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Abstract

Different implementationson a massively parallel com-
puter system of a semi-Lagrangian method within the nu-
merical weather forecast model HIRLAM are presented.
In principle semi-Lagrangian methods on massively par-
allel architectures result inirregular communications, i.e.,
communi cations between arbitrary processors. It isshown
that thefastest implementationincreasesthetotal execution
time per time step with an acceptable amount in relation to
the advantage of applying a semi-Lagrangian method.

1 Introduction

Numerical weather prediction (NWP) has aways taken
advantage of high performance computer systems. Numer-
ical weather forecast models were one of the first applica-
tions when computers were invented, and since that time
have been implemented on the fastest systems available.
Thisismainly dueto the economical and socia importance
of westher prediction.

A numerical/computationa reason for using high per-
formance systems is al'so easy to understand. On the one
hand important factors determining the accuracy of the
models are the horizontal and vertical resolutions applied
within these models: the higher the resolution, the better
the accuracy, but also the more cal cul ations have to be car-
ried out. On the other hand the forecasts must be available
withinafraction of thetimethat they may considered to be
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valid. Thisshowsatrade-off between theresolutionand the
total execution time of the model. Unfortunately present
day computer power limits the resolutions to values that
are unsatisfactory from aphysical point of view. However,
withthearrival of massively parale systemson themarket,
and the expected power they can deliver, itistimetoinves
tigateif these systems can be applied efficiently for numeri-
cal weather forecast models. In[9] we have shownthat this
is possiblefor the state of the art HIRLAM® model, which
isused for producing limited area numerical forecasts. The
results of an implementation on massively paralel MasPar
systems were demonstrated.

Besides using faster computer systems it is possible
to achieve higher resolutions by decreasing the time-
resolution, i.e, larger time steps. Better numerica tech-
niques will alow larger time steps, and thereby save exe-
cution time. As aresult the spatia resolutions can be in-
creased. What determines the size of atime step?

A modern atmospheric moded consists of two main
parts. The first is caled the ‘dynamics’; its task is to
solve a set of equations discretized to the modd grid
points. This set consists of severa three-dimensional cou-
pled non-linear hyperbolic partia differential equations
(PDES). They are known as the Primitive Equations, and
can be derived from the Navier—Stokes equations (see e.g.,
[1]). The set containstwo horizontal momentum equations,
a hydrostatic equation, a mass continuity equation, a ther-
modynamic equation, and a continuity equation for water
vapor. They describe the behavior of five prognostic vari-
ables. two horizontal wind components « and v, the tem-

1The HIRLAM system was developed by the HIRLAM-
project group, acooperativeproject of Denmark, Finland, Iceland,
Ireland, The Netherlands, Norway, and Sweden.
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Figure1: Different formulationsof physical problems: a Eulerian formulation. b. Lagrangian formulation.
¢. Semi-Lagrangian formulation. A istherequired variable, u and v are the horizontal velocities.

peratureT’, the specific humidity ¢, and the surface pressure
Ps-

The second part is caled the ‘physics’; it describes
the aggregate effect of the physical processes with scales
smaller than the model resolution, on the larger, resolved,
scales. Examples are vertical diffusion and convection.
Some physical processes like radiation, not directly de-
scribed by the basic model equations, are also parameter-
ized.

The size of the time step is often determined by the
numerical method applied in the dynamics to solve the
set of partial differential equations. The HIRLAM model
contains the following options: fully explicit versus semi-
implicit integration schemes in combination with Eule-
rian versus semi-Lagrangian methods. Semi-implicit tech-
niques can result in larger time steps (see eg., [4]), but
semi-Lagrangian descriptions allow an even bigger in-
creaseintimestep[5]. AnoptionwithintheHIRLAM fore-
cast model, which does not deal directly with thetime step,
but has physical advantages, isto solvethe Primitive Equa-
tions with spectral methods instead of grid point formula
tions.

