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Abstract

Different implementations on a massively parallel com-
puter system of a semi-Lagrangian method within the nu-
merical weather forecast model HIRLAM are presented.
In principle semi-Lagrangian methods on massively par-
allel architectures result in irregular communications, i.e.,
communications between arbitrary processors. It is shown
that the fastest implementationincreases the total execution
time per time step with an acceptable amount in relation to
the advantage of applying a semi-Lagrangian method.

1 Introduction

Numerical weather prediction (NWP) has always taken
advantage of high performance computer systems. Numer-
ical weather forecast models were one of the first applica-
tions when computers were invented, and since that time
have been implemented on the fastest systems available.
This is mainly due to the economical and social importance
of weather prediction.

A numerical/computational reason for using high per-
formance systems is also easy to understand. On the one
hand important factors determining the accuracy of the
models are the horizontal and vertical resolutions applied
within these models: the higher the resolution, the better
the accuracy, but also the more calculations have to be car-
ried out. On the other hand the forecasts must be available
within a fraction of the time that they may considered to be
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valid. This shows a trade-off between the resolutionand the
total execution time of the model. Unfortunately present
day computer power limits the resolutions to values that
are unsatisfactory from a physical point of view. However,
with the arrival of massively parallel systems on the market,
and the expected power they can deliver, it is time to inves-
tigate if these systems can be applied efficiently for numeri-
cal weather forecast models. In [9] we have shown that this
is possible for the state of the art HIRLAM1 model, which
is used for producing limited area numerical forecasts. The
results of an implementation on massively parallel MasPar
systems were demonstrated.

Besides using faster computer systems it is possible
to achieve higher resolutions by decreasing the time-
resolution, i.e., larger time steps. Better numerical tech-
niques will allow larger time steps, and thereby save exe-
cution time. As a result the spatial resolutions can be in-
creased. What determines the size of a time step?

A modern atmospheric model consists of two main
parts. The first is called the ‘dynamics’; its task is to
solve a set of equations discretized to the model grid
points. This set consists of several three-dimensional cou-
pled non-linear hyperbolic partial differential equations
(PDEs). They are known as the Primitive Equations, and
can be derived from the Navier–Stokes equations (see e.g.,
[1]). The set contains two horizontal momentum equations,
a hydrostatic equation, a mass continuity equation, a ther-
modynamic equation, and a continuity equation for water
vapor. They describe the behavior of five prognostic vari-
ables: two horizontal wind components u and v, the tem-

1The HIRLAM system was developed by the HIRLAM-
project group, a cooperative project of Denmark, Finland, Iceland,
Ireland, The Netherlands, Norway, and Sweden.
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Figure 1: Different formulations of physical problems: a. Eulerian formulation. b. Lagrangian formulation.
c. Semi-Lagrangian formulation. A is the required variable, u and v are the horizontal velocities.

peratureT , the specific humidityq, and the surface pressure
p

s

.

The second part is called the ‘physics’; it describes
the aggregate effect of the physical processes with scales
smaller than the model resolution, on the larger, resolved,
scales. Examples are vertical diffusion and convection.
Some physical processes like radiation, not directly de-
scribed by the basic model equations, are also parameter-
ized.

The size of the time step is often determined by the
numerical method applied in the dynamics to solve the
set of partial differential equations. The HIRLAM model
contains the following options: fully explicit versus semi-
implicit integration schemes in combination with Eule-
rian versus semi-Lagrangian methods. Semi-implicit tech-
niques can result in larger time steps (see e.g., [4]), but
semi-Lagrangian descriptions allow an even bigger in-
crease in time step [5]. An option within the HIRLAM fore-
cast model, which does not deal directly with the time step,
but has physical advantages, is to solve the Primitive Equa-
tions with spectral methods instead of grid point formula-
tions.

