
Multisets and Structural Congruence

of the pi-Calculus with Replication

Joost Engelfriet

?

and Tjalling Gelsema

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Abstract. In the �-calculus with replication, two processes are multiset

congruent if they have the same semantics in the multiset transition

system M�. It is proved that (extended) structural congruence is the

same as multiset congruence, and that it is decidable.

1 Introduction

A particularly elegant version of the �-calculus was presented in [7]. The main

aspects in which it di�ers from the usual �-calculus of [8] are twofold.

First, it has replication as an operation on processes, rather than recursion.

The replication !P of a process P consists of the parallel composition of in�nitely

many copies of P . Replication can be used to simulate recursion, but is much

easier to handle theoretically. Thus, it seems to be more basic than recursion. In

a certain sense, from the point of view of formal language theory, replication is

similar to the Kleene star operation in regular expressions, whereas recursion is

similar to context-free grammars.

Second, a natural relation of structural congruence between process terms is

de�ned, and used to present the axioms and rules of the transition system of the

�-calculus in a compact way. The idea is that process terms are descriptions of

processes, and that these processes are characterized by their \spatial" structure.

In other words, two process terms describe the same process if and only if they

have the same structure, and such process terms are said to be structurally

congruent. Compactness of the axioms and rules is obtained by the natural

stipulation that structurally congruent process terms have the same behaviour

(in fact, it is the behaviour of the process that they describe). As an example,

process terms (P j Q) j R and Q j (R j P) are structurally congruent because

they both describe a process consisting of three subprocesses P , Q, and R that

are placed in parallel, i.e., the parallel composition of P , Q, and R. Structural

congruence is de�ned in [7] to be the smallest congruence that satis�es eight

such structural laws.

These two main aspects are closely related. Replication is a typically struc-

tural operation on processes, just like parallel composition. In fact, it is \just"

?

The research of this author was supported by the Esprit Basic Working Group

No.6067 CALIBAN

1

an in�nite version of parallel composition. On the other hand, recursion is usu-

ally viewed as a behavioural construction (although it is also possible to view

it structurally, by unfolding the recursion). Thus, the use of replication �ts well

in the structural approach; in fact, replication can be completely described by

structural laws, and no separate transition rules are needed.

Restriction, of the scope of a name to a (sub)process, is also usually viewed as

a structural operation. Certain subprocesses of a process \know" the name and

others do not, and this can be seen as \spatial" information. In fact, in [6], the

operations of CCS are divided into static (or structural) operations and dynamic

(or behavioural) operations. The static operations are parallel composition, re-

striction, and relabeling, and the dynamic operations are pre�x (or guard), sum,

and recursion. Since the �-calculus of [7] has no relabeling or sum, and dynamic

recursion is replaced by static replication, only the use of guards is dynamic in

this version of the �-calculus.

In [4, 5] the process terms of CCS are interpreted as \
owgraphs" that cor-

respond intuitively to their structure, i.e., to the processes they describe (see

also the informal use of
owgraphs in [6, 8]). Structural laws for the process

terms of CCS (called \laws of
ow") are given that are sound and complete with

respect to the
owgraph interpretation. To be more precise, two such process

terms have the same
owgraph if and only if they are in the smallest congruence

(with respect to the static operations) that satis�es the given structural laws.

Also, process terms with the same
owgraph have the same behaviour, where, in

this case, \same" means \strongly bisimilar". The corresponding laws for strong

bisimilarity are the \static laws" in Section 3.4 of [6].

In [2, 3] a \multiset semantics" (or Petri net semantics) of the �-calculus of [7]

is given that is closely related to the structural approach. A transition systemM�

is de�ned of which the states are \solutions", which are multisets of molecules,

and a \molecule"' is a guarded solution (the chemical terminology is taken from

the Chemical Abstract Machine of [1]). A multiset of molecules can be viewed as

a \spatial" distribution of molecules, where several copies of the same molecule

may be present in the solution. In accordance with the operation of replication,

there may even be in�nitely many such copies. Moreover, a semantic mapping is

de�ned that associates with each process term of the �-calculus a state of M�. It

is proved in [2, 3] that the semantic mapping is a strong bisimulation between a

process term and its corresponding multiset in M�. Thus, from the interleaving

point of view they have the same behaviour. The gain is that, intuitively, the

behaviour of the multiset in M� is the \true concurrency" behaviour of the

process term.

Two process terms are said to be multiset congruent if they correspond to

the same multiset in M�. It is claimed in [3] that the multiset corresponding to

a process term represents its \spatial" structure, i.e., the process it describes.

In fact, the multisets can be viewed as a kind of nested
owgraphs (\nested"

because multiset congruence is a congruence for all operations of the �-calculus

rather than only the static ones). It turned out in [3] that, indeed, multiset

congruence and structural congruence (as de�ned in [7]) are closely related, but

2

unfortunately not as closely as one would wish. It was shown that structurally

congruent process terms are multiset congruent, but not vice versa. However,

the failure of the reverse direction seemed to be due to the omission of a few

natural structural laws that from an intuitive point of view should be valid.

An example of such a law is the structural equivalence of !P j !P and !P .

This is basically a cardinality law which expresses that adding in�nitely many

copies of P to in�nitely many copies of P still leaves you with in�nitely many

copies of P . In this paper we show that, indeed, after the addition of a few such

natural structural laws, structural congruence and multiset congruence are the

same. This means that the laws of structural congruence are now sound and

complete with respect to the multiset semantics (or rather, its structural part).

It is the analogue of the results of [5] for the �-calculus. As a second result, we

show that multiset congruence, and hence (extended) structural congruence, is

decidable. Clearly, any \good" notion of static, structural equivalence should be

decidable; intuitively, you should only have to \look at" two processes in order

to see whether or not they have the same structure. Thus, the two results of

this paper support the thesis that the general notion of structure of processes,

as introduced in [4, 5, 6] for CCS and in [7] for the �-calculus, is a natural one.

The main technical concept in the proof of the two main results is that of a

\connected" solution. Each molecule in a solution \knows" a number of names

(i.e., communication links). Some of these names are public (or global), i.e.,

known to all molecules, whereas others are secret (or local), i.e., known to a

restricted number of molecules only. The secret names are also called \new"

names, because they are new, unique, names that are introduced by the seman-

tical mapping as a result of the restrictions that occur in the process term. As

an example, a replication of a restriction gives in�nitely many copies of the re-

striction, each of which should have its own \new" name. Let us now say that

two molecules are \related" if they \know" at least one common \new" name.

This is a natural relationship, because two such molecules are into the same

secret; thus, they naturally belong to each other. We will say that a solution

is connected if the resulting graph of molecules with their relationships is con-

nected, in the usual sense. This means that everybody is (transitively) related

to everybody else. More in general, any solution can be divided into \connected

components". This division gives an intuitive picture of clusters of relationships.

The proof of the main results uses a normal form lemma: every process term

is structurally congruent with one that only replicates subterms of which the

corresponding solution is connected. Intuitively, if a connected component cor-

responds to a \module" that does a certain job, then it is natural to replicate

such a module. The normal form lemma says that the use of replication can be

restricted to such cases.

The structure of the paper is as follows. In Section 2 some de�nitions from [7]

and [2, 3] are recalled. The reader is assumed to be more or less familiar with the

de�ned concepts and their basic properties. Section 2 contains in particular the

full de�nition of structural congruence, with the addition of the new structural

laws. In Section 3 we discuss a few basic properties of multisets in general that

3

are needed in the formal proofs. Section 4 introduces the notion of a connected

solution and investigates the relationship between connectedness and multiset

union. Section 5 contains the above-mentioned normal form of process terms. In

Section 6 the two main results are proved: structural congruence and multiset

congruence are the same, and decidable.

2 Preliminaries

Although the reader is assumed to be familiar with the basic de�nitions in [3],

we brie
y recall some of them (see also [2]). From now on we will refer to [3] as

[Eng].

The set of all x that satisfy property p(x), will be denoted fx : p(x)g (rather

than fx j p(x)g, to avoid confusion with parallel composition).

The syntax for process terms of the \small" �-calculus from [7] is

P ::= xy:P ; x(y):P ; 0 ; P j P ; !P ; (�y)P

where x and y are names in N.

The strings xy and x(y) are called guards (over N), and the terms xy:P

and x(y):P are guarded terms. For processes P and Q, P j Q is the parallel

composition of P and Q, (�y)P is the restriction of y to P , !P is the replication

of P , and 0 is the inactive or zero process. The y in x(y):P and in (�y)P binds

all free occurrences of y in P . For process P , fn(P) denotes the set of names that

occur free in process P , and P [z=y] denotes the result of substituting z for all

free occurrences of y in P .

In [Eng], P � Q denotes the structural congruence of P and Q as de�ned in

[7]. However, as discussed in [Eng], we propose to extend that congruence with a

number of new laws. Thus, in this paper we denote by � the so extended struc-

tural congruence, and we are dealing with what is called in [Eng] the extended

small �-calculus. For clearness sake, we present the full de�nition of �.

Structural congruence, denoted �, is the smallest congruence over the set of

all process terms such that

(�) P � Q whenever P and Q are �-convertible,

(1.1) P j 0 � P ,

(1.2) P j Q � Q j P ,

(1.3) P j (Q j R) � (P j Q) j R,

(2.1) (�x)(�y)P � (�y)(�x)P ,

(2.2) (�x)P � P

provided x 62 fn(P),

4

(2.3) (�x)(P j Q) � P j (�x)Q

provided x 62 fn(P),

(2.4) (�x)g:P � g:(�x)P

provided x does not occur in g,

(3.1) !P � P j !P ,

(3.2) !(P j Q) � !P j !Q,

(3.3) !!P � !P ,

(3.4) !0 � 0, and

(3.5) !P j !P � !P .

Structural laws (2.4) and (3.2)-(3.5) are new with respect to [7]. Law (3.5) was

not mentioned in [Eng]. The reason is that, as pointed out by one of the referees

of [2], it can be proved from the others, as follows: !P � !!P � !(P j !P) � !P j

!!P � !P j !P , by structural laws (3.3), (3.1), (3.2), and (3.3), respectively.

We note here that in [4, 5, 6] a stronger version of law (2.3) is used, of

which the analogue in the �-calculus would be the following law (2.3)

0

: (�x)(P j

Q) � (�x)P j (�x)Q provided P and Q cannot communicate along the link

x (formalized in a straightforward way). Clearly, law (2.3)

0

, together with law

(2.2), implies law (2.3). The results to be proved in this paper show that law

(2.3)

0

does not follow from the above laws, e.g., it is not true that (�x)(x(y):0 j

x(y):0) � (�x)(x(y):0) j (�x)(x(y):0). It seems to be a matter of taste whether

or not to accept law (2.3)

0

as a structural law. Accepting it would lead to a more

complicated de�nition of the multiset semantics.