In [9] we measured and compared the performance of
each method on a massively parallel system. The method
that currently isin use at several of the meteorologica ser-
vices participating in the HIRLAM project for their rou-
tine weather forecasting procedures is the so-called semi-
implicit Eulerian grid point method, and it was shown that
the algorithmsare very well scalable both inthe number of
data point and the number of processors (up to 16K). How-
ever, in that investigation semi-Lagrangian methods were
not considered despite the fact that they can increase the
time step significantly, and therefore have become very at-
tractivein the meteorological community. In this paper we
discuss several implementations of the semi-Lagrangian

method as applied in the HIRLAM model on a massively
pardlel system.

2 Semi-Lagrangian methods

Inthissection wewill explain the computationa aspects
of semi-Lagrangian methods as they are applied in NWP
models. For amore detailed physical and mathematical de-
scription the reader isreferred to the review article [6].

Physical problems, like NWP, can be formulated in dif-
ferent ways. A common way is to describe the model in
a Eulerian formulation: at each time step the variables are
determined on fix pointsin space (seefigure 18). A differ-
ent way to observe the variables is to travel with a set of
particles as they evolve in time (see figure 1b). The prob-
lem of thismethod for NWP modelsisthat after some time
the chosen set of particlescan be distributedirregularly [7].
As aresult the required variables are known at the places
where the particles are concentrated, and no information
isavailable at other areas. Thisis of course unacceptable
for weather forecasting. A method that combines the two
formulationsis known as semi-Lagrangian: each time step
onetravelswith the set of particles, which during that time
step ends exactly in one of the fixed grid points (see fig-
ure 1c). As mentioned before, semi-Lagrangian methods
allow amuch larger time step than Eulerian methods.

Semi-Lagrangian method are handled numericaly in
three steps. The first step determines the trgjectory of each
particle. For each grid point (arrival point) the displace-
mentsin three dimensionsto the departure point of the par-
ticle at the beginning of the time step are determined. This
is achieved by an inter- or extrapolation of the horizontal
and vertical velocities. Thesecond step consistsof theeval -
uation of the value of therequired variable at the departure



point. Because in general the departure point will not be a
grid point, itsval uehasto be determined by aninterpol ation
of values of grid pointssurroundingthe departure point. Fi-
nally, the third step updates the value of the variable at the
arrival point.

This can be illustrated by a ssimple example (taken
from [6]), namely the one-dimensional advection equation

dFr OF dxJF
o o @
where d
xr

and U (z, t) isagiven function. We assume that the values
F(x,t) are known at al grid points z,, at timest, — At
and t,,, where At isthe applied time step. In that case the
semi-Lagrangian method determinesthe valueson thegrid
pointsat timet,, + At by

F(am,tn + At) — Fom — 2am, ty, — Al)
2At

where thedisplacement «,,, isthedistanceaparticletravels
inthe z-directionintimet. If «,, isknown, thevaue of I
at arrival point z,,, a timet,, + At can be calculated with
equation (3). Thevaue«,,, can beobta ned by approximat-
ing equation (2) by (see [6])

=0,

am = AU (2, — o, tn) . 4
This equation can be solved by an iteration process
alf Y = AU (2, — o) 1, (5)

with an initia guess for !y, and where the values of U/,
possibly between grid points, are determined by an inter-
polation formula. An interpolation method should aso be
used to obtainthevalues F'(z,, — 2, t, — At) in equar
tion(3), sinceingeneral these positionswill not correspond
with grid points. Summarizing thethree stepsare: 1) com-
pute the displacements «,, for dl grid pointsz,, by theit-
eration process, given by equation (5), and an interpolation
formula; 2) determine dl values ' at the departure points
T, — 204y, a timet,, — At by interpolation; 3) evaluate F’
at the arrival pointsz,, a timet + At using equation (3).
Thismethod can be extended to multi-dimensional prob-
lems. Itisaso possibleto define a scheme using only two
timelevelsinstead of threetimelevels, whichisin principle
two times faster and therefore applied more often in NWP
models. The detailsof these schemes can befoundin[5, 6].
Inthe HIRLAM modd [2] the first step of the two-level
semi-Lagrangian method is performed by an iterative pro-
cedure where in each step a higher order interpol ation pro-
cedure is used to obtain the displacements. After this step

Figure 2: Calculation in a semi-Lagrangian formu-
lation, projected on the horizontal plane. The arrow
showsthetrajectory from the departure pointtothe ar-
rival point, which isagrid point. The grid points act-
ing as interpolation pointsin a linear/cubic interpola-
tion are encircled.

the trajectory is known, and the values at the departure
points are evaluated by an interpolation routine, see aso
figure 2. Itispossibleto apply alinear, quadratic, cubic, or
linear/cubicinterpolation procedure. Infigure 3the 32 grid
points involved in a linear/cubic interpolation are shown.
The obtained values are then used to update the values at
thearriva points.

