
Data-Parallel Numerical Weather Forecasting

Lex Wolters

�

High Performance Computing Division,

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

llexx@cs.leidenuniv.nl

Gerard Cats

Royal Netherlands Meteorological Institute

P.O. Box 201, 3730 AE De Bilt, The Netherlands

cats@knmi.nl

Nils Gustafsson

Swedish Meteorological and Hydrological Institute

S-60176 Norrk�oping, Sweden

ngustafsson@smhi.se

Abstract

In this paper we describe the implementation of a numerical weather forecast model on a

massively parallel computer system. This model is a production code used for routine weather

forecasting at the meteorological institutes of several European countries. The modi�cations

needed to achieve a data-parallel version of this model without explicit message passing are

outlined. The achieved performance of di�erent numerical solution methods within this model

are presented and compared.

1 Introduction and overview of HIRLAM

Numerical models of the atmosphere have much contributed to our general understanding of

atmospheric processes. The use of such models has resulted in improved weather forecasts, with

important economical impact; also these models are now being used as components in climate

simulation models.

The horizontal and vertical resolutions of atmospheric models are important factors determin-

ing the accuracy of the models. Present day computer power limits the number of gridpoints and

thus the resolution to values that are unsatisfactory from a physics point of view. For example, the

current resolution of local (`limited area') models is restricted to � 50 km in horizontal direction,

and to roughly 16 levels in the vertical, while the same models can be used for resolutions up

to � 5 km and 60 layers. The lower resolutions are also enforced since the calculations have to

be completed within some reasonable elapsed time: for weather forecasting, the forecasts must

be available within a fraction of the time that they may be considered valid; and for climate

simulation, the simulated periods may cover several centuries, yet the calculations should be done

within months. From these considerations it follows that continuous attempts are being made

to run the models on the fastest available computer platforms. In this paper we investigate the

role of massively parallel computer systems to achieve the required computer power for numerical

weather prediction.

As early as 1922 L.F. Richardson described a `forecast-factory' with 64,000 computers to cal-

culate the weather for the whole globe [16]:

Imagine a large hall like a theatre, except that the circles and galleries go right round through

the space usually occupied by the stage. The walls of this chamber are painted to form a

map of the globe. The ceiling represents the north polar regions, England is in the gallery,

�

Support was provided by the Esprit EC Agency CEC-DGXIII under Grant No. APPARC 6634 BRA III.

1

the tropics in the upper circle, Australia on the dress circle and the antarctic in the pit. A

myriad computers are at work upon the weather of the part of the map where each sits,

but each computer attends only to one equation or part of an equation. The work of each

region is coordinated by an o�cial of higher rank. Numerous little \night signs" display

the instantaneous values so that neighbouring computers can read them. Each number is

displayed in three adjacent zones as to maintain communications to the North and South on

the map. From the oor of the pit a tall pillar rises to half the height of the hall. It carries a

large pulpit on its top. In this sits the man in charge of the whole theatre; he is surrounded

by several assistants and messengers. One of his duties is to maintain a uniform speed of

progress in all parts of the globe. In this respect he is like the conductor of an orchestra

in which the instruments are slide-rules and calculating machines. But instead of waving a

baton he turns a beam of rosy light upon any region that is running ahead of the the rest,

and a beam of blue light upon those who are behindhand.

It is amazing to see from this quotation that despite the fact that Richardson's computers were

humans, many important topics dealing with parallel computations are mentioned: data distribu-

tion, communications, loadbalancing, and synchronization. On the other hand we now know that

Richardson's estimate of the required computer power is a gross underestimate: it should rather

be in the Gop/s range, see also section 4.

In this paper we will describe how these topics turn out for an existing numerical weather

forecast model on a massively parallel computer system. The implementation and resulting per-

formance of the HIRLAM forecast model on MasPar systems will be outlined. HIRLAM

1

stands

for HIgh Resolution Limited Area Model, and is a state-of-the-art analysis and forecast system for

numerical weather forecasts up to +48 hours. It is in use at several of the meteorological services

participating in the HIRLAM project for their routine weather forecasting.