In this paper we do not need to consider the transition system of the small

�-calculus, as we are interested in structural congruence only. Similarly, we need

not consider the transitions of the multiset transition system M�.

The states of M� are solutions, which are multisets of molecules. A molecule

is a pair g:S, where S is a solution and g is a schematic guard, i.e., a string of

the form x(�) or xy where x and y are names (in N), or new names (in New,

with New \ N = ;), or positive natural numbers (in N). For a guard x(y) over

N [New, the molecule x(y):S is de�ned to be x(�):inc(S)[1=y], where inc(S)

denotes the result of increasing all natural numbers in S by one, and, in general,

S[u=v] denotes the result of replacing every occurrence of v in S by u.

For a solution (or molecule) S, fn(S) is the set of all names and new names

in N [New that occur in S, and new(S) = fn(S) \New is the set of new names

that occur in S. For a solution S, new(S) =

S

m2S

new(m) and new(g:S) =

new(g) [new(S), where new(x(�)) = fxg \ New and new(xy) = fx; yg \ New.

A similar statement holds for `fn'.

The semantic relation P) S is de�ned between the process terms P of the

small �-calculus and the solutions S of the multiset �-calculus. It is the smallest

5

relation such that

(S0) 0) ;

(S1) If P

1

) S

1

and P

2

) S

2

, then P

1

j P

2

) S

1

[S

2

provided new(S

1

) \ new(S

2

) = ;

(S2) If P) S, then (�x)P) S[n=x]

provided n 2 New � new(S)

(S3) If P) S and g is a guard over N, then g:P) fg:Sg

(S4) If P) S

i

for all i 2 N, then !P)

S

i2N

S

i

provided new(S

i

) \ new(S

j

) = ; for all i 6= j.

Note that S

1

[S

2

and

S

i2N

S

i

are unions of multisets, with addition of multi-

plicities. Note also that if P) S then fn(P) = fn(S) \ N.

Process terms P and Q are multiset congruent, denoted P �

m

Q, if P and

Q have the same multiset semantics in M�, i.e., if fS : P) Sg = fS : Q) Sg.

It was shown in [Eng, Theorem B and Lemma 7] that structurally congruent

processes are multiset congruent.

Lemma1. For process terms P and Q, if P � Q, then P �

m

Q.

The �rst main result of this paper is the other direction of this lemma: processes

that are multiset congruent, are also structurally congruent. This proves that

multiset congruence �

m

and structural congruence � are the same (see result

(B

0

) of [Eng]). The second main result is the decidability of � (see result (C

0

) of

[Eng]).

We will say that a solution S

0

is a copy of a solution S if there exists a

bijection f : new(S) ! new(S

0

) such that f(S) = S

0

(where f(S) is the result

of replacing every occurrence of a new name n by f(n)). As observed in [Eng]

it is easy to show that `copy of' is an equivalence relation. It is proved in [Eng,

Lemma 3] that for each process term P , the set fS : P) Sg is an equivalence

class of this relation.

Lemma2. If P) S, then P) S

0

if and only if S

0

is a copy of S.

We will need the easy fact that the copy relation is preserved by taking the union

of solutions with disjoint sets of new names. It was implicitly used in the proof

of the above lemma in [Eng].

Lemma3. Let I be a countable index set, and let S

i

and S

0

i

, i 2 I, be solu-

tions such that the new(S

i

) are mutually disjoint and the new(S

0

i

) are mutually

disjoint. If S

0

i

is a copy of S

i

for every i 2 I, then

S

i2I

S

0

i

is a copy of

S

i2I

S

i

.

Proof. If f

i

(S

i

) = S

0

i

for bijections f

i

: new(S

i

)! new(S

0

i

), and f is de�ned such

that its restriction to new(S

i

) is f

i

, then f(

S

i2I

S

i

) =

S

i2I

f(S

i

) =

S

i2I

S

0

i

.

Note that new(

S

i2I

S

i

) =

S

i2I

new(S

i

) and similarly for the S

0

i

. ut

6

3 Some Basic Properties of Multisets

We will need some more basic properties of multisets. This section may be

skipped by the reader familiar with multisets.

Recall that a multiset S is a countable set D

S

together with a mapping

�

S

: D

S

! N [f!g that de�nes the multiplicity of the elements of D

S

in

S (where N = f1; 2; 3; : : :g and ! stands for countably in�nite multiplicity).

Union of multisets is de�ned in the obvious way, adding the multiplicities of

each element.

We �rst explicitly state three, closely related, basic properties of multiset

union that have already been used in [Eng]. Let I and J be countable index

sets, let S

i

be a multiset for each i 2 I , and let T

i;j

be a multiset for each i 2 I

and j 2 J .

(a) Renaming the index set. If : J ! I is a bijection, then

S

i2I

S

i

=

S

j2J

S

 (j)

.

(b) General commutativity and associativity.

If I =

S

j2J

I

j

and the I

j

are mutually disjoint, then

S

i2I

S

i

=

S

j2J

(

S

i2I

j

S

i

).

(c) Interchanging unions.

S

i2I

(

S

j2J

T

i;j

) =

S

j2J

(

S

i2I

T

i;j

).

Property (b) can be proved directly from the de�nition of multiset union, prop-

erty (a) is a special case of (b), taking I

j

= f (j)g, and property (c) can easily

be proved from the other two, by showing that both sides of the equation equal

S

(i;j)2I�J

T

i;j

. We note that property (a) allows one to write a union

S

i2I

S

i

with any index set J that has the same cardinality as I . In particular, J can

always be taken disjoint with any other given set.

Next we consider a di�erent, well-known, way of viewing a multiset, viz.

as an indexed family of objects. Let D be a set, and let, for every i in some

countable index set I , d

i

be an element of D. Then, intuitively, the family fd

i

g

i2I

of elements of D represents the multiset

S

i2I

fd

i

g. Note that di�erent families

can represent the same multiset. In fact, intuitively, a multiset is an indexed

family for which the identity of the indices in I is irrelevant. This leads us to

investigating the properties of multiset unions of singleton sets. More formally,

a family fd

i

g

i2I

is determined by the function f : I ! D with f(i) = d

i

. Thus,

from now on we will consider multiset unions of the form

S

i2I

ff(i)g where f is

such a function.

It follows from the de�nition of multiset union that S =

S

i2I

ff(i)g if and

only if D

S

= f(I), the usual range of f , and �

S

(d) = #f

�1

(d), the cardinality

of the set f

�1

(d) � I (where ! stands for @

0

). Thus, the multiplicity of d in S

is the number of indices i with f(i) = d. From this it should be clear that every

multiset S can be written as a union of singletons in at least one way: de�ne

I � D

S

�N by I = f(d; k) : d 2 D

S

; 1 � k � �

S

(d)g, where k � ! for every

k 2 N, and de�ne f(d; k) = d; then S =

S

i2I

ff(i)g.

7

We now observe that two unions of singletons represent the same multiset if

and only if they are obtained from each other by a renaming of the index set.

In other words, for singleton multisets S

i

the reverse of (a) is true.

Lemma4.

S

i2I

ff(i)g =

S

j2J

fg(j)g if and only if there exists a bijection :

J ! I such that g(j) = f((j)) for every j 2 J .

Proof. The if direction is a special case of (a). To show the only-if direction let

S =

S

i2I

ff(i)g =

S

j2J

fg(j)g. Then, for every d 2 D

S

, #f

�1

(d) = #g

�1

(d).

Hence there is a bijection

d

: g

�1

(d) ! f

�1

(d), for every d 2 D

S

. Then the

function =

S

d2D

S

d

is a bijection from J to I such that g(j) = f((j)) for

every j 2 J . ut

This lemma expresses the above-mentioned fact that a multiset is an indexed

family for which the identity of the indices is irrelevant. This means that mul-

tisets over D are isomorphism classes of families of elements of D, where an

isomorphism between two families is a mapping as above.

After characterizing the equality of two unions of singletons, we now char-

acterize the equality of two unions of which one is a union of singletons. This

turns out to be the reverse of property (b) for singleton multisets S

i

.

Lemma5.

S

i2I

ff(i)g =

S

j2J

T

j

if and only if there exist mutually disjoint

sets I

j

such that I =

S

j2J

I

j

and T

j

=

S

i2I

j

ff(i)g for every j 2 J .

Proof. The if direction is a special case of (b). To show the only-if direction let

S

i2I

ff(i)g =

S

j2J

T

j

. For each j 2 J we represent T

j

as a union of singletons,

with index set K

j

. By (a) we may assume the K

j

to be mutually disjoint. Hence

S

j2J

T

j

=

S

j2J

S

k2K

j

fg(k)g for some function g that is de�ned for every k 2

K =

S

j2J

K

j

. Hence, by (b),

S

j2J

T

j

=

S

k2K

fg(k)g and so

S

i2I

ff(i)g =

S

k2K

fg(k)g. By Lemma 4 there is a bijection : K ! I such that g(k) =

f((k)) for every k 2 K. Hence T

j

=

S

k2K

j

fg(k)g =

S

k2K

j

ff((k))g. And so,

by (a), T

j

=

S

i2I

j

ff(i)g where I

j

= (K

j

). ut

Finally we characterize the equality of two arbitrary unions of multisets. This

turns out to be the reverse of (c). Figure 1 illustrates a multiset that can be

viewed as a union in two ways.

Lemma6.

S

i2I

S

i

=

S

j2J

T

j

if and only if there exist multisets U

i;j

such that

S

i

=

S

j2J

U

i;j

and T

j

=

S

i2I

U

i;j

for every i 2 I and j 2 J .

Proof. The if direction is property (c). To show the only-if direction let

S

i2I

S

i

=

S

j2J

T

j

=

S

k2K

ff(k)g. By Lemma 5 there exist mutually disjoint sets Y

i

and

mutually disjoint sets Z

j

such that K =

S

i2I

Y

i

=

S

j2J

Z

j

, S

i

=

S

k2Y

i

ff(k)g

for every i 2 I , and T

j

=

S

k2Z

j

ff(k)g for every j 2 J . Now let U

i;j

=

S

k2Y

i

\Z

j

ff(k)g. Then

S

j2J

U

i;j

=

S

j2J

S

k2Y

i

\Z

j

ff(k)g =

S

k2Y

i

ff(k)g = S

i

by property (b) because Y

i

=

S

j2J

(Y

i

\ Z

j

). A similar computation shows that

S

i2I

U

i;j

= T

j

. ut

8

U

1;1

U

1;2

U

2;1

U

2;2

S

1

S

2

S

3

T

1

T

2

T

3

p p p

p

p

p

p

p

p

Fig. 1. Division of a multiset

Note that U

i;j

= S

i

\ T

j

in the special case that the S

i

are mutually disjoint

sets, and similarly for the T

j

(cf. the Venn-diagram in Fig.1). However, in general

the U

i;j

are not unique, as can be seen from the following trivial example. Let

I = J = f1; 2g and let S

i

= T

j

= fa; bg for all i and j. Then S

1

[S

2

= T

1

[T

2

=

fa; a; b; bg. Now the requirements of the lemma hold for U

1;1

= U

2;2

= fa; bg and

U

1;2

= U

2;1

= ;, but they also hold for U

1;1

= U

2;2

= fag and U

1;2

= U

2;1

= fbg.