In [9] we measured and compared the performance of
each method on a massively parallel system. The method
that currently is in use at several of the meteorological ser-
vices participating in the HIRLAM project for their rou-
tine weather forecasting procedures is the so-called semi-
implicit Eulerian grid point method, and it was shown that
the algorithms are very well scalable both in the number of
data point and the number of processors (up to 16K). How-
ever, in that investigation semi-Lagrangian methods were
not considered despite the fact that they can increase the
time step significantly, and therefore have become very at-
tractive in the meteorological community. In this paper we
discuss several implementations of the semi-Lagrangian

method as applied in the HIRLAM model on a massively
parallel system.

2 Semi-Lagrangian methods

In this section we will explain the computational aspects
of semi-Lagrangian methods as they are applied in NWP
models. For a more detailed physical and mathematical de-
scription the reader is referred to the review article [6].

Physical problems, like NWP, can be formulated in dif-
ferent ways. A common way is to describe the model in
a Eulerian formulation: at each time step the variables are
determined on fix points in space (see figure 1a). A differ-
ent way to observe the variables is to travel with a set of
particles as they evolve in time (see figure 1b). The prob-
lem of this method for NWP models is that after some time
the chosen set of particles can be distributed irregularly [7].
As a result the required variables are known at the places
where the particles are concentrated, and no information
is available at other areas. This is of course unacceptable
for weather forecasting. A method that combines the two
formulations is known as semi-Lagrangian: each time step
one travels with the set of particles, which during that time
step ends exactly in one of the fixed grid points (see fig-
ure 1c). As mentioned before, semi-Lagrangian methods
allow a much larger time step than Eulerian methods.

Semi-Lagrangian method are handled numerically in
three steps. The first step determines the trajectory of each
particle. For each grid point (arrival point) the displace-
ments in three dimensions to the departure point of the par-
ticle at the beginning of the time step are determined. This
is achieved by an inter- or extrapolation of the horizontal
and vertical velocities. The second step consists of the eval-
uation of the value of the required variable at the departure



point. Because in general the departure point will not be a
grid point, its value has to be determined by an interpolation
of values of grid points surrounding the departure point. Fi-
nally, the third step updates the value of the variable at the
arrival point.

This can be illustrated by a simple example (taken
from [6]), namely the one-dimensional advection equation
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where the displacement �
m

is the distance a particle travels
in the x-direction in time t. If �
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is known, the value of F
at arrival point x
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at time t
n

+�t can be calculated with
equation (3). The value�
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ing equation (2) by (see [6])
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This equation can be solved by an iteration process
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with an initial guess for �(0)

m

, and where the values of U ,
possibly between grid points, are determined by an inter-
polation formula. An interpolation method should also be
used to obtain the values F (x

m

� 2�

m

; t

n

��t) in equa-
tion (3), since in general these positions will not correspond
with grid points. Summarizing the three steps are: 1) com-
pute the displacements �

m

for all grid points x
m

by the it-
eration process, given by equation (5), and an interpolation
formula; 2) determine all values F at the departure points
x

m

� 2�

m

at time t
n

��t by interpolation; 3) evaluate F
at the arrival points x

m

at time t+�t using equation (3).
This method can be extended to multi-dimensionalprob-

lems. It is also possible to define a scheme using only two
time levels instead of three time levels, which is in principle
two times faster and therefore applied more often in NWP
models. The details of these schemes can be found in [5, 6].

In the HIRLAM model [2] the first step of the two-level
semi-Lagrangian method is performed by an iterative pro-
cedure where in each step a higher order interpolation pro-
cedure is used to obtain the displacements. After this step

Figure 2: Calculation in a semi-Lagrangian formu-
lation, projected on the horizontal plane. The arrow
shows the trajectory from the departure point to the ar-
rival point, which is a grid point. The grid points act-
ing as interpolation points in a linear/cubic interpola-
tion are encircled.

the trajectory is known, and the values at the departure
points are evaluated by an interpolation routine, see also
figure 2. It is possible to apply a linear, quadratic, cubic, or
linear/cubic interpolationprocedure. In figure 3 the 32 grid
points involved in a linear/cubic interpolation are shown.
The obtained values are then used to update the values at
the arrival points.