The HIRLAM forecast model [10] contains �ve prognostic variables: two horizontal wind com-

ponents u and v, temperature T , speci�c humidity q, and surface pressure p

s

. These variables

are computed on a spherical horizontal coordinate system with longitude � and latitude �. The

vertical coordinate is hybrid between pressure based and terrain following coordinates. The core

and most computationally intensive parts of the model, like most modern atmospheric models,

are the routines for the `dynamics' and for the `physics'. The dynamics solves a set of 3D coupled

nonlinear hyperbolic partial di�erential equations (PDEs), the so-called primitive equations (see

e.g. [5]). This set of equations models the behavior of the six prognostic variables in time and

space. It contains two horizontal momentum equations, a hydrostatic equation, a mass continuity

equation, a thermodynamic equation, and a continuity equation for water vapour. The physics

describes the aggregate e�ect of the physical processes, with scales smaller than the model res-

olution, on the resolved scales. Examples are vertical di�usion and convection. Some physical

processes like radiation and condensation, not directly described by the basic model equations,

are also parameterized.

In concept, the forecast model solves identical equations of motion on a large number of

gridpoints. Therefore, in theory, it should not be too di�cult to code it for high e�ciency on

either scalar, vector or parallel computers. Current codes have almost invariably been optimized

for vector architectures. With this research we intend to �nd out how much work is involved to

convert vector code to data-parallel code; how cost-e�ective massive parallel machines can be for

weather forecasting; and how meteorological models should be coded in future to achieve maximum

portability between di�erent hardware architectures (from SISD, SIMD to MIMD).

2 Description of the Algorithms

Within HIRLAM one can choose between several numerical methods in the dynamics part to solve

the PDEs. In this section these methods will be compared mainly with respect to parallel issues.

1

The HIRLAM system is developed by the HIRLAM-project group, a cooperative project of Denmark, Finland,

Iceland, Ireland, The Netherlands, Norway, and Sweden.

2

Firstly, one can choose between the gridpoint HIRLAM model and the spectral HIRLAM model.

These models are based on two numerical techniques, the �nite di�erence or gridpoint technique

and the spectral transform technique to solve PDEs. Both are commonly applied within the mete-

orological community. A third method, the �nite element technique, has reached some popularity

in recent years.

As an illustration of how the two most common techniques work, we will look at the simple

example of the one-dimensional advection of temperature. In analytic form one has

@T

@t

= u

@T

@x

(1)

with temperature T and wind-component u in the x-direction at time t. In the most simple form

(a non-staggered horizontal grid) the discrete gridpoint version with a leap-frog time-stepping

results in

T (x; t+�t) = T (x; t��t) +

�t

�x

u(x; t) (T (x+�x; t) � T (x��x; t)) ; (2)

where T (x; t) is the temperature in gridpoint x at time t, u(x; t) is the wind-component in the

x-direction in gridpoint x at time t, �t is the time step, and �x is the grid-distance in the

x-direction.

For the spectral transform technique one will start the integrations from spectral coe�cients

^

T and û, de�ned by e.g.

T (x; t) =

1

p

2�

X

k

^

T (k; t) exp(ikx) ; (3)

^

T (k; t) =

1

p

2�

X

x

T (x; t) exp(�ikx) ; (4)

where k is the wave-number. The computation of non-linear terms is carried out in gridpoint space

and the gridpoint values of the �elds and their derivatives are obtained by inverse transforms, e.g.,

@T

@x

=

1

p

2�

X

k

ik

^

T (k; t) exp(ikx) : (5)

Once the gridpoint values of u and @T=@x have been obtained in gridpoint space, it is easy to

carry out the multiplication and then to do a transform back to spectral space for d

^

T=dt.

It is important to realize that both the gridpoint and the spectral HIRLAM model use the same

basic dynamical equations, the same vertical and temporal discretizations by �nite di�erences and

the same physical parameterization schemes. The di�erences between the methods concern the

horizontal discretization and solution technique for solving the PDEs. In �gure 1 an example of

the horizontal integration area in the HIRLAM forecast model is shown. This example is based

on a horizontal grid of 110� 100 points.

The comparison of the gridpoint and spectral methods should be based on physical consider-

ations. However, a discussion of these considerations (see e.g. [8]) falls outside the scope of this

paper. Instead, we limit ourselves mainly to the computational di�erences.