4 Connected Solutions

The main technical concept to be used in the proof of the main results is that of a

connected solution. A solution S of M� is connected if there do not exist solutions

S

1

and S

2

such that S = S

1

[S

2

and new(S

1

) \ new(S

2

) = ;. Intuitively this

means that all molecules of the solution are connected to each other through

a chain of \relationships", where we say that two molecules m

1

and m

2

are

\related" if new(m

1

) \ new(m

2

) 6= ;, i.e., if they both make use of at least one

common local link. Recall that new names are always introduced as a result of

restriction, which de�nes a local scope for a name.

The notion of connectedness will be used as follows in the proof of the main

results in Section 6. Roughly speaking, we will prove that P �

m

Q implies

P � Q by induction on the syntactical structure of P and Q. Consider the

case that P = !P

0

and Q = !Q

0

and assume that P �

m

Q. Now we would

like to prove that P

0

�

m

Q

0

, because then P

0

� Q

0

by induction, and hence

!P

0

� !Q

0

. Since P and Q are multiset congruent,

S

i2N

S

i

=

S

j2N

T

j

, where

the S

i

are \disjoint" meanings of P

0

and the T

j

are \disjoint" meanings of Q

0

,

in the sense that their sets of new names are disjoint. In general, by Lemma 6,

9

this means that each S

i

is cut into \disjoint" pieces by the T

j

's, and vice versa.

Thus, there is no relationship between the S

i

and the T

j

. If, however, we would

know that the S

i

and T

j

are connected, in the above sense, then they could

not be cut into non-trivial pieces, and hence we would be able to conclude that

the S

i

and T

j

are equal (in fact, they are the \connected components" of the

solution). This would then imply that P

0

�

m

Q

0

. To this aim, we will show in

the next section that every process term is structurally congruent with one in

which, roughly speaking, only connected solutions are replicated. In this section

we investigate some fundamental properties of connected solutions and of the

\connected components" of a solution.

We now start with the formal de�nitions. For a function f : I ! Mol, i.e.,

an indexed family of molecules, we de�ne the undirected graph G

f

= (V

f

; E

f

)

with V

f

= I and

E

f

= f(i; j) : new(f(i)) \ new(f(j)) 6= ;g:

Thus, G

f

models the \relationships" between the (indexed) molecules. For a

solution S =

S

i2I

ff(i)g we also denote G

f

by G

S

, and we say that S is a

connected solution if G

S

is a connected graph. Note that any singleton solution

fmg is connected, because its graph consists of one vertex only; the doubleton

solution fm;mg is connected if and only if new(m) 6= ;.

The de�nition of connectedness does not depend on the representation of S

as a union of singletons. In fact, suppose that S =

S

i2I

ff(i)g =

S

j2J

fg(j)g.

Then, by Lemma 4, there is a bijection : J ! I such that g(j) = f((j)) for

every j 2 J . Clearly, is a graph isomorphism between G

g

and G

f

:

(j

1

; j

2

) 2 E

g

, new(g(j

1

)) \ new(g(j

2

)) 6= ;

, new(f((j

1

))) \ new(f((j

2

))) 6= ;

, ((j

1

); (j

2

)) 2 E

f

and so the graph G

S

is determined modulo isomorphism.

Connectedness is preserved by taking copies (see the end of Section 2 for the

notion of a `copy' of a solution).

Lemma7. If S is a connected solution, and S

0

is a copy of S, then S

0

is a

connected solution.

Proof. By de�nition of `copy', there is a bijection h : new(S) ! new(S

0

) such

that h(S) = S

0

. Now let S =

S

i2I

ff(i)g. Consequently S

0

= h(

S

i2I

ff(i)g) =

S

i2I

fh(f(i))g. From this it can be shown that the graphs G

S

= G

f

and G

S

0

=

G

h�f

are the same, as follows:

(i; j) 2 E

h�f

, new(h(f(i))) \ new(h(f(j))) 6= ;

, h(new(f(i))) \ h(new(f(j))) 6= ;

, new(f(i)) \ new(f(j)) 6= ;

, (i; j) 2 E

f

because new(h(m)) = h(new(m)) for every molecule m, and h is a bijection. ut

10

From this lemma and Lemma 2 it follows that the notion of connectedness can

be carried over from solutions to process terms. If P) S and S is connected,

then we say that P is a connected process term. Note that every guarded term

g:P is connected because g:P) fg:Sg and fg:Sg is a singleton.

We will need a number of results that relate connectedness with multiset

union. We �rst show the property mentioned at the start of this section: con-

nected solutions cannot be divided into \disjoint" pieces.

Lemma8. Let S be a connected solution. If S =

S

i2I

S

i

and the new(S

i

) are

mutually disjoint, then there exists j 2 I such that S

j

= S and S

i

= ; for i 6= j.

Proof. Let S =

S

k2K

ff(k)g. By Lemma 5, S

i

=

S

k2K

i

ff(k)g, K =

S

i2I

K

i

,

and the K

i

are mutually disjoint. Now consider the graph G

f

= (K;E

f

), and let

G

i

be the subgraph of G

f

induced by K

i

. Since the new(S

i

) =

S

k2K

i

new(f(k))

are mutually disjoint, there are no edges between vertices of G

f

that belong to

distinct K

i

. Hence G

f

is the disjoint union of all G

i

. Since G

f

is connected, all

these graphs except one must be empty. Hence all K

i

except one are empty, and

so all S

i

except one are empty. ut

We now compare two \disjoint" unions of solutions, one of which is a union of

nonempty connected solutions. We obtain, for a particular case, the reverse of

property (b) in Section 3 (see also Lemma 5).

Lemma9. Let S

i

, i 2 I, and T

j

, j 2 J , be solutions, such that the new(S

i

)

are mutually disjoint and the new(T

j

) are mutually disjoint. Let, moreover, S

i

be connected and nonempty. Then

S

i2I

S

i

=

S

j2J

T

j

if and only if there exist

mutually disjoint sets I

j

such that I =

S

j2J

I

j

and T

j

=

S

i2I

j

S

i

for every

j 2 J .

Proof. The if direction is a special case of property (b) of Section 3. To show

the only-if direction, assume that

S

i2I

S

i

=

S

j2J

T

j

. By Lemma 6 there exist

solutions U

i;j

such that S

i

=

S

j2J

U

i;j

and T

j

=

S

i2I

U

i;j

. This implies that

new(U

i;j

) � new(S

i

) \ new(T

j

), and hence the new(U

i;j

) are mutually disjoint.

Thus, Lemma 8 implies that for every i there exists j such that S

i

= U

i;j

and

U

i;k

= ; for k 6= j. This means that S

i

\belongs completely" to T

j

. Note that the

j is unique, because S

i

is nonempty. De�ne, for j 2 J , I

j

= fi 2 I : S

i

= U

i;j

g.

Then I =

S

j2J

I

j

, the I

j

are mutually disjoint, and T

j

=

S

i2I

U

i;j

=

S

i2I

j

S

i

for every j 2 J . ut

Next we compare two \disjoint" unions of nonempty connected solutions. We

obtain, for a particular case, the reverse of property (a) in Section 3 (see also

Lemma 4). Intuitively it means that there is essentially at most one way to divide

a solution into \disjoint connected parts", as discussed in the beginning of this

section.

Lemma10. Let S

i

, i 2 I, and T

j

, j 2 J , be nonempty connected solutions, such

that the new(S

i

) are mutually disjoint and the new(T

j

) are mutually disjoint.

Then

S

i2I

S

i

=

S

j2J

T

j

if and only if there exists a bijection : J ! I such

that T

j

= S

 (j)

for every j 2 J .

11

Proof. The if direction is by property (a) of Section 3. To show the only-if direc-

tion, assume that

S

i2I

S

i

=

S

j2J

T

j

. By Lemma 9, there exist mutually disjoint

sets I

j

such that I =

S

j2J

I

j

and T

j

=

S

i2I

j

S

i

for every j 2 J . Since T

j

is con-

nected and the S

i

are nonempty, Lemma 8 implies that I

j

is a singleton. De�ne

 : J ! I such that I

j

= f (j)g. Clearly, is a bijection and T

j

= S

 (j)

. ut

We now show that every solution can be divided into \disjoint connected parts"

in at least one way.

Lemma11. For every solution S there exist nonempty connected solutions S

i

,

i 2 I, such that S =

S

i2I

S

i

and the new(S

i

) are mutually disjoint.

Proof. Let S =

S

k2K

ff(k)g and consider the graph G

f

= (K;E

f

). Let fK

i

:

i 2 Ig be the set of connected components of G

f

, with K =

S

i2I

K

i

and the

K

i

are mutually disjoint. De�ne S

i

=

S

k2K

i

ff(k)g. Since G

S

i

is the subgraph

of G

f

induced by K

i

, S

i

is connected. Clearly, the new(S

i

) =

S

k2K

i

new(f(k))

are mutually disjoint: if k 2 K

i

and k

0

2 K

j

, with i 6= j, then new(f(k)) \

new(f(k

0

)) = ;, because k and k

0

belong to di�erent connected components of

G

f

. Finally,

S

i2I

S

i

=

S

i2I

S

k2K

i

ff(k)g =

S

k2K

ff(k)g = S by property (b)

of Section 3. ut

Altogether we have shown in Lemma's 10 and 11 that there is essentially one

way to divide a solution into \disjoint connected parts". This allows us to de�ne

the family of connected components of a solution, as follows. For a solution

S, if S =

S

i2I

S

i

for nonempty connected solutions S

i

with mutually disjoint

new(S

i

), then we say that the S

i

, i 2 I , are the connected components of S.

We will need some parameters of a solution S that are directly related to its

connected components: the number of connected components of S, the multiplic-

ity of a solution in the family of connected components of S, and the copy-width

of S. These parameters have values in N [f0; !g.