3 Parallelization

In this section we will discuss several implementations
of the semi-Lagrangian method withinthe HIRLAM model
on a MasPar computer system. A MasPar system [3] has
a SIMD architecture with from 1,024 (1K) up to 16,384
(16K) processors. Each processor is called a Processor El-
ement (PE). All together they form the PE-array, which is
controlled by the Array Control Unit (ACU). A PE isan
80 ns load/store arithmetic processor with a 16 Kbytes or
64 Kbytes data memory.

The communication between the Processor Elements
(PEs) can be divided into two classes: Xnet and Router
communication. Xnet communication performs nearest-
neighbor communications. The PE-array is arranged in
a 2-dimensional mesh with toroida wrap-around. With
Xnet communication one can send data to or receive data
from the eight neighboring PES or even longer distances.
The maximum communication bandwidth using Xnet is
23 Ghyte/sfor afull 16K configuration. Router communi-
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Figure3: Linear/cubicinterpolation. Inthisprocedure 32 grid pointsareinvolved, that are distributed
over four vertical levels. The plussign indicates the location of the required interpolated value.

cation providesthe possibility to send/receive data between
two arbitrary PES via a multi-stage crossbar network, so it
takes care of the globa communications. The communi-
cation timeisindependent of the distance between the PES,
but itsmaximum speed isconsiderably slower than for X net
communication: 1.3 Gbyte/s. A limitation is that thereis
only one Router channel for 16 PEs.

The programming model for the MasPar systems is
data-parallel programming with implicit communications
Or message passing.

Thered chalenge in paralelizing the semi-Lagrangian
scheme on adataparallel machine likeaMasPar isthetype
of calculations performed during the interpolations. All
other cal culations can be easily implemented efficiently on
aMasPar. Therefore we will concentrate on the interpola
tion routines. As mentioned before, the interpolations are
carried out to determine the trgjectory and to calculate the
values at the departure points. We will restrict ourselvesto
the most common type of interpolation: linear/cubic.

Aninterpolationformulaconta nsval ues between which
theinterpolationiscarried out (theinterpolation points) to-
gether with a weight for each value, that determines how
much avaluewill contributeto the final interpolated value.
The size of aweight is dependent on the distance between
interpolation point and departure point. The closest grid
point to the departure point around which the interpolation
isperformed, will be called the base point of theinterpola
tion.

In [8] it was shown that in the dataparalel HIRLAM
model on MasPar al horizontal grid pointsare distributed
over thetwo-dimensional processor gridinacyclic (so non-
blocked) and cut-and-stack way. Based on thisdistribution
one can make the following observations:

1. If thelength of atraectory in the horizontal direction
is longer than half the horizonta grid size, the grid
point that acts as the base point for the interpolation
will be on adifferent processor than the processor with

the arrival point. In general this means that al other
grid points(read: processors) can act asthebase point
for the interpolation, which is required to determine
the value at the arrival point on the current grid point
(processor).

2. Based on arealistic maximum windspeed, the applied
horizonta grid size, and thetime step, it can be shown
that the horizonta distance between the arrival point
and the departure point of the trgjectory will never be
grester than four grid sizes. Asaresult the base point
for the interpolation will be at most three grid points
away from the current grid point.

3. All interpolation pointswill be on different processors
than the one on which the base point resides (except
for the pointsin ‘pure’ vertica direction). Taken into
account the second observation and the linear/cubic
i nterpol ation one can concludethat the maximum hor-
izontal distance between the arrival point (processor)
and al interpolation points (processors) is four grid
distances.

4. All weightsin an interpolation are dependent on the
exact position of the departure point of a trgectory.
This position is available as a displacement with re-
spect to the arrival point of each trajectory and there-
fore resides on the processor corresponding with that
arrival point. Asaresult al weightsfor one interpo-
lation are also determined and stored on that proces-
sor. The interpolation would be more local if it were
performed on the base point processor instead of the
arrival point processor. However, the resulting code
will not beefficient, because each grid point may serve
as base point of zero, one, two, or even more arrival
points.