Because the computation of non-linear terms and the physics part of the model require the �elds

to be available in gridpoint space, the spectral model requires transformations between spectral

space and gridpoint space, and vice versa, each time step. The costs of these transformations

are substantial. On multi-processor machines with physically distributed memory this is even

more relevant, because the transformations require global communications, as can be seen from

equations (3) and (4). In HIRLAM the transformations are Fourier transforms, and the cost-

e�ciency of the spectral model heavily depends on the availability of e�cient library routines for

fast Fourier transforms. In contrast, equation (2) shows that the gridpoint technique requires

communications in the neighborhood of each gridpoint only.

3

Figure 1: An example of a HIRLAM horizontal integration area with 110� 100 gridpoints.

On the other hand the communications within the spectral model are limited to the spectral

transforms, while for the gridpoint model they can in principle show up on all places where a

�nite di�erence is required. This means that a parallel gridpoint model contains communications

throughout the complete dynamics. For the spectral model they are restricted to the transform

routines.

The spectral transformations require periodic boundary conditions. This is straightforward for

a global geometry, since this geometry allows for a natural periodic variation of all variables in

both directions. Therefore the spectral transform technique has attained a great popularity for

global numerical weather prediction [4, 14]. Initial steps to apply the spectral transform technique

to a limited area were taken by Haugen and Machenhauer [8], who developed a spectral limited

area shallow water model based on the idea of extending the limited area in the two horizontal

dimensions in order to obtain periodicity in these two dimensions and to permit the use of e�cient

Fast Fourier Transforms. The same idea was implemented by Gustafsson [7] into the full multi-level

HIRLAM framework.

There is no clear answer yet to the question whether it is preferable to apply the spectral or the

gridpoint technique for a particular model con�guration and for a particular computer architecture.

Considering only computational accuracy, it is generally agreed that for a gridpoint model based

on a second order horizontal di�erence scheme, the shortest waves that can be forecasted with

a similar accuracy as in a spectral model are the four grid distance waves. The shortest wave

in a spectral model generally corresponds to three grid distances in the transform grid. Thus,

the number of horizontal gridpoints in a gridpoint model should be roughly twice (� (4=3)

2

) the

number of transform gridpoints in a spectral model to obtain a similar accuracy. There is not

a similar di�erence with regard to the vertical coordinate, since spectral and gridpoint models

normally use the same �nite di�erence schemes in the vertical.

4

The time steps for both versions of the model are dictated by the stability of horizontal and

vertical advection. In case of identical grid geometry, the spectral model is expected to require

a shorter time step due to the inherent higher order accuracy of the computation of horizontal

derivatives [11]. Taking physics, vertical advection and horizontal di�usion also into account, it has

often been possible to apply spectral models with time steps similar to those of gridpoint models

with the same grid distance [17]. In our performance comparison, we have taken the conservative

approach of assuming the same 5 min time step for the spectral model with a 70 km transform

grid as for the gridpoint-model with a 55 km grid.

With regard to computational e�ciency of the spectral HIRLAM versus the gridpoint HIRLAM,

the need for an extension zone in the spectral HIRLAM to obtain double periodicity should also be

taken into account. This is not a problem on traditional vector computers with a shared memory

or on MIMD computers programmed with explicit message communications, since all dynamics

and physics calculations can be done in the non-extended `real' computational area. In princi-

ple, this is true also for the data-parallel programming model on a parallel distributed memory

architecture. As was the case in the present study, however, available software packages for Fast

Fourier Transforms may put restrictions on the extended grid geometry, e.g., that the number of

gridpoints should be a factor of two in each direction. Ideally, the number of gridpoints in the

extended area should be about 25% larger than in the inner computational area (10% in each

direction). This means that an equal percentage of processors may have to be applied to perform

the extra calculations in this `arti�cial' area.

Two more remarks could be made on the e�ciency of spectral versus gridpoint models. First,

in favor of the spectral model, all calculations in gridpoint space can be made strictly local since

there is no horizontal staggering of the gridpoints. This also holds for the calculations in spec-

tral space, since the coe�cients of each wave-number can be treated separately. As a second

point, when we move to larger number of horizontal points, say above 10

6

, the gridpoint methods

become relatively more e�cient, since the computational time needed for Fourier-transforms in-

creases faster than linearly in the number of points.