Let S =

S

i2I

S

i

where the S

i

are the connected components of S. It is

an easy consequence of Lemma's 10 and 11 that the following de�nitions are

valid. The number of connected components of S is conn(S) = #I , the car-

dinality of the index set I . For a solution S

0

, the multiplicity of S

0

in S is

mult(S

0

; S) = #fi 2 I : S

i

is a copy of S

0

g. Note that, by Lemma 7, mult(S

0

; S)

can only be non-zero if S

0

is connected. The `mult' function counts the number of

times that S

0

and its copies occur as connected component of S. The copy-width

of S is copy(S) = maxfmult(S

0

; S) : S

0

2 Sol;mult(S

0

; S) 6= !g. Obviously,

copy(S) = maxfmult(S

i

; S) : i 2 I;mult(S

i

; S) 6= !g. Thus, the copy-width of

S is the maximal multiplicity of a connected component of S, where only �nite

multiplicities are taken into account. Note that copy(S) = 0 if mult(S

i

; S) = !

for all i 2 I , and that copy(S) = ! if the numbers mult(S

i

; S), i 2 I , are un-

bounded. It will be shown in Lemma 22 that copy(S) 6= ! for every solution S

that is the semantics of a process term.

As an example, let P be a connected process term with P) S

0

and S

0

6= ;.

If !P) S

1

, then mult(S

0

; S

1

) = ! because, by Lemma 2 and (S4), S

1

has

in�nitely many connected components and each of them is a copy of S

0

. Note that

12

conn(S

1

) = ! and copy(S

1

) = 0. Now let Q be another connected process term

with Q) T , such that T 6= ; and T is not a copy of S

0

, and let P j P j !Q) S

2

.

Then mult(S

0

; S

2

) = 2, mult(T; S

2

) = !, conn(S

2

) = !, and copy(S

2

) = 2.

The functions `conn', `mult', and `copy' behave well with respect to multiset

union.

Lemma12. If the new(S

i

) are mutually disjoint, then

conn(

S

i2I

S

i

) =

P

i2I

conn(S

i

),

mult(S

0

;

S

i2I

S

i

) =

P

i2I

mult(S

0

; S

i

), and

copy(

S

i2I

S

i

) �

P

i2I

copy(S

i

).

Proof. Let S =

S

i2I

S

i

. Let S

i

=

S

j2J

i

T

j

where the T

j

, j 2 J

i

, are the con-

nected components of S

i

. By renaming the index sets we may assume the J

i

to be mutually disjoint. Then S =

S

i2I

S

j2J

i

T

j

=

S

j2J

T

j

with J =

S

i2I

J

i

.

Clearly, the T

j

, j 2 J , are the connected components of S. Hence conn(S) =

#J =

P

i2I

#J

i

=

P

i2I

conn(S

i

).

Similarly, for any solution S

0

, mult(S

0

; S) = #fj 2 J : T

j

is a copy of

S

0

g =

P

i2I

#fj 2 J

i

: T

j

is a copy of S

0

g =

P

i2I

mult(S

0

; S

i

).

Consequently, if mult(S

0

; S) 6= !, then mult(S

0

; S

i

) 6= ! for all i 2 I .

And so copy(S) � maxf

P

i2I

mult(S

0

; S

i

) : S

0

2 Sol;mult(S

0

; S

i

) 6= !g �

P

i2I

maxfmult(S

0

; S

i

) : S

0

2 Sol;mult(S

0

; S

i

) 6= !g =

P

i2I

copy(S

i

). ut

We have seen that the notion of connectedness can be carried over from solutions

to process terms. The next lemma is needed to show that the functions `conn'

and `copy' can be carried over in the same way.

Lemma13. If S

0

is a copy of S, then conn(S

0

) = conn(S) and copy(S

0

) =

copy(S).

Proof. Let f(S) = S

0

for a bijection f : new(S)! new(S

0

), and let S =

S

i2I

S

i

where the S

i

are the connected components of S. Then S

0

= f(

S

i2I

S

i

) =

S

i2I

f(S

i

). By Lemma 7, f(S

i

) is connected. Since new(S) =

S

i2I

new(S

i

), f is

a bijection between new(S

i

) and new(f(S

i

)). Hence the f(S

i

) are the connected

components of S

0

, and so conn(S

0

) = #I = conn(S). Now note that f(S

i

) is a

copy of S

i

for every i 2 I . This implies that, for any solution T , mult(T; S) =

#fi 2 I : S

i

is a copy of Tg = #fi 2 I : f(S

i

) is a copy of Tg = mult(T; S

0

).

Hence copy(S

0

) = copy(S). ut

If P) S then we de�ne the number of connected components of P to be

conn(P) = conn(S), and the copy-width of P to be copy(P) = copy(S).

In the next lemma we show that if mult(S

0

; S) = !, then arbitrary copies of

S

0

can be added to S, resulting in a copy of S. This is similar to structural laws

(3.1) and (3.5).

Lemma14. Let S and T be solutions with new(S) \ new(T) = ;. Let T =

S

k2K

S

k

where the S

k

, k 2 K, are the connected components of T .

If mult(S

k

; S) = ! for every k 2 K, then S [T is a copy of S.

13

Proof. Let S =

S

i2I

S

i

with I \ K = ; and the S

i

, i 2 I , are the connected

components of S.

We �rst consider the easy case that all S

k

and S

i

are copies of each other.

Since mult(S

k

; S) = ! for k 2 K, #I = !. Hence there is a bijection :

I ! I [K. Since, for every i 2 I , S

 (i)

is a copy of S

i

(and all new(S

i

) and

new(S

k

) are disjoint), Lemma 3 implies that

S

i2I

S

 (i)

is a copy of

S

i2I

S

i

.

Since

S

i2I

S

 (i)

=

S

j2I[K

S

j

=

S

i2I

S

i

[

S

k2K

S

k

= S [T by properties (a)

and (b) of Section 3, respectively, S [T is a copy of S.

The general case is just the obvious simultaneous combination of any number

of applications of the easy case. The `copy of' relation induces a partition of K

into equivalence classes, where k and k

0

are equivalent i� S

k

is a copy of S

k

0

. Thus

K =

S

j2J

K

j

, with mutually disjoint K

j

, and S

k

is a copy of S

k

0

i� k and k

0

are

in the sameK

j

. Similarly for S, I =

S

l2L

I

l

, with mutually disjoint I

l

, and S

i

is a

copy of S

i

0

i� i and i

0

are in the same I

l

. Since, for every k 2 K, mult(S

k

; S) = !,

we may assume (by renaming the index set) that J � L and, for every j 2 J ,

#I

j

= ! and S

k

is a copy of S

i

for every k 2 K

j

and i 2 I

j

. By the easy case

considered above, for every j 2 J ,

S

i2I

j

S

i

is a copy of

S

i2I

j

S

i

[

S

k2K

j

S

k

.

Hence, by Lemma 3

S

j2J

S

i2I

j

S

i

is a copy of

S

j2J

S

i2I

j

S

i

[

S

j2J

S

k2K

j

S

k

and

S

l2L

S

i2I

l

S

i

is a copy of

S

l2L

S

i2I

l

S

i

[

S

j2J

S

k2K

j

S

k

, i.e., S is a copy

of S [T . ut

This lemma is used in the next one, which can be viewed as a strengthening of

Lemma 6 for solutions with disjoint sets of new names, in the case that I = J =

f1; 2g. We show that there exist U

i;j

that have at most the same copy-width as

the given solutions S

i

and T

j

. However, the U

i;j

only add up to copies of the S

i

and T

j

. Again, Fig.1 illustrates the situation.

Lemma15. Let m 2 N, and let S

i

and T

j

, with i; j 2 f1; 2g, be solutions such

that S

1

[S

2

= T

1

[T

2

, with new(S

1

)\new(S

2

) = ; and new(T

1

)\new(T

2

) = ;.

If copy(S

i

) � m and copy(T

j

) � m, for all i and j, then there exist four solutions

U

i;j

such that copy(U

i;j

) � m, U

i;1

[U

i;2

is a copy of S

i

, and U

1;j

[U

2;j

is a

copy of T

j

.

Proof. It follows from Lemma 6 (with I = J = f1; 2g) that solutions U

0

i;j

exist

such that U

0

i;1

[U

0

i;2

= S

i

and U

0

1;j

[U

0

2;j

= T

j

. Note that, as in the proof

of Lemma 9, the new(U

0

i;j

) are mutually disjoint. Let U

0

i;j

=

S

k2K

i;j

V

k

for

mutually disjoint index sets K

i;j

, where the V

k

, k 2 K

i;j

, are the connected

components of U

0

i;j

.

It need not be true that copy(U

0

i;j

) � m. To reach this goal, the idea is just

to drop the \wrong" connected components from U

0

i;j

, i.e., the components V

k

with mult(V

k

; U

0

i;j

) > m and mult(V

k

; U

0

i;j

) 6= !. Thus, let L

i;j

= fk 2 K

i;j

:

m < mult(V

k

; U

0

i;j

) < !g, W

i;j

=

S

k2L

i;j

V

k

, and U

i;j

=

S

k2K

i;j

�L

i;j

V

k

(and

so U

0

i;j

= U

i;j

[W

i;j

). We now claim that the U

i;j

satisfy the requirements of

the lemma. Obviously, by de�nition, copy(U

i;j

) � m. It remains to show that

U

i;1

[U

i;2

is a copy of S

i

and that U

1;j

[U

2;j

is a copy of T

j

. We only prove the

�rst statement; the proof of the second statement is symmetrical.

14

Consider an arbitrary k 2 L

i;j

, i.e., m < mult(V

k

; U

0

i;j

) < !. We claim

that mult(V

k

; U

0

i;3�j

) = !. To see this, note that U

0

i;j

[U

0

i;3�j

= S

i

and hence,

by Lemma 12, mult(V

k

; S

i

) = mult(V

k

; U

0

i;j

) + mult(V

k

; U

0

i;3�j

). Thus, it would

follow from mult(V

k

; U

0

i;3�j

) < ! that m < mult(V

k

; S

i

) < !, which contradicts

the fact that copy(S

i

) � m. Hence mult(V

k

; U

0

i;3�j

) = !, which, by de�nition of

U

i;3�j

and U

3�i;j

, implies that mult(V

k

; U

i;3�j

) = !. Hence, we have shown that

for every k 2 L

i;j

, mult(V

k

; U

i;3�j

) = !.

Now S

i

= U

0

i;1

[U

0

i;2

= (U

i;1

[W

i;1

)[(U

i;2

[W

i;2

) = (U

i;1

[W

i;2

)[(U

i;2

[W

i;1

).

By the above, Lemma 14 is applicable and gives that U

i;1

[W

i;2

is a copy of U

i;1

and U

i;2

[W

i;1

is a copy of U

i;2

. Hence, by Lemma 3, S

i

is a copy of U

i;1

[U

i;2

.

ut

We end this section by giving a weak condition ensuring that multiset union

preserves connectedness.