3 Parallelization

In this section we will discuss several implementations
of the semi-Lagrangian method within the HIRLAM model
on a MasPar computer system. A MasPar system [3] has
a SIMD architecture with from 1,024 (1K) up to 16,384
(16K) processors. Each processor is called a Processor El-
ement (PE). All together they form the PE-array, which is
controlled by the Array Control Unit (ACU). A PE is an
80 ns load/store arithmetic processor with a 16 Kbytes or
64 Kbytes data memory.

The communication between the Processor Elements
(PEs) can be divided into two classes: Xnet and Router
communication. Xnet communication performs nearest-
neighbor communications. The PE-array is arranged in
a 2-dimensional mesh with toroidal wrap-around. With
Xnet communication one can send data to or receive data
from the eight neighboring PEs or even longer distances.
The maximum communication bandwidth using Xnet is
23 Gbyte/s for a full 16K configuration. Router communi-
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Figure 3: Linear/cubic interpolation. In this procedure 32 grid points are involved, that are distributed
over four vertical levels. The plus sign indicates the location of the required interpolated value.

cation provides the possibilityto send/receive data between
two arbitrary PEs via a multi-stage crossbar network, so it
takes care of the global communications. The communi-
cation time is independent of the distance between the PEs,
but its maximum speed is considerably slower than for Xnet
communication: 1.3 Gbyte/s. A limitation is that there is
only one Router channel for 16 PEs.

The programming model for the MasPar systems is
data-parallel programming with implicit communications
or message passing.

The real challenge in parallelizing the semi-Lagrangian
scheme on a dataparallel machine like a MasPar is the type
of calculations performed during the interpolations. All
other calculations can be easily implemented efficiently on
a MasPar. Therefore we will concentrate on the interpola-
tion routines. As mentioned before, the interpolations are
carried out to determine the trajectory and to calculate the
values at the departure points. We will restrict ourselves to
the most common type of interpolation: linear/cubic.

An interpolationformula contains values between which
the interpolation is carried out (the interpolation points) to-
gether with a weight for each value, that determines how
much a value will contribute to the final interpolated value.
The size of a weight is dependent on the distance between
interpolation point and departure point. The closest grid
point to the departure point around which the interpolation
is performed, will be called the base point of the interpola-
tion.

In [8] it was shown that in the dataparallel HIRLAM
model on MasPar all horizontal grid points are distributed
over the two-dimensional processor grid in a cyclic (so non-
blocked) and cut-and-stack way. Based on this distribution
one can make the following observations:

1. If the length of a trajectory in the horizontal direction
is longer than half the horizontal grid size, the grid
point that acts as the base point for the interpolation
will be on a different processor than the processor with

the arrival point. In general this means that all other
grid points (read: processors) can act as the base point
for the interpolation, which is required to determine
the value at the arrival point on the current grid point
(processor).

2. Based on a realistic maximum windspeed, the applied
horizontal grid size, and the time step, it can be shown
that the horizontal distance between the arrival point
and the departure point of the trajectory will never be
greater than four grid sizes. As a result the base point
for the interpolation will be at most three grid points
away from the current grid point.

3. All interpolation points will be on different processors
than the one on which the base point resides (except
for the points in ‘pure’ vertical direction). Taken into
account the second observation and the linear/cubic
interpolationone can conclude that the maximum hor-
izontal distance between the arrival point (processor)
and all interpolation points (processors) is four grid
distances.

4. All weights in an interpolation are dependent on the
exact position of the departure point of a trajectory.
This position is available as a displacement with re-
spect to the arrival point of each trajectory and there-
fore resides on the processor corresponding with that
arrival point. As a result all weights for one interpo-
lation are also determined and stored on that proces-
sor. The interpolation would be more local if it were
performed on the base point processor instead of the
arrival point processor. However, the resulting code
will not be efficient, because each grid point may serve
as base point of zero, one, two, or even more arrival
points.

