;
                   ‘1.No_of_elements = 0;

transfer 2’.Name := n2;
                  2’.Info := i;

end;

restriction isLast : LIST_ELEM =
not def -next->

end;

production Add_Last ( l : LIST_HEADER ; n : string ; i : string )
      =

         ::=

transfer 3’.Name := n;
                  3’.Info := i;

end;

path follows : LIST_ELEM -> LIST_ELEM =
         <-next- +

end;
end;

‘1 :lheader

elem_of

2’ :lelem

lfirst

1’ =‘1

‘1 =l
elem_of

‘2 :lelem isLast

1’ =‘1
elem_of

next

2’ =‘2

elem_of

3’ :lelem

Figure 26: A PROGRES speci�cation for lists II
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In addition, productions may specify application conditions (in their condition-clause) in

terms of structural and attribute properties of the isomorphic occurrence of the left-hand side. In

the example speci�cation, the production Add First adds a new element to an empty list. For

the sake of the example, the header of the list to which the element should be added, is not itself

passed as a parameter, but by means of its key-attribute Name (in the input parameter n1). Hence,

when applying the production, the corresponding node of type lheader has to be sought for, using

the condition `1.Name = n1. In addition, the condition `1.No of elements = 0 ensures that the

list is indeed an empty one.

Attribute-computations are performed in the transfer-clause. For example, in the production

Add First, the input parameters n2 and i are assigned to respectively the Name and Info attribute

of the newly created node of type lelem.

The embedding-clause (not used in the example speci�cation) states how to embed an isomor-

phic copy of the right hand side of the production in the considered graph, by means of additional

edges.

Finally, the return-clause (used in the production Create New List) is used to return certain

nodes to the calling transaction. A transaction is a collection of calls to productions, structured

by means of a variety of programming constructs, such as loops, selections,: : : .

Figure 27 shows the (single) MAIN transaction of the example speci�cation. It consists of

a single statement of the form \use <variable-declarations> do <sequence of production

calls> end". This transaction creates a list named \list1" and adds to it two elements named

\element1" and \element2", containing respectively the information \short" and \list". Figure 28

shows the graph representation of this list.

transaction MAIN =
use l1 : LIST_HEADER
do

           Create_New_List ( "list1", out l1 )
         & Add_First ( "list1", "element1", "short" )
         & Add_Last ( l1, "element2", "list" )

end;

Figure 27: A PROGRES speci�cation for lists III

Figure 28: Graph representation of a list
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