Lemma16. Let S =

S

i2I

S

i

. If each S

i

is connected, and new(S

i

)\new(S

j

) 6=

; for all i 6= j, then S is connected.

Proof. As in the proof of Lemma 8, Lemma 5 implies that S =

S

k2K

ff(k)g,

S

i

=

S

k2K

i

ff(k)g, K =

S

i2I

K

i

, and the K

i

are mutually disjoint. Let G

i

be

the subgraph of G

f

induced by K

i

. Clearly, G

i

= G

S

i

and so G

i

is connected.

Since new(S

i

) \ new(S

j

) 6= ; for every i 6= j, there is in G

f

at least one edge

between a vertex of G

i

and a vertex of G

j

. Since the G

i

are connected, this

implies that G

f

is connected. ut

5 Connected Process Terms

We now turn to properties of connected process terms. First, we use the last

lemma of the previous section to show that connectedness of process terms is

preserved under certain conditions.

We will write P

1

j P

2

j � � � j P

k

for any process term that is obtained from

the process term (� � � ((P

1

j P

2

) j P

3

) j � � � j P

k�1

) j P

k

by structural law (1.3),

i.e., by associativity of parallel composition.

Lemma17. If, for every 1 � i � k, x 2 fn(P

i

) and either P

i

is connected or

P

i

= !Q

i

for some connected Q

i

, then (�x)(P

1

j � � � j P

k

) is connected.

Proof. By repeated use of (S1) and (S4), and the use of (a) and (b) in Section 3,

we obtain that P

1

j � � � j P

k

)

S

j2J

S

j

where for each j there is a connected pro-

cess term R

j

such that x 2 fn(R

j

) and R

j

) S

j

(clearly, R

j

= P

i

or R

j

= Q

i

for

some i). Hence, by (S2), (�x)(P

1

j � � � j P

k

)) (

S

j2J

S

j

)[n=x] =

S

j2J

(S

j

[n=x])

for some n 2 New. We have to show that

S

j2J

(S

j

[n=x]) is connected. Since x 2

fn(R

j

), x 2 fn(S

j

) and so n 2 new(S

j

[n=x]) for every j. Thus, by Lemma 16, it

now su�ces to show that S

j

[n=x] is connected for every j. Since R

j

is connected,

we know that S

j

is connected. Observe now that, in general, if S is connected,

then so is S[n=x]. In fact, let S =

S

i2I

ff(i)g. Then S[n=x] =

S

i2I

ff(i)[n=x]g.

15

Since, for any molecule m, new(m) � new(m[n=x]), the graph G

f

is a subgraph

of the graph G

[n=x]�f

, i.e., G

S

is a subgraph of G

S[n=x]

with the same set of

vertices. Since G

S

is connected, so is G

S[n=x]

. ut

The next result gives an important normal form for process terms. We show, as

discussed in the beginning of the previous section, that for every process term

there is a structurally congruent one in which only connected subprocesses are

replicated. We also need the natural property that all its restricted subprocesses

are connected. Additionally, to avoid empty subprocesses, we remove 0 as much

as possible.

We say that a process term P is subconnected if (i) Q is connected for every

subterm !Q of P , (ii) each subterm (�x)Q of P is connected, and (iii) P does not

contain subterms of the form 0 j Q, Q j 0, (�x)0, or !0. Note that connectedness

and subconnectedness are incomparable properties.

Lemma18. For every process term P , a subconnected process term P

0

can be

computed such that P � P

0

.

Proof. We compute P

0

by induction on the syntactical structure of P . The cases

P = 0 and P = g:P

1

are easy. For P = 0, P

0

= 0, and for P = g:P

1

, P

0

= g:P

0

1

where, by induction, P

0

1

is a subconnected term with P

1

� P

0

1

.

Let P = P

1

j P

2

. By induction, subconnected P

0

1

and P

0

2

have been computed

such that P

1

� P

0

1

and P

2

� P

0

2

. Then P = P

1

j P

2

� P

0

1

j P

0

2

. Take P

0

= P

0

1

j P

0

2

if both P

0

1

and P

0

2

are non-zero, P

0

= P

0

1

if P

0

2

= 0, and P

0

= P

0

2

if P

0

1

= 0, and

use structural laws (1.1) and (1.2).

Let P = !P

1

. By induction a subconnected P

0

1

has been computed such that

P

1

� P

0

1

. Since P � !P

0

1

, it now su�ces to compute a subconnected process

term P

0

that is structurally congruent with !P

0

1

. If P

0

1

= 0 then take P

0

= 0,

using structural law (3.4). Otherwise P

0

1

� Q

1

j � � � j Q

m

j !R

1

j � � � j !R

n

where the Q

i

are not parallel compositions and not replications (any non-zero

term can be written in this form, using structural laws (1.2) and (1.3) only).

Then every Q

i

is connected, because it is either a guarded term (which is always

connected) or a restriction (which is connected because P

0

1

is subconnected).

Now !P

0

1

� !(Q

1

j � � � j Q

m

j !R

1

j � � � j !R

n

) � !Q

1

j � � � j !Q

m

j !!R

1

j � � � j

!!R

n

� !Q

1

j � � � j !Q

m

j !R

1

j � � � j !R

n

= P

0

by structural laws (3.2) and (3.3),

respectively. Obviously, since P

0

1

is subconnected and the Q

i

are connected and

non-zero, P

0

is subconnected.

Let P = (�x)P

1

. As in the previous case, P

1

is structurally congruent with

a subconnected P

0

1

and it su�ces to compute a subconnected process term P

0

that is structurally congruent with (�x)P

0

1

. If P

0

1

= 0 then take P

0

= 0, and

use structural law (2.2). Otherwise P

0

1

� Q

1

j � � � j Q

m

j R

1

j � � � j R

n

where

the Q

i

and R

j

are not parallel compositions, x =2 fn(Q

i

), and x 2 fn(R

j

). Then

(�x)P

0

1

� (�x)(Q

1

j � � � j Q

m

j R

1

j � � � j R

n

) � Q

1

j � � � j Q

m

j (�x)(R

1

j

� � � j R

n

) = P

0

by structural law (2.2), if n = 0, or (2.3), if n > 0. By an

argument similar to the one in the previous case, every R

j

is either connected

or the replication of a connected term. Hence (�x)(R

1

j � � � j R

n

) is connected

16

by Lemma 17. Together with the fact that P

0

1

is subconnected, this shows that

P

0

is subconnected. ut

By a similar argument as in the above proof, we obtain the following corollary.

Corollary 19. For every process term P , a process term P

0

can be computed

such that P � P

0

and either P

0

= 0 or P

0

= P

1

j � � � j P

n

j !P

n+1

j � � � j !P

n+k

with n; k 2 N [f0g, n+ k � 1, P

i

is connected, subconnected, and non-zero.

Note that, as can be seen from the proof of Lemma 18, in a subconnected process

P both the replications and the restrictions are nested as deeply as possible in

P . Moreover, either P = 0 or every 0 occurs in a guarded subterm g:0. This

implies that the meaning of a non-zero subconnected process term is nonempty,

as formally shown in the next lemma.

Lemma20. For a subconnected P , P) ; if and only if P = 0.

Proof. The proof of the only-if direction is by induction on the syntactical struc-

ture of P . For P = 0 it is trivial.

Let P = Q

1

j Q

2

. By (S1), there are solutions T

1

and T

2

such that Q

1

) T

1

,

Q

2

) T

2

, and T

1

[T

2

= ;. Then T

1

= ; and T

2

= ;. Hence, by induction, Q

1

= 0

and Q

2

= 0, and so P = 0 j 0. This contradicts the fact that P is subconnected.

Hence this case cannot occur.

Let P = (�x)Q. By (S2), Q) T and T [n=x] = ;. Then T = ;. By induction,

Q = 0, and so P = (�x)Q = (�x)0. This contradicts again the fact that P is

subconnected.

Let P = g:Q. This case cannot occur because, by (S3), g:Q) fg:Tg for some

T , but fg:Tg 6= ;.

Let P = !Q. By (S4), there are solutions T

i

such that Q) T

i

and

S

i2N

T

i

=

;. Then T

i

= ; for all i. By induction Q = 0, and so P = !Q = !0, contradicting

the subconnectedness of P . ut

Finally we will show that for each process term P we can compute conn(P) and

we can compute an upper bound for copy(P). To do this we need the following

properties of conn(P) and copy(P), which easily follow from Lemma 12, (S1),

(S4), and Lemma 2.

Lemma21. Let P be a connected process term such that P 6� 0, and let P

1

and

P

2

be arbitrary process terms. Then

(1) conn(P) = copy(P) = 1,

(2) conn(P

1

j P

2

) = conn(P

1

) + conn(P

2

),

copy(P

1

j P

2

) � copy(P

1

) + copy(P

2

), and

(3) conn(!P) = ! and copy(!P) = 0.

Lemma22. For every process term P , conn(P) 2 N[f0; !g can be computed,

and a number c(P) 2 N [f0g can be computed such that copy(P) � c(P).

17

Proof. For given P , �rst compute a process term P

0

such that P

0

� P , as

in Corollary 19. Obviously, by Lemma 1, conn(P) = conn(P

0

) and copy(P) =

copy(P

0

). If P

0

= 0, then conn(P

0

) = 0 and copy(P

0

) = 0 (i.e., we can take

c(P) = 0). Otherwise P

0

= P

1

j � � � j P

n

j !P

n+1

j � � � j !P

n+k

where the P

i

are connected, subconnected, and non-zero. By Lemma 20, P

i

6� 0. Hence, by

Lemma 21 (1,3), conn(P

i

) = copy(P

i

) = 1, conn(!P

i

) = !, and copy(!P

i

) = 0.

Consequently, by Lemma 21 (2), if k � 1 then conn(P

0

) = !, and if k = 0 then

conn(P

0

) = n. Moreover, copy(P

0

) � n (i.e., we can take c(P) = n). ut

Note that this implies that it is decidable whether or not a process term P is

connected (viz., if conn(P) � 1). Hence, subconnectedness of P is also decidable.

We �nally note that if P � P

0

= P

1

j � � � j P

n

j !P

n+1

j � � � j !P

n+k

as in

Corollary 19, then the P

i

represent the connected components of P , in the sense

that if P) S and P

i

) S

i

, then every connected component of S is a copy of

some S

i

(cf. the proof of Lemma 17).

6 The Main Results

In this section we prove the two main results. The proof of the �rst main result

- if P �

m

Q, then P � Q - is by induction on the syntactical structure of Q. We

will show that, for given P and Q 6= 0, there exist terms P

i

and Q

i

, 1 � i � n,

and a boolean function f of n arguments, such that:

(I1) if P �

m

Q, then f(P

1

�

m

Q

1

; : : : ; P

n

�

m

Q

n

),

(I2) if f(P

1

� Q

1

; : : : ; P

n

� Q

n

), then P � Q, and

(I3) the Q

i

are direct subterms of Q.