Summarizing: the contribution to the new value of the
arrival point due to the semi-Lagrangian scheme is depen-



dent on 32 values within an area of 9 � 9 � n grid points,
where n is the number of vertical levels. These 32 values
need to be interpolated using 32 weights (one weight for
each value), which are known at the arrival point. From
a computational point of view this means that to update
the value at the arrival point, the corresponding processor
needs the values of some neighboring processors around
that processor together with weights that already reside on
that processor. It is known that these neighboring proces-
sors lay in a 9 � 9 square of processors with the ‘current’
processor as middle-point, which can also been seen from
figure 2.

We now continue with a discussion about the different
possible dataparallel versions of the interpolation routine.
Of each version we will give a short description of the idea
behind it, the main characteristics in particular concerning
communications and memory accesses, and the actual per-
formance in a test run of the spectral HIRLAM model with
an integrationarea of 110�100�16points. The actual per-
formance was obtained by timing the version on a 16K pro-
cessor MasPar DPU Model MP-2216. All tests were per-
formed with system release 3.2.0 of the MasPar software,
which included the Mpfortran compiler (version 2.2.7). In
all cases the –nodebug and –Omax compiler-options were
specified, which prevents the inclusion of extra code for de-
bug purposes, and performs the highest degree of optimiza-
tion possible on a MasPar system. As discussed in [9] array
and loop bounds were made known at compile time to pre-
vent the generation of redundant communications.

3.1 Original version

This implementation is based on the original version of
the HIRLAM reference model, except that the fields are
stored as three dimensional arrays instead of two dimen-
sional ones. For each grid/arrival point the necessary inter-
polation points are obtained by indirect addressing in the
three dimensional arrays. With the applied data distribu-
tion this will result in this dataparallel version in indirect
loads to obtain values on one processor and in Router com-
munications to move the required values to the processor
corresponding with the arrival point. This method shows a
quite random memory access and communication pattern,
and will probably result in collisions during the communi-
cations due to the fact that there is only one Router channel
per 16 PEs. It turned out that the total extra time for this
complete implementation of the semi-Lagrangian method
is 3.50 s per time step. For comparison: one time step
in the spectral semi-implicit Eulerian implementation takes
0.68 s.

3.2 Router versions

In these versions one tries to control the random behav-
ior of the communications and indirect addressing. The
interpolation routine in these versions consists of three
phases. In the first phase, the ‘collect’ phase, each grid
point is considered to be a possible base point of an inter-
polation. The required interpolationpoints are collected on
the base point processor. Since it is known that the interpo-
lations points are located on neighboring processors (zero,
one or two grid distances from the base point processor, see
figure 2) they can be collected by indirect loads to access
the values in the vertical direction, and by Xnet communi-
cation to receive values from other processors. Since this
holds for all grid points (processors) this results in regular
and fast communications. In the second phase, the ‘fetch’
phase, each grid/arrival point fetches the collected interpo-
lation values from his base point processor. Since the lo-
cation of the base point processor is dependent on the dis-
placement of each trajectory, this phase requires communi-
cation between arbitrary processors, so Router communica-
tion still has to be applied. The third phase consists of the
actual interpolation phase, in which the interpolated value
is calculated using the weights and fetched values.

There are several strategies possible to implement the
idea outlinedabove, varying from collecting different num-
bers of possible interpolationpoints (in particular in the ver-
tical direction) to applying different methods in collecting
the values (e.g., using cshifts). However, the resulting per-
formances of all these versions are quite disappointing: the
extra time for the fastest method is 4.46 s per time step,
which is larger than in the original version. An explanation
for this outcome has not been found yet. It is possible that
it is due to some characteristics of our test run.