Summarizing: the contribution to the new vaue of the
arrival point due to the semi-Lagrangian scheme is depen-



dent on 32 values withinan areaof 9 x 9 x n grid points,
where n is the number of vertical levels. These 32 values
need to be interpolated using 32 weights (one weight for
each value), which are known at the arrival point. From
a computationa point of view this means that to update
the value at the arrival point, the corresponding processor
needs the values of some neighboring processors around
that processor together with weightsthat aready reside on
that processor. It is known that these neighboring proces-
sorslay ina9 x 9 square of processors with the ‘current’
processor as middle-point, which can aso been seen from
figure 2.

We now continue with a discussion about the different
possible dataparallel versions of the interpolation routine.
Of each version we will give a short description of theidea
behind it, the main characteristics in particular concerning
communi cations and memory accesses, and the actua per-
formance in atest run of the spectral HIRLAM model with
anintegrationareaof 110 x 100 x 16 points. Theactual per-
formance was obtai ned by timingtheversion on a16K pro-
cessor MasPar DPU Model MP-2216. All tests were per-
formed with system release 3.2.0 of the MasPar software,
which included the Mpfortran compiler (version 2.2.7). In
all cases the —-nodebug and —Omax compiler-options were
specified, which preventstheinclusion of extracodefor de-
bug purposes, and performsthe highest degree of optimiza-
tion possibleon aMasPar system. Asdiscussedin[9] array
and loop bounds were made known at compiletimeto pre-
vent the generation of redundant communications.

3.1 Original version

Thisimplementation is based on the original version of
the HIRLAM reference model, except that the fields are
stored as three dimensiona arrays instead of two dimen-
sional ones. For each grid/arrival point the necessary inter-
polation points are obtained by indirect addressing in the
three dimensional arrays. With the applied data distribu-
tion this will result in this dataparallel version in indirect
loads to obtain val ues on one processor and in Router com-
munications to move the required values to the processor
corresponding with the arrival point. This method shows a
quite random memory access and communication pattern,
and will probably result in collisionsduring the communi-
cations dueto thefact that thereisonly one Router channel
per 16 PEs. It turned out that the total extratime for this
complete implementation of the semi-Lagrangian method
is 3.50 s per time step. For comparison: one time step
inthe spectral semi-implicit Eulerian implementation takes
0.68s.

3.2 Router versions

In these versions one triesto control the random behav-
ior of the communications and indirect addressing. The
interpolation routine in these versions consists of three
phases. In the first phase, the ‘collect’ phase, each grid
point is considered to be a possible base point of an inter-
polation. The required interpolation pointsare collected on
the base point processor. Sinceit isknown that theinterpo-
lations points are located on neighboring processors (zero,
one or two grid distances from the base point processor, see
figure 2) they can be collected by indirect loads to access
thevauesin the vertical direction, and by Xnet communi-
cation to receive values from other processors. Since this
holdsfor all grid points (processors) this results in regular
and fast communications. In the second phase, the ‘fetch’
phase, each grid/arrival point fetchesthe collected interpo-
lation values from his base point processor. Since the lo-
cation of the base point processor is dependent on the dis-
placement of each trajectory, this phase requires communi-
cation between arbitrary processors, so Router communica-
tion still has to be applied. The third phase consists of the
actual interpolation phase, in which the interpolated value
is calculated using the weights and fetched values.

There are severa strategies possible to implement the
ideaoutlined above, varying from collecting different num-
bersof possibleinterpolation points(in particular inthever-
tical direction) to applying different methods in collecting
the values (e.g., using cshifts). However, the resulting per-
formances of al these versionsare quite disappointing: the
extra time for the fastest method is 4.46 s per time step,
whichislarger thanintheorigina version. Anexplanation
for this outcome has not been found yet. It is possible that
it is due to some characteristics of our test run.