Together with the proof for the case that Q = 0, this clearly proves the �rst

main result. Moreover, together with the decidability of P � 0, it also shows

that � is decidable. This is because, in fact, the P

i

, Q

i

, and f can be e�ectively

constructed from P and Q. Note that, after proving the �rst main result, we

know that �

m

and � are equal, and hence statements (I1) and (I2) turn into

the characterization

(I4) P � Q if and only if f(P

1

� Q

1

; : : : ; P

n

� Q

n

).

Thus the truth value of P � Q can be computed by a recursive boolean function

procedure with two arguments P and Q, of which the body contains �nitely

many recursive calls. Since the second argument of each recursive call is smaller

than Q, the function procedure always halts.

We start with the basis of the induction: the case that Q = 0. This follows

rather directly from Lemma's 18 and 20.

Lemma23.

(1) P �

m

0 if and only if P � 0.

(2) It is decidable, for a process term P , whether or not P � 0.

18

Proof. (1) The if-direction is by Lemma 1. Now assume that P �

m

0. By

Lemma 18 there is a subconnected P

0

such that P

0

� P . By Lemma 1, P

0

�

m

P

and so P

0

�

m

0. Now Lemma 20 implies that P

0

= 0 and hence P � 0.

(2) By Lemma 18, a subconnected P

0

can be computed such that P

0

� P . Thus,

P � 0 if and only if P

0

� 0, and, by (1) and Lemma 20, P

0

� 0 if and only if

P

0

= 0. ut

The induction step for the case that Q = (�x)Q

0

is shown in the next lemma.

We prove that if P �

m

(�x)Q

0

, then there exists a P

0

such that P � (�x)P

0

and

P

0

�

m

Q

0

. Moreover, we compute (from P and x only) a �nite set of possible

P

0

.

Lemma24. For every process term P and every name x a �nite set res(P; x)

of process terms can be computed such that

(1) P � (�x)P

0

for every P

0

2 res(P; x), and

(2) if P) S[n=x], with n 2 New � new(S), then there exists P

0

2 res(P; x)

such that P

0

) S.

Proof. In the case that x 2 fn(P), we de�ne res(P; x) = ;. In fact, if P) S[n=x]

then x =2 fn(P). In what follows we assume that x =2 fn(P).

Intuitively, the set res(P; x) consists of all P

0

that are obtained from P by

\moving a restriction outermost", as explained in [5, 7] (but note that in [7]

only unguarded restrictions could be moved outermost, due to the omission of

structural law (2.4)). The formal de�nition of res(P; x) will be inductive.

We �rst observe that it su�ces to prove the statement of the lemma for the

case that x does not occur at all in P (neither free nor bound). In fact, using

�-conversion (i.e., structural law (�)) to rename all bound occurrences of x in

P , a term P can be constructed such that P � P . We now de�ne res(P; x)

to be res(P ; x). Note that by Lemma 1, P �

m

P ; hence P) S[n=x] implies

P) S[n=x].

The computation, and its correctness, for process terms P in which x does

not occur, is by induction on the syntactical structure of P .

Let P = 0. De�ne res(0; x) = f0g. Then 0 � (�x)0 by structural law (2.2).

Moreover, if P) S[n=x], then S[n=x] = ; and so S = ;. Hence there exists

P

0

2 res(0; x) such that P

0

) S.

Let P = Q

1

j Q

2

. De�ne res(Q

1

j Q

2

; x) = fQ

0

1

j Q

2

: Q

0

1

2 res(Q

1

; x)g[fQ

1

j

Q

0

2

: Q

0

2

2 res(Q

2

; x)g. To show (1), consider some P

0

= Q

0

1

j Q

2

2 res(Q

1

j

Q

2

; x), with Q

0

1

2 res(Q

1

; x). By the induction hypothesis for Q

1

, Q

1

� (�x)Q

0

1

.

Hence P = Q

1

j Q

2

� (�x)Q

0

1

j Q

2

� (�x)(Q

0

1

j Q

2

) � (�x)P

0

by structural laws

(1.2) and (2.3), because x =2 fn(Q

2

). The proof for Q

1

j Q

0

2

2 res(Q

1

j Q

2

; x)

is symmetric. To show (2), assume that P) S[n=x]. Then Q

i

) T

i

with

disjoint new(T

i

), and S[n=x] = T

1

[T

2

. Note that x does not occur in Q

i

and

so x =2 fn(T

i

). Since the new(T

i

) are disjoint, n =2 new(T

1

) or n =2 new(T

2

).

Assume that n =2 new(T

1

); the other case is symmetric. Since n =2 new(S),

S = S[n=x][x=n] = (T

1

[T

2

)[x=n] = T

1

[x=n] [T

2

[x=n] = T

1

[T

2

[x=n]. Also

T

2

= T

2

[x=n][n=x], because x =2 fn(T

2

). Hence, by the induction hypothesis for

19

Q

2

, there exists Q

0

2

2 res(Q

2

; x) such that Q

0

2

) T

2

[x=n]. Take P

0

= Q

1

j Q

0

2

2

res(P; x). Then P

0

= Q

1

j Q

0

2

) T

1

[T

2

[x=n] = S.

Let P = (�y)Q. De�ne res((�y)Q; x) = fQ[x=y]g[f(�y)Q

0

: Q

0

2 res(Q; x)g.

To show (1), consider �rst P

0

= Q[x=y] 2 res((�y)Q; x). Then, P = (�y)Q �

(�x)Q[x=y] = (�x)P

0

by structural law (�), because x does not occur in Q.

Now consider some P

0

= (�y)Q

0

with Q

0

2 res(Q; x). By induction, Q � (�x)Q

0

.

Then, by structural law (2.1), P = (�y)Q � (�y)(�x)Q

0

� (�x)(�y)Q

0

= (�x)P

0

.

To show (2), let P) S[n=x]. Then Q) T and S[n=x] = T [m=y], with m =2

new(T). Since we assume that x does not occur in P , x 6= y. We �rst consider

the case that m = n. Then S = T [m=y][x=n] = T [x=y]. Take P

0

= Q[x=y] 2

res(P; x). By [Eng, Lemma 4(1)], Q) T implies that Q[x=y]) T [x=y], i.e.,

P

0

) S. Assume now that m 6= n. Then T = S[n=x][y=m] = S[y=m][n=x].

By induction there exists Q

0

2 res(Q; x) such that Q

0

) S[y=m]. Take P

0

=

(�y)Q

0

2 res(P; x). Then P

0

= (�y)Q

0

) S[y=m][m=y] = S. Note that y =2 fn(S)

because T [m=y] = S[n=x].

Let P = g:Q. De�ne res(g:Q; x) = fg:Q

0

: Q

0

2 res(Q; x)g. To show (1),

consider some P

0

= g:Q

0

with Q

0

2 res(Q; x). Then P = g:Q � g:(�x)Q

0

�

(�x)g:Q

0

= (�x)P

0

by induction and structural law (2.4). Note that x does not

occur in g because it does not occur in P by assumption. To show (2), assume

that P) S[n=x]. Then Q) T and S[n=x] = fg:Tg. By our assumption, x does

not occur in g:Q and x =2 fn(T). Hence S = fg:Tg[x=n] = fg:T [x=n]g and T =

T [x=n][n=x]. By induction there exists Q

0

2 res(Q; x) such that Q

0

) T [x=n].

Take P

0

= g:Q

0

2 res(P; x). Then P

0

= g:Q

0

) fg:T [x=n]g = S.

Let P = !Q. De�ne res(!Q; x) = fQ

0

j !Q : Q

0

2 res(Q; x)g. To show (1),

consider some P

0

= Q

0

j !Q with Q

0

2 res(Q; x). Then P = !Q � Q j !Q �

(�x)Q

0

j !Q � (�x)(Q

0

j !Q) = (�x)P

0

by induction and structural laws (3.1)

and (2.3). To show (2), assume that P) S[n=x]. Then Q) T

i

, with mutually

disjoint new(T

i

), and S[n=x] =

S

i2N

T

i

. Note that x =2 fn(T

i

). Since the new(T

i

)

are mutually disjoint, there exists j such that n =2 new(T

i

) for all i 6= j. By

renaming the index set we may assume that j = 1. Now S = (

S

i2N

T

i

)[x=n] =

S

i2N

T

i

[x=n] = T

1

[x=n] [

S

i2N

T

i+1

. Since x =2 fn(T

1

), T

1

= T

1

[x=n][n=x].

Hence, by induction there exists Q

0

2 res(Q; x) such that Q

0

) T

1

[x=n]. Take

P

0

= Q

0

j !Q 2 res(P; x). Then P

0

= Q

0

j !Q) T

1

[x=n] [

S

i2N

T

i+1

= S. ut

We observe here that it is essential that the proof of the main results is by

induction on the structure of Q: the P

0

in res(P; x) may be much larger than

P , as can be seen in the proof of Lemma 24 for the case of replication, where

structural law (3.1) is used.

As a corollary we obtain results (I1), (I2), and (I3), as discussed in the

beginning of this section, for the case that Q is a restriction.

Lemma25.

(1) If P �

m

(�x)Q

0

, then there exists P

0

2 res(P; x) such that P

0

�

m

Q

0

.

(2) If there exists P

0

2 res(P; x) such that P

0

� Q

0

, then P � (�x)Q

0

.

Proof. (1) Let P �

m

(�x)Q

0

. Take S such that Q

0

) S (see [Eng, Lemma 2]).

Then (�x)Q

0

) S[n=x] with n 2 New � new(S). Hence P) S[n=x]. Now

20

Lemma 24 (2) implies that there exists P

0

2 res(P; x) such that P

0

) S. Then

P

0

�

m

Q

0

by Lemma 2.

(2) This is immediate from Lemma 24 (1). ut

Next we prove the induction step for the case that Q = g:Q

0

. The idea is similar

to the case of restriction. We prove that if P �

m

g:Q

0

, then there exists a P

0

such that P � g:P

0

and P

0

�

m

Q

0

. A �nite set of possible P

0

can be computed

from P and g.

Lemma26. For every process term P and every guard g over N a �nite set

gua(P; g) of process terms can be computed such that

(1) P � g:P

0

for every P

0

2 gua(P; g), and

(2) if P) fg:Sg, then there exists P

0

2 gua(P; g) such that P

0

) S.