3.3 Xnet versions

The general idea behind these versions is to remove the
Router communications completely, and replace them by
Xnet or nearest neighbor communications. How can this be
achieved? As has been demonstrated earlier the area con-
taining the possible interpolation points in the horizontal
directions is limited to a 9 � 9 square of grid points with
the ‘current’ grid point as middle point (see figure 2). If
we just move all the values from these 9 � 9 neighboring
processors to the memory of the ‘current’ processor with-
out global communications, the actual interpolation can be
performed on the processor without communications. The
requirement to move all the values into the processor with-
out global communications and the fact that it should be
done for all processors simultaneously, can be solved by us-
ing cshifts. If one applies a series of cshifts, which covers
the 9� 9 area, and stores the required values between each



Figure 4: The order of values that are ‘shifted-in’ by
the two series of cshifts, indicated by the two different
kinds of pointers.

cshift, all necessary values are ‘shifted in’ in the processors.
In figure 4 the applied order of cshifts is shown. A clear dis-
advantage of this method is that it increases the total usage
of memory per processor significantly, since all possible in-
terpolations pointsare shifted in and have to be stored in the
local memory.

Instead of using global (Router) communications there
are only nearest neighbor communications. In the
interpolation-phase we still have indirect memory accesses,
since we have to determine which of the ‘in-shifted’ values
are the real interpolation points. The performance of this
method was an extra time of 2.30 s per time step. It will be
called the 2D Xnet version.

A significant improvement could be achieved by the obser-
vation that the interpolations for all grid points, in partic-
ular for all vertical levels, can be performed in one call of
the interpolation routine. This in contrast with the original
version where one call of the interpolation routine carries
out the interpolations only on one vertical level. The rea-
son for the improvement is that in the 2D Xnet version one
has to ‘shift in’ all the values of all vertical levels, since for
each grid point, the corresponding base points for the inter-
polationcan be on different vertical levels. So the processor
will contain all possible interpolation points for all vertical
levels. The number of cshifts per shift-in is the same as in
the previous version, but the total number of shift-in’s is re-
duced to one instead of the number of vertical levels. The
performance of this method was the best of all versions:
0.35 s per time step. We will call this the 3D Xnet version.

Table 1: Extra times for executing one time step us-
ing the semi-Lagrangian formulation with the differ-
ent implementations of the interpolation routine in the
spectral semi-implicit HIRLAM forecast model with
a 110 � 100 � 16 integration area on a MasPar MP-
2 with 16K processors. Also the total execution time
for one time step in the spectral semi-implicit Eulerian
formulation is shown.

Implementation Time (in sec)
Original 3.50
Router versions 4.46
2D Xnet version 2.30
3D Xnet version 0.35

Eulerian time step 0.68

4 Conclusions

In table 1 the extra execution times mentioned in the
previous subsections for the different implementations of
the semi-Lagrangian method per time step in the spectral
HIRLAM forecast have been gathered. Also the time for
executing one time step of a corresponding run in a spectral
semi-implicit Eulerian formulation has been added, taken
from [9].

As was mentioned in section 1 the semi-Lagrangian for-
mulation allows a larger time step than the Eulerian for-
mulation. In the HIRLAM model a three times larger time
step can be chosen, which is related to the physics part of
the model. Observing the additional costs for the semi-
Lagrangian method as can be seen in table 1, it is clear that
only the 3D Xnet version leads to an overall improvement
in total execution time of the model: 0:68 + 0:35 = 1:03

seconds per time step versus 3 � 0:68 = 2:04 seconds per
time step for the Eulerian version. So a factor of nearly two
can be saved in execution time when the semi-Lagrangian
formulation is used. All other versions result in execution
times that are too large in relation to the gain in time step
size.

It can be concluded that the semi-Lagrangian formula-
tion in NWP models can be implemented successfully on a
massively parallel computer system. However, a disadvan-
tage of the resulting implementation is the increased mem-
ory usage per processor. A second disadvantage is that the
interpolation routine is not portable anymore. But, since
this is limited to just one routine, it should not be considered
a prohibitive objection for a production code as HIRLAM,
running on several architectures.
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