A second option the HIRLAM user can specify concerns the fully explicit or semi-implicit time-

integration of the dynamics. Equation (2) is an example of an explicit scheme. As mentioned

before this method results in nearest-neighbor communications in the horizontal directions. By

application of semi-implicit corrections the integration scheme becomes more stable numerically,

thus allowing longer time steps, and saving a factor of the order �ve in computational require-

ments. The reason for this is that the primitive equation model describes both fast (gravity) waves

and slow meteorological (Rossby) waves. One is mainly interested in the last type, and with the

semi-implicit method one can `slow down' the gravity waves, which results in a longer time step.

The calculation of the semi-implicit corrections requires the solution of a set of Helmholtz equa-

tions. On vector machines the additional costs for solving the Helmholtz equations are small. In

gridpoint models, this is not necessarily true on distributed memory machines, since the Helmholtz

solver requires global communications. In the spectral formulation, there are almost no costs as-

sociated with the solution of the Helmholtz equations, because the spectral components are the

eigenfunctions of the Helmholtz operator.

A third option within HIRLAM is related to the Eulerian versus semi-Lagrangian description of

the model. The semi-Lagrangian methods allows again longer time steps and gives a better de-

scription of variables with sharp gradients. On the other hand it requires a trajectory calculation

and interpolation of several values. This results in substantial additional costs and local commu-

nications over a maximal distance of �ve grid points. Since the semi-Lagrangian method has still

too many numerical problems, we will not investigate this further despite the fact that it gives

rise to several interesting problems concerning the parallelization of these methods.

All options mentioned above a�ect the dynamics in the forecast model. Each of them results in

di�erent communication patterns. The other part of the forecast model, the physics, consists of

routines for integration and �ltering algorithms, etc. Almost all physical processes take place in

5

one-dimensional vertical columns, without mutual communications. Therefore the model physics

can be described as N disjunct processes, where N is the number of gridpoints in the horizontal.

Finally, with all these options it is interesting to note that the only method that is currently in

use at several of the meteorological services participating in the HIRLAM project for their routine

weather forecasting procedures is the semi-implicit Eulerian gridpoint method, run on either scalar

or vector architectures.

3 Description of the Programming Techniques

In this section several implementation issues are discussed, that one encounters during the port of

the original HIRLAM code to a MasPar system. The reference HIRLAM forecast model is coded

in standard Fortran 77 and consists of about 28,000 lines. For an earlier and a more extended

overview of implementation issues the reader is referred to [18].

First we need to mention some characteristics of the parallel architectures used in this inves-

tigation. These are the MasPar systems, which are also sold by Digital Equipment Corporation

under the name of DECmpp systems.

Concerning the hardware, a MasPar system has a SIMD architecture with from 1,024 (1K)

up to 16,384 (16K) processors, which are called processing elements (PEs). MasPar provides two

models: the MP-1 and MP-2. The main di�erence between the MP-1 and the MP-2 con�gurations

is the increase in peak performance by a factor �ve. The communication network is exactly the

same for both model types. A full 16K MP-1 system has a peak performance of 26,000 Mips

and 550 Mop/s (64-bits) or 1,200 Mop/s (32-bits). For a full MP-2 system these numbers are

68,000Mips, and 2,400 Mop/s or 6,300Mop/s, respectively. The PEs are controlled by the Array

Control Unit (ACU), which is responsible for the instruction decode and broadcast of instructions

and data. The PE-array and ACU form the Data Parallel Unit (DPU). A MasPar system needs a

front-end, that serves as an interface to the DPU and is host for tools and compilers. In our case

the front-end is a Dec 5000 workstation. For a detailed description of the systems see e.g. [12].

The programming model on the MasPar system is data-parallelism. For Fortran programs the

MasPar Fortran (MPF) compiler is provided. This compiler is an implementation of Fortran 90.

Operations on Fortran-arrays expressed by the Fortran 90 array-syntax will be executed in paral-

lel, and the arrays involved will be distributed over the PEs. Operations with Fortran 77 syntax

will be executed sequentially. It should be mentioned that this model does not contain any explicit

message passing primitives. The compiler generates communication operations if necessary.

Let us now look at the data-parallel implementation of the HIRLAM forecast model. All model pa-

rameters are kept in core memory. The three-dimensional �elds (temperature, wind, water vapour

and liquid water) are stored as two-dimensional arrays; the �rst dimension runs over all horizontal

gridpoints, the second over the layers in the vertical. The two-dimensional �elds (surface pressure

and several soil parameters like land-sea mask) are kept as one-dimensional arrays.