Proof. We �rst observe that, by a similar argument as the one in the proof of

Lemma 24, it su�ces to prove the statement of the lemma for process terms

P such that if y occurs bound in g, then y does not occur bound in P . For

similar reasons we may, in addition, restrict ourselves to process terms P that

are subconnected. This is because, by Lemma 18, a subconnected term can be

constructed that is structurally congruent (and hence also multiset congruent)

with P . It is easy to check in the proof of Lemma 18 that the construction does

not change the bound names of P . For such process terms P , the computation

of gua(P; g) is, as in Lemma 24, by induction on the syntactical structure of P .

Note that every subterm of P satis�es the same restrictions, and hence satis�es

the induction hypothesis.

For P = 0 we de�ne gua(P; g) = ;, because fg:Sg 6= ;.

Let P = Q

1

j Q

2

. Also in this case we de�ne gua(P; g) = ;. In fact, assume

that P) fg:Sg. Then Q

i

) T

i

and fg:Sg = T

1

[T

2

. Assume that T

1

= fg:Sg

and T

2

= ; (the other case is symmetric). Since Q

2

is subconnected, it follows

from Lemma 20 that Q

2

= 0. Hence P = Q

1

j 0. This contradicts the fact that

P is subconnected.

Let P = (�y)Q. By our assumption, y does not occur bound in g. If y occurs

free in g, then we de�ne gua((�y)Q; g) = ;. Otherwise we de�ne gua((�y)Q; g) =

f(�y)Q

0

: Q

0

2 gua(Q; g)g. To show (1), assume that y does not occur free in g

(and hence does not occur at all in g), and consider some P

0

= (�y)Q

0

2 gua(P; g)

with Q

0

2 gua(Q; g). Then P = (�y)Q � (�y)g:Q

0

� g:(�y)Q

0

by induction

and structural law (2.4). To show (2), assume that P) fg:Sg. Then Q) T

and fg:Sg = T [n=y], with n =2 new(T). Hence y =2 fn(g:S), and so y does not

occur at all in g. Now T = fg:Sg[y=n] = fg:S[y=n]g. By induction there exists

Q

0

2 gua(Q; g) such that Q

0

) S[y=n]. Now take P

0

= (�y)Q

0

2 gua(P; g). Then

P

0

= (�y)Q

0

) S[y=n][n=y] = S.

Let P = h:Q where h is a guard. We �rst consider the case that g has no

bound name. If g = h, then we de�ne gua(h:Q; g) = fQg, otherwise gua(h:Q; g) =

;. Clearly, if g = h, then g:P

0

= g:Q = h:Q � P . Also, if P) fg:Sg, then

Q) T and fg:Sg = fh:Tg, and so g = h and S = T ; hence P

0

= Q) S. Now

assume that g does contain a bound name, say g = x(y). If h = x(v) for some

name v, then we de�ne gua(h:Q; g) = fQ[y=v]g, otherwise gua(h:Q; g) = ;. To

21

show (1), assume that h = x(v) and consider P

0

= Q[y=v]. Now P = x(v):Q �

x(y):Q[y=v] = g:P

0

by structural law (�); note that y does not occur in Q

by the assumption at the beginning of this proof. To show (2), assume that

P) fg:Sg. Then Q) T and fg:Sg = fh:Tg. Hence h = x(v) for some v,

and x(y):S = x(v):T , i.e., x(�):inc(S)[1=y] = x(�):inc(T)[1=v]. Consequently

inc(S)[1=y] = inc(T)[1=v] and so inc(S) = inc(T)[1=v][y=1] = inc(T)[y=v] =

inc(T [y=v]), which shows that S = T [y=v]. Consider P

0

= Q[y=v] 2 gua(P; g).

By [Eng, Lemma 4(1)], Q) T implies P

0

= Q[y=v]) T [y=v] = S.

Let P = !Q. De�ne gua(!Q; g) = ;. In fact, if P) fg:Sg, then Q) T

i

with

mutually disjoint new(T

i

), and fg:Sg =

S

i2N

T

i

. This case cannot occur. In fact,

since P is subconnected, Q 6= 0 and hence, by Lemma 20, T

i

6= ;. Consequently

conn(T

i

) � 1 and so, by Lemma 12, conn(

S

i2N

T

i

) = !. But conn(fg:Sg) = 1.

We observe that it follows from the de�nition of gua(P; g) that, in fact, it is

always either a singleton or empty. ut

As for restriction, we now obtain from Lemma 26 the results (I1), (I2), and (I3)

for the case that Q is guarded, as a corollary. The proof is similar to the one of

Lemma 25.

Lemma27.

(1) If P �

m

g:Q

0

, then there exists P

0

2 gua(P; g) such that P

0

�

m

Q

0

.

(2) If there exists P

0

2 gua(P; g) such that P

0

� Q

0

, then P � g:Q

0

.

We now turn to the induction step for the case that Q = Q

1

j Q

2

. This case

(and the one for replication) is more complicated than the previous ones, due

to the necessity to use the concept of connectedness. Similarly to the previous

two cases, we prove that if P �

m

Q

1

j Q

2

, then there exist P

1

and P

2

such that

P � P

1

j P

2

, P

1

�

m

Q

1

, and P

2

�

m

Q

2

. A �nite set of possible pairs (P

1

; P

2

)

can be computed from P and from upper bounds for copy(Q

1

) and copy(Q

2

).

Recall that for a solution S, copy(S) is its copy-width. In the next lemma a

bound is put on the copy-width of the solutions, to guarantee �niteness of the

set of pairs (P

1

; P

2

). This bound is obtained from the upper bounds for copy(Q

1

)

and copy(Q

2

) (which can be computed according to Lemma 22).

Lemma28. For every process term P and every number k 2 N a �nite set

comp(P; k) of pairs of process terms can be computed such that

(1) P � P

1

j P

2

for every pair (P

1

; P

2

) 2 comp(P; k), and

(2) if P) S

1

[S

2

, with new(S

1

)\new(S

2

) = ; and, for i = 1; 2, copy(S

i

) � k,

then there exists (P

1

; P

2

) 2 comp(P; k) such that P

1

) S

1

and P

2

) S

2

.

Proof. As in the proof of Lemma 26, we may restrict ourselves to subconnected

process terms P . For subconnected P , the computation of comp(P; k) is by

induction on the syntactical structure of P .

The cases P = 0, P = (�x)Q, and P = g:Q are treated in one stroke, using

the fact that P is connected. We de�ne comp(P; k) = f(P;0); (0; P)g. Then

(1) follows from structural law (1.1). To show (2), assume that P) S

1

[S

2

,

with new(S

1

) \ new(S

2

) = ;. Since P is connected, S

1

[S

2

is connected. By

22

Lemma 8, either S

1

= ; or S

2

= ; (or both). Assume that S

2

= ;; the other

case is symmetric. Take P

1

= P and P

2

= 0.

Let P = Q

1

j Q

2

. Let k

0

= maxfk; c(Q

1

); c(Q

2

)g, where c(Q

i

) is the up-

per bound of copy(Q

i

) which can be computed according to Lemma 22. De�ne

comp(Q

1

j Q

2

; k) = f(R

1;1

j R

1;2

; R

2;1

j R

2;2

) : (R

1;1

; R

2;1

) 2 comp(Q

1

; k

0

)

and (R

1;2

; R

2;2

) 2 comp(Q

2

; k

0

)g. Then (1) is proved as follows: P = Q

1

j Q

2

�

(R

1;1

j R

2;1

) j (R

1;2

j R

2;2

) � (R

1;1

j R

1;2

) j (R

2;1

j R

2;2

) by the induction

hypotheses for Q

1

and Q

2

and by structural laws (1.2) and (1.3). To show (2),

assume that P) S

1

[S

2

, with new(S

1

) \ new(S

2

) = ; and, for i = 1; 2,

copy(S

i

) � k. Then, by (S1), there are T

1

and T

2

such that Q

1

) T

1

, Q

2

) T

2

,

new(T

1

) \ new(T

2

) = ;, and S

1

[S

2

= T

1

[T

2

. Note that copy(S

i

) � k � k

0

and copy(T

j

) = copy(Q

j

) � c(Q

j

) � k

0

. Hence, by Lemma 15 (with m = k

0

)

there exist U

i;j

, i; j 2 f1; 2g, such that copy(U

i;j

) � k

0

, U

i;1

[U

i;2

is a copy

of S

i

, and U

1;j

[U

2;j

is a copy of T

j

. By Lemma 2, Q

j

) U

1;j

[U

2;j

. Since

new(U

i;j

) � new(S

i

) \ new(T

j

), the new(U

i;j

) are mutually disjoint. Therefore,

by induction, there are process terms R

i;j

such that (R

1;j

; R

2;j

) 2 comp(Q

j

; k

0

)

and R

i;j

) U

i;j

. By (S1), R

i;1

j R

i;2

) U

i;1

[U

i;2

, and so, by Lemma 2,

R

i;1

j R

i;2

) S

i

, i.e., R

1;1

j R

1;2

) S

1

and R

2;1

j R

2;2

) S

2

. Take (P

1

; P

2

) =

(R

1;1

j R

1;2

; R

2;1

j R

2;2

) 2 comp(P; k).

Let P = !Q. We will use Q

m

to denote

m

z }| {

Q j � � � j Q. De�ne comp(!Q; k) =

f(!Q;0), (0; !Q), (!Q; !Q)g [f(Q

m

; !Q) : 1 � m � kg [f(!Q;Q

m

) : 1 � m � kg.

Then (1) follows from structural laws (1.1), (3.5), and m times (3.1). To show

(2), assume that P) S

1

[S

2

, with new(S

1

) \ new(S

2

) = ; and, for i = 1; 2,

copy(S

i

) � k. By (S4) there exist T

i

, i 2 N, such that Q) T

i

, the new(T

i

) are

mutually disjoint, and S

1

[S

2

=

S

i2N

T

i

. Note that, by Lemma 2, the T

i

are

all copies of each other. Since P is subconnected, Q is connected, and hence T

i

is connected. Moreover, Q 6= 0 and so, by Lemma 20, T

i

6= ;. This means that

the T

i

, i 2 N, are the connected components of S

1

[S

2

. From Lemma 9 (with

S and T interchanged) we conclude that there is an index set K � N such that

S

1

=

S

i2K

T

i

and S

2

=

S

i2K

0

T

i

, where K

0

=N�K. Depending on the nature

of K there are a number of cases.

(1) K = ;. Then S

1

= ;. Take P

1

= 0 and P

2

= !Q. The case that K

0

= ; is

similar.

(2) K is a �nite, nonempty, set. By renaming the index set we may assume

that K = f1; : : : ;mg. Then S

1

= T

1

[� � � [T

m

and S

2

=

S

i2N

T

m+i

. Since

T

1

; : : : ; T

m

are the connected components of S

1

and they are all copies of each

other, copy(S

1

) = m. Hencem � k. Take P

1

= Q

m

and P

2

= !Q. Then (P

1

; P

2

) 2

comp(!Q; k). Moreover, by (S1) and (S4), P

1

) S

1

and P

2

) S

2

, respectively.