3.3 Xnet versions

The genera idea behind these versionsisto remove the
Router communications completely, and replace them by
Xnet or nearest neighbor communications. How can thisbe
achieved? As has been demonstrated earlier the area con-
taining the possible interpolation points in the horizontal
directionsislimitedto a9 x 9 square of grid points with
the ‘current’ grid point as middle point (see figure 2). If
we just move al the values from these 9 x 9 neighboring
processors to the memory of the ‘current’ processor with-
out globa communications, the actual interpolation can be
performed on the processor without communications. The
requirement to move all the values into the processor with-
out globa communications and the fact that it should be
donefor all processorssimultaneously, can besolved by us-
ing cshifts. If one applies a series of cshifts, which covers
the9 x 9 area, and storesthe required val ues between each
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Figure 4: The order of values that are ‘ shifted-in’ by
thetwo series of cshifts, indicated by thetwo different
kinds of pointers.

cshift, all necessary valuesare ' shiftedin’ inthe processors.
Infigure4 theapplied order of cshiftsisshown. A clear dis-
advantage of thismethod isthat it increases the total usage
of memory per processor significantly, sinceall possiblein-
terpolationspointsare shiftedin and haveto be stored inthe
local memory.

Instead of using global (Router) communications there
are only nearest neighbor communications. In the
interpol ation-phasewe still haveindirect memory accesses,
sincewe haveto determine which of the‘in-shifted’ values
are the real interpolation points. The performance of this
method was an extratime of 2.30 s per time step. It will be
caled the 2D Xnet version.

A significant improvement could be achieved by the obser-
vation that the interpolationsfor al grid points, in partic-
ular for al vertical levels, can be performed in one cal of
theinterpolation routine. Thisin contrast with the origina
version where one call of the interpolation routine carries
out the interpolations only on one vertica level. The rea
son for the improvement isthat in the 2D Xnet version one
hasto ‘shiftin’ all thevaluesof al vertica levels, sincefor
each grid point, the corresponding base pointsfor theinter-
polationcan beondifferent vertica levels. Sotheprocessor
will contain all possibleinterpolation pointsfor al vertica
levels. The number of cshifts per shift-inisthe same asin
the previousversion, but thetotal number of shift-in’sisre-
duced to one instead of the number of vertical levels. The
performance of this method was the best of all versions:
0.35 s per time step. We will call thisthe 3D Xnet version.

Table 1: Extratimes for executing one time step us-
ing the semi-Lagrangian formulation with the differ-
ent implementations of theinterpolation routinein the
spectral semi-implicit HIRLAM forecast model with
all0 x 100 x 16 integration area on a MasPar MP-
2 with 16K processors. Also the total execution time
for onetimestepinthe spectral semi-implicit Eulerian
formulation is shown.

I mplementation Time (in sec)
Origina 3.50
Router versions 4.46
2D Xnet version 2.30
3D Xnet version 0.35
Eulerian time step 0.68

4 Conclusions

In table 1 the extra execution times mentioned in the
previous subsections for the different implementations of
the semi-Lagrangian method per time step in the spectral
HIRLAM forecast have been gathered. Also the time for
executing one time step of acorresponding runin aspectra
semi-implicit Eulerian formulation has been added, taken
from[9].

Aswas mentioned in section 1 the semi-Lagrangian for-
mulation alows a larger time step than the Eulerian for-
mulation. Inthe HIRLAM model athreetimes larger time
step can be chosen, which is related to the physics part of
the model. Observing the additiona costs for the semi-
Lagrangian method as can be seenintable 1, itis clear that
only the 3D Xnet version leads to an overall improvement
in total execution time of the model: 0.68 + 0.35 = 1.03
seconds per time step versus 3 x 0.68 = 2.04 seconds per
timestep for the Eulerian version. So afactor of nearly two
can be saved in execution time when the semi-Lagrangian
formulationisused. All other versions result in execution
times that are too large in relation to the gain in time step
size

It can be concluded that the semi-Lagrangian formula-
tionin NWP models can be implemented successfully ona
massively parallel computer system. However, adisadvan-
tage of the resulting implementation isthe increased mem-
ory usage per processor. A second disadvantage is that the
interpolation routine is not portable anymore. But, since
thisislimitedto just oneroutine, it should not be considered
aprohibitive objection for a production code as HIRLAM,
running on severa architectures.
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