Basic idea. As mentioned before, the core of the model are the subroutines to carry out the

dynamics and to carry out the physics. These routines are the most time consuming parts of

the model on scalar and vector architectures. The other routines deal with I/O, pre- and post-

processing, and do not count too much to the total execution time on scalar and vector systems.

Therefore, we concentrate in our data-parallel implementation of the dynamics and physics rou-

tines. They should run on the DPU, while the pre- and post-processing and I/O routines are

executed on the front-end. This means that at some point data has to be transferred from the

front-end to the DPU and vice versa. With this basic idea in mind we will now discuss some

implementation issues.

Data distribution. The �rst issue concerns the distribution of the data. On the one hand one

has to deal with three-dimensional �elds in the forecast model, and on the other hand the proces-

6

sors in the parallel system are organized in a two-dimensional mesh. As is stated in section 2 the

dependencies, that could result in communications between the processors, in the physics-part of

HIRLAM are almost exclusively in the vertical direction, in contrast to those in the dynamics,

which are mainly in the horizontal directions. The number of dependencies in the physics-part is

much larger than in the dynamics-part. Therefore, to minimize the number of communications we

chose for a data distribution where the data are mapped on the two-dimensional processor-array

by projection of the vertical dimension onto the horizontal plane. This distribution is quite com-

mon for this kind of application.

Compiler directives. A second issue concerns the inclusion of compiler directives in the orig-

inal code. This is a result from the fact that the three- and two-dimensional �elds are stored in

two- and one-dimensional arrays, respectively, where the �rst dimension runs over all horizontal

gridpoints. This means that for a distribution of the horizontal gridpoints over all processors, we

have to use compiler directives, since the default mapping on a MasPar system maps the �rst

dimension of a data array only in the x-direction of the processor-array, and the second dimension

in the y-direction. With the MAP-directive the user can overrule this default mapping and specify

the desired distribution.

To be more speci�c, the semi-implicit Eulerian gridpoint version of the HIRLAM model needs

944 directives to run on the MasPar system. This is nearly 4% of the total code, and therefore

striking the question if the usage/inclusion of compiler directives can be considered as the intro-

duction of a second program within the original code. On the other hand we should mention that

the inclusion of these compiler directives has a historical reason, namely that the HIRLAM was

optimized for vector architectures, and as a result contains two and one dimensional data struc-

tures instead of three and two, respectively. With the latter data structures most of the current

directives would become redundant.

Interface blocks. This issue is strongly related to the previous one. An interface block is a For-

tran 90 concept and is part of the speci�cation part of a program unit. In an interface block the

user can specify the names and properties of the dummy parameters for each subroutine and/or

function called within that program unit. In most cases it contains the same declarations and

speci�cation statements as appear in the de�nition of the subroutine or function. For a more

detailed description of interface blocks the reader is referred to e.g. [1]. In MasPar Fortran it is

mandatory to use interface blocks for all subroutines and functions with dummy parameters men-

tioned in compiler directives, in particular the MAP-directive. Including these interface blocks in

HIRLAM sometimes resulted in a fourfold increase of the number of source-lines of a subroutine.

Arrays as parameters. As a consequence of the distributed memory of a MasPar system one

cannot assume a sequential address space. This means that the actual and formal parameter in a

subroutine call should always have the same size and shape. So `dirty' Fortran 77 tricks like pass-

ing only the �rst address of an array-portion with some arbitrary length or passing 1-dimensional

arrays to routine, which require a two-dimensional parameter, and vice versa, are not allowed.

Unfortunately, these tricks were heavily used in the original HIRLAM code.

Indirect addressing. Indirect addressing is another topic. Since memory addressing is part

of an instruction, indirect addressing is often not possible on a SIMD architecture. However, on

the MasPar one speci�c FORALL-statement allows the use of indirect addressing. As a result in

some routines in HIRLAM such a FORALL-statement had to been included, since they contain

statements with indirect addressing.

Fortran 90. In principle all Fortran 90 code was produced from the original Fortran 77 source

code by using the MPVAST compiler. VAST transforms Fortran 77 code to Fortran 90 code.

Since the HIRLAM code has been optimized for vector architectures, most of these transforma-

tions could indeed be obtained automatically by MPVAST. However, some Fortran 90 statements

were added manually, partly because of the fact that VAST could not produce the most e�cient

7

code, partly because special constructs were necessary, like for indirect addressing.