The case that K

0

is �nite, is similar.

(3) BothK andK

0

are in�nite. By a renaming of the index set, S

1

and S

2

can

be written as S

1

=

S

i2N

T

2i

and S

2

=

S

i2N

T

2i�1

. Take (P

1

; P

2

) = (!Q; !Q) 2

comp(!Q; k). Then, by (S4), P

1

) S

1

and P

2

) S

2

. ut

As before, we obtain results (I1), (I2), and (I3) for the case that Q is a parallel

composition.

23

Lemma29. Let Q

1

and Q

2

be process terms, and let k = maxfc(Q

1

); c(Q

2

)g.

(1) If P �

m

Q

1

j Q

2

, then there exists (P

1

; P

2

) 2 comp(P; k) such that P

1

�

m

Q

1

and P

2

�

m

Q

2

.

(2) If there exists (P

1

; P

2

) 2 comp(P; k) such that P

1

� Q

1

and P

2

� Q

2

, then

P � Q

1

j Q

2

.

Proof. (1) Consider a solution S such that Q

1

j Q

2

) S. Then there are S

1

and S

2

such that S = S

1

[S

2

, Q

i

) S

i

, and the new(S

i

) are disjoint. Since

P �

m

Q

1

j Q

2

, P) S

1

[S

2

. Note that copy(S

i

) = copy(Q

i

) � c(Q

i

) � k. We

now obtain from Lemma 28 (2) that P

i

) S

i

and so P

i

�

m

Q

i

.

(2) Immediate from Lemma 28 (1). ut

Note that the number k mentioned in Lemma 29, can be computed from Q

1

and

Q

2

, as should be clear from Lemma 22.

The last induction step is for the case that Q = !Q

0

. The next lemma could

have been formulated in the same style as Lemma's 24, 26, and 28, replacing

!Q

0

by its corresponding solution. However, in this case it turns out to be easier

to keep !Q

0

in the formulation of the lemma. We will write R for Q

0

. As in the

proof of Lemma 28, we denote

n

z }| {

R j � � � j R by R

n

.

Lemma30. For every process term P , a �nite set rep(P) of process terms can

be computed such that for every subconnected process term !R the following two

statements hold.

(1) If P

0

� R for all P

0

2 rep(P), then P � !R or P � R

n

for some n � 1.

(2) If P �

m

!R or P �

m

R

n

for some n � 1, then P

0

�

m

R for all P

0

2 rep(P).

Proof. Since !R is subconnected,R is connected and non-zero. Thus, by Lemma 20,

conn(R) = 1. Hence conn(R

n

) = n and conn(!R) = ! by Lemma 21.

As in the proof of Lemma's 26 and 28, we may restrict ourselves to sub-

connected P , and the proof is by induction on the syntactical structure of P .

For the sake of intuition we note that we will de�ne rep(P) in such a way

that if P = P

1

j � � � j P

n

j !P

n+1

j � � � j !P

n+k

(as in Corollary 19), then

rep(P) = fP

1

; : : : ; P

n+k

g. Thus, the elements of rep(P) represent the connected

components of P , as observed at the end of Section 5.

For the cases P = 0, P = (�x)Q, and P = g:Q, we de�ne rep(P) = fPg. Then

(1) is obvious (with n = 1). To show (2), note that in these cases P is connected,

and so conn(P) � 1. Then P �

m

!R is impossible because conn(!R) = !, and

P �

m

R

n

is only possible for n = 1. Hence P �

m

R.

Let P = Q

1

j Q

2

. De�ne rep(Q

1

j Q

2

) = rep(Q

1

) [rep(Q

2

). To show (1),

assume that P

0

� R for all P

0

2 rep(Q

1

j Q

2

). By induction, Q

i

� !R or

Q

i

� R

n

i

for some n

i

� 1. Then either P � !R j !R � !R by structural law (3.5),

or P � R

n

1

j !R � !R by repeated use of structural law (3.1), or symmetrically

P � !R j R

n

2

� !R, or P � R

n

1

j R

n

2

� R

n

1

+n

2

. To show (2), assume that

P �

m

!R or P �

m

R

n

for some n � 1. By (S1) or (S4), there exist solutions

S

i

with mutually disjoint new(S

i

), such that P)

S

i2I

S

i

and R) S

i

, where

I is either �nite or I = N. Hence, by (S1), there are solutions T

1

and T

2

with

24

disjoint new(T

j

), such that Q

j

) T

j

and

S

i2I

S

i

= T

1

[T

2

. Since conn(R) = 1,

S

i

is connected and nonempty. Lemma 9 now implies that there exist disjoint

index sets I

j

such that I = I

1

[I

2

and T

j

=

S

i2I

j

S

i

. Since P is subconnected,

Q

j

is non-zero and so T

j

is nonempty. Hence I

j

is nonempty. Now, if #I

j

= !,

then Q

j

�

m

!R, and if #I

j

= n, then Q

j

�

m

R

n

. By induction, P

0

�

m

R for all

P

0

2 rep(Q

j

) and so P

0

�

m

R for all P

0

2 rep(Q

1

j Q

2

).

Let P = !Q. De�ne rep(!Q) = rep(Q). To show (1), assume that P

0

� R for

all P

0

2 rep(P) = rep(Q). By induction, Q � !R or Q � R

n

for some n � 1.

Then either P � !!R � !R by structural law (3.3), or P � !R

n

� (!R)

n

� !R by

structural laws (3.2) and (3.5), respectively. To show (2), assume that P �

m

!R

or P �

m

R

n

for some n � 1. Since P is subconnected, Q is connected and

non-zero. Hence conn(P) = !, and so P �

m

!R, i.e., !Q �

m

!R. By (S4), there

exist solutions S

i

with mutually disjoint new(S

i

) and solutions T

j

with mutually

disjoint new(T

j

) such that

S

i2N

S

i

=

S

j2N

T

j

, R) S

i

and Q) T

j

. Since

R and Q are connected and non-zero, S

i

and T

j

are connected and nonempty.

It now follows from Lemma 10 that there exists a bijection : N ! N such

that T

j

= S

 (j)

for every j 2 N. Hence Q �

m

R, i.e., Q �

m

R

n

with n = 1.

Consequently, by induction, P

0

�

m

R for all P

0

2 rep(Q) = rep(P). ut

Again we obtain results (I1), (I2), and (I3), for Q = !Q

0

, but for subconnected

Q only.

Lemma31. Let !Q

0

be a subconnected process term.

(1) If P �

m

!Q

0

, then conn(P) = ! and P

0

�

m

Q

0

for all P

0

2 rep(P).

(2) If conn(P) = ! and P

0

� Q

0

for all P

0

2 rep(P), then P � !Q

0

.

Proof. (1) and (2) follow directly from Lemma 30 (2) and (1). Note that, in

general, R � R

0

implies R �

m

R

0

implies conn(R) = conn(R

0

). Note also that,

as shown at the start of the proof of Lemma 30, conn((Q

0

)

n

) = n and conn(!Q

0

) =

!. ut

Note that the truth value of conn(P) = ! can be computed from P , by Lemma 22.

Everything has now been prepared for the proof of the �rst main result of

this paper.

Lemma32. If P �

m

Q then P � Q.

Proof. It su�ces to show this result for subconnected Q. In fact, by Lemma 18,

there is a subconnected Q

0

such that Q � Q

0

, and so Q �

m

Q

0

by Lemma 1.

The proof is by induction on the syntactical structure of Q, assuming that

Q is subconnected. It follows immediately from Lemma's 23(1), 25, 27, 29, and

31. Note that the subconnectedness is used in Lemma 31. ut

This last result, together with Lemma 1, proves that (extended) structural con-

gruence and multiset congruence are the same.

Theorem33. P � Q if and only if P �

m

Q.

25

From the introduction of this section, Lemma's 23 (2), 25, 27, 29, 31, and all

computability arguments (in particular the computability of res(P; x), gua(P; g),

comp(P; k), and rep(P), as shown in Lemma's 24, 26, 28, and 30, respectively)

we obtain the second main result of this paper: the decidability of (extended)

structural congruence.

Theorem34. It is decidable, for process terms P and Q, whether or not P � Q.

In Lemma 22 we have shown that for every process term P an upper bound

for the number copy(P) can be computed. Using the decidability of structural

congruence, we can now show that copy(P) can be determined precisely, by the

following algorithm. Note �rst that the multiplicity function `mult' can also be

carried over from solutions to process terms, cf. Lemma 13: if P) S and Q)

S

0

, then mult(Q;P) = mult(S

0

; S). To compute copy(P) we may clearly assume

P to be subconnected and of the form P = P

1

j � � � j P

n

j !P

n+1

j � � � j !P

n+k

,

as in Corollary 19. As observed at the end of Section 5, the P

i

represent the

connected components of P . This implies that copy(P) = maxfmult(P

i

; P) :

1 � i � n;mult(P

i

; P) 6= !g. Note that mult(P

n+j

; P) = ! for 1 � j � k. Now,

by Lemma 2, mult(P

i

; P) = ! if there exists 1 � j � k such that P

i

�

m

P

n+j

,

and otherwise mult(P

i

; P) = #fk 2 f1; : : : ; ng : P

i

�

m

P

k

g. This shows that

copy(P) is computable. Note that it also shows that mult(Q;P) is computable:

if there is a P

i

such that Q �

m

P

i

then mult(Q;P) = mult(P

i

; P), and otherwise

mult(Q;P) = 0.

References

1. G.Berry, G.Boudol; The chemical abstract machine, Theor.Comput.Sci. 96 (1992),

217-248

2. J.Engelfriet; A multiset semantics of the pi-calculus with replication, in

Proc.CONCUR'93, Lecture Notes in Computer Science 715, Springer-Verlag, 1993,

7-21

3. J.Engelfriet; A multiset semantics of the pi-calculus with replication, Report 94-26,

Department of Computer Science, Leiden University, August 1994

4. G.Milne, R.Milner; Concurrent processes and their syntax, J. of the ACM 26

(1979), 302-321

5. R.Milner; Flowgraphs and
ow algebras, J. of the ACM 26 (1979), 794-818

6. R.Milner; Communication and Concurrency, Prentice-Hall, Englewood Cli�s, NJ.,

1989

7. R.Milner; Functions as processes, Math. Struct. in Comp. Science 2 (1992), 119-141

8. R.Milner, J.Parrow, D.Walker; A calculus of mobile processes, Inform. Comput.

100 (1992), 1-77

This article was processed using the L

a

T

E

X macro package with LLNCS style

26