Helmholtz solver. In the original HIRLAM code the Helmholtz solver for the semi-implicit time

stepping is based on a direct method, which consists of a Fourier sine-transform in the east-west

direction, followed by a Gaussian-elimination in north-south. Several conditions in the application

of the given Fourier sine-transform resulted in the fact that the integration area had to be extended

by several rows and columns. Since it is clear that this is not advisable on a parallel system, the

solver was rewritten to an iterative solver based on the Conjugate Gradient method [3].

Fourier transforms. The performance of the spectral HIRLAM is crucially depending on the

availability of e�cient FFT subroutines. The basic algorithms of the package for `Super-Parallel'

FFTs of Munthe-Kaas [13] were designed and developed for applications on SIMD computers.

The term `Super-Parallel' algorithms is used to denote \algorithms that in a SIMD fashion can

solve multiple instances of similar problems, with a degree of parallelism that is in the order of

the sum of the sizes of all the sub-problems", see [15]. The only restriction in the FFT package of

Munthe-Kaas is that the sizes of the problems should be powers of two (in all dimensions in the

case of multi-dimensional problems) and, in addition, that the data must satisfy certain alignment

requirements with the address space in the computer.

Reshaping in spectral space. The code for the spectral model dynamics is more recent than

the gridpoint model code. The two- and three-dimensional �elds are stored as two and three

dimensional arrays, respectively. To couple this code to the physics routines, which are identical

to those in the gridpoint model, the arrays must be re-dimensioned by the Fortran 90 intrinsic

function `reshape' [1] before and after physics.

Computations in spectral space. The organization of the computations in spectral space in

the original spectral HIRLAM model was based on a re-sorting of all spectral coe�cients to avoid

unnecessary computations for spectral components that are to be truncated. This organization

of the spectral computations would not have been e�cient on the MasPar. Thus, the computa-

tions in spectral space were re-organized { all computations are done for all spectral components

followed by an explicit truncation. In order to optimize the spectral model, FFT-routines based

on scrambled spectral coe�cients were utilized. This had the e�ect that a number of coe�cients

�elds needed to be calculated in advance and scrambled to the same sorting order as the spectral

coe�cients.

Compiler problem. Finally, it turned out that the compiler generates redundant communica-

tions in several routines, especially in the physics-routines. A work-around for this problem was

to make sure that array-dimensions and several loop-bounds were known at compile time. From

a research point of view this is a serious restriction, but for a production code this would improve

the performance on all kinds of platforms.

4 Realized Performance

In this section the performance of the di�erent numerical methods for the forecast routines will

be discussed and compared. At the end of the section issues like pre- and post-processing and I/O

will be investigated.

First we provide some details concerning the hardware and software used in this investigation.

The MasPar MP-1 system was a MasPar DPU Model MP-1104 (64 rows, 64 columns) with a

DEC 5000/240 front-end, while the MasPar MP-2 system contained a MasPar DPU Model MP-

2216 (128 rows, 128 columns). All tests were performed with system release 3.2.0 of the MasPar

software, which included the Vast-II (version 3.06), and the MPF compiler (version 2.2.7). In

all cases the {nodebug and {Omax compiler-options were speci�ed, which prevents the inclusion

of extra code for debug purposes, and performs the highest degree of optimization possible on a

8

MasPar system.

Gridpoint Model Results

We adopted as test runs the calculation of a 6-hour forecast on a 64�64�16 grid and a 128�128�16

grid, both at 55 km spacing. The semi-implicit gridpoint version with this resolution requires

72 time steps of 5 minutes. The small grid �ts perfectly on a 4K (64� 64) PE array, while for the

large grid this holds for a 16K (128� 128) PE array. On a PE array with fewer processors than

horizontal gridpoints, the grid is split automatically in layers. If the number of gridpoints is not

a multiple of the number of PEs, some PEs will be idle during part of the calculation on a SIMD

architecture. Therefore the only sensible choice for the number of gridpoints in one horizontal

level is a multiple of the number of processors. From physical arguments one would choose the

highest feasible number of gridpoints for any chosen model domain, because that leads to the

highest possible resolution. Alternatively, if modellers would choose to keep the resolution �xed,

they would surely extend the model domain as much as possible, given the available computational

power, so as to reduce the inuence of the lateral boundary conditions.

In table 1 the elapsed times are presented to complete the 6-hour forecast on di�erent MasPar

con�gurations. It also contains a more detailed view by showing the elapsed time per time step,

together with a break-down in the times needed for the `dynamics' and the `physics'. From this

table several observations can be made. We want to mention the following points:

{ Comparison of the corresponding timings for the 1K, 4K and 16K con�gurations per model

show that the calculations scale well with respect both to the number of processors and to

the number of gridpoints.

{ The gridpoint version runs only a factor two faster on a MP-2 con�guration than on the

corresponding MP-1 model. This is clearly less than the theoretical factor �ve. A reason

is the design decision to enhance the processor power in the MP-2 by a factor �ve, the

memory bandwidth by a factor two, and no enhancements in the communication bandwidth

with respect to the MP-1. These di�erent factors make it di�cult to predict the actual

MP-2 performance compared to the MP-1. This can also be seen in table 1, where the

ratio between the time for `dynamics' and the time for `physics' di�ers signi�cantly on both

systems. Remember, the dynamics contains many nearest-neighbor communications, while

for the physics communication is much less important.

{ The Mop-rate for the most computationally intensive routines in the dynamics measures

about 150 Mop/s for the 64�64�16 run on the MP-1 with 4K processors, which is 50% of

the maximum rate. For the physics-routines in this run it varies from 160 up to 260 Mop/s

(53%-86%). For the 128� 128� 16 grid size on a MP-2 with 16K processors, we found for

Table 1: Elapsed execution time (in sec) using various MasPar con�gurations

for a 6-hour forecast with the gridpoint HIRLAM model on di�erent grid sizes.

Also the elapsed time (in millisec) for one time step with the break down into

the time spent in the dynamics and in the physics.

Model and Grid size Forecast 1 Time step (in ms)

processors (in s) Total Dynamics Physics

MP-1 1K 64� 64� 16 286 3877 1972 1905

MP-1 4K 64� 64� 16 79 1047 552 495

MP-1 4K 128� 128� 16 291 3934 2020 1914

MP-2 1K 64� 64� 16 135 1825 1052 773

MP-2 4K 64� 64� 16 39 500 291 209

MP-2 4K 128� 128� 16 137 1841 1070 771

MP-2 16K 128� 128� 16 39 506 302 204

9

the most time consuming dynamics-routines a speed of 1200 up to 1750 Mop/s (19%{28%),

and for the physics-routines 1900 up to 3300 Mop/s (30%{52%).

Spectral Model Results

Two operational data sets of the HIRLAM system were used for benchmarks on the MasPar MP-2

systems. For most of the tests, data from a horizontal area consisting of 110 � 100 gridpoints

(128 � 128 in the extended area, see section 2) and with 16 vertical levels were utilized. The

horizontal grid distance in this data set is approximately 70 km. In order to have a proper test of

the smaller MasPar systems, a data set with 50�50 horizontal gridpoints (64�64 in the extended

area) was used in addition. Also in this test a time step of 5 minutes was possible, so 72 time

steps were carried out to obtain forecasts valid at +6 hour. In order to test the MasPar also on

a larger data set, the 110 � 100 � 16 data set was interpolated horizontally to a data-set with

221� 221� 16 (256� 256� 16 in the extended area) transform gridpoints.

The total elapsed computing times for di�erent HIRLAM spectral forecast model test runs on

di�erent MasPar sizes are contained in table 2. Again the elapsed time for each time step, with

the break down into the time spent in the dynamics and the physics, for the di�erent MasPar runs

are also given. The following of more general interest could be noted about the results in table 2:

{ In case the spectral model is run with four times as many processors for a particular transform

grid size, the computing time decreases with a factor slightly greater than four. Thus, in

this limited sense, also the spectral model scales well on MasPar. But that factor is much

greater than four for the physics, since the performance of the reshape function, included

in the physics timing (see section 2), becomes worse when the number of gridpoints exceeds

the number of processors.

{ Running on a particular processor con�guration with a 4 times larger horizontal area (e.g.,

on 221� 221 extended to 256� 256 horizontal points as compared to 110� 100 extended to

128� 128 horizontal points) increases the computing time with a factor somewhat greater

than four. This could be explained by the non-linear increase in computing time for the

FFTs as a function of the number of horizontal points.

{ The elapsed time for a 6-hour forecast with the spectral HIRLAM without I/O on the MP-2

with 16K processors was 49 seconds (grid size 110x100x16). The corresponding elapsed time

on a single processor Cray C90 was 70 seconds and the measured computational speed was

450 MFlop/s. Redundant calculations in the extension zone as well as in spectral space were

avoided in the Cray version of the code. It should be noticed that the computations on the

Cray are performed in 64-bit and on the MasPar in 32-bit. Since we have not seen that 32 bits

is insu�cient for the HIRLAM model at the resolution studied here, the best comparison

should be between a 32-bits MasPar and 32-bits Cray. However, this last machine is not

available, so the Cray is too expensive for its purpose.

Table 2: Elapsed execution time (in sec) using various MasPar MP-2 con�g-

urations for a 6-hour forecast with the spectral HIRLAM model on di�erent

grid sizes. Also the elapsed time (in millisec) for one time step with the break

down into the time spent in the dynamics and in the physics.

Model and Grid size Forecast 1 Time step (in ms)

processors (in s) Total Dynamics Physics

MP-2 1K 50� 50� 16 179 2482 1569 913

MP-2 4K 50� 50� 16 43 599 396 203

MP-2 4K 110� 100� 16 201 2786 1832 954

MP-2 16K 110� 100� 16 49 676 458 218

MP-2 16K 221� 221� 16 232 3218 2209 1010

10

Performance Comparison

In this subsection we compare the performance of the gridpoint versions, both semi-implicit and

fully explicit, and the spectral versions of the HIRLAM model with respect to the pure forecast

calculations. As explained in section 2 each method has its own characteristics resulting in di�erent

spatial and temporal resolutions. This makes a comparison not trivial. A general discussion

about this topic can be found in [9]. Our strategy consists of comparing the execution times of the

di�erent methods for performing calculations on the same physical area during the same simulated

time span with the same accuracy.

A �rst comparison between the gridpoint and spectral model can be based on the tables 1 and

2. In table 1 it was shown that a time step within the semi-implicit gridpoint version took 500 ms

for a 64� 64� 16 grid on a MasPar MP-2 with 4K processors. Of this time 291 ms was spent in

the dynamics and the remaining 209 ms in the physics. For the semi-implicit spectral model with

50 � 50� 16 points, see table 2, the total time was 599 ms, divided in 396 ms for the dynamics

and 203 ms for the physics. The reduction of the number of gridpoints from 64� 64� 16 in the

gridpoint formulation to 50�50�16 is compensated by the higher intrinsic accuracy of the spectral

method (see section 2). In this case the time spent in the physics is nearly equal for both methods.

Note, however, that this is particular to the chosen grid con�guration; comparing tables 1 and 2

shows that in case the number of gridpoints exceeds the number of processors the ine�ciency of

the reshape function (see section 3) makes the spectral model rather more expensive.

A better comparison would probably be based on the performance of a HIRLAM production

run. In operational gridpoint and spectral implementations with 55 km and 70 km resolution,

respectively, the dynamics can be calculated with time steps of 5 minutes because of numerical

stability (see section 2). For the physics a larger time step can be chosen, namely 15 minutes.

In addition to the dynamics and the physics, a third component in a production forecast can

be distinguished, which is called the statistics. It consists of routines that calculate diagnostic

information about changes in pressure, wind-speed, etc. This information is usually requested

every dynamics time step, which results in a time step of 5 minutes for the statistics.

Taking these facts into account we can calculate the total averaged costs for the 6-hour forecast

on a MasPar MP-2 system with 4K processors. The execution time to obtain the statistics has

been measured to be 50 ms on the MP-2 with 4K processors.

To get an impression of the e�ciency of a fully explicit method, which contains nearest-neighbor

communications only, we measured the time for the dynamics without the semi-implicit correction.

A time of 142 ms was found. However, due to the stability of this numerical method a time step

of one minute had to be chosen for the dynamics, which results in 360 time steps for a 6-hour

forecast. For the physics and statistics nothing changes in the fully explicit formulation compared

to the semi-implicit method.

Table 3 shows the resulting execution times to produce a 6-hour forecast with the three nu-

merical methods. From these execution times we can �rst conclude that despite the fact that

although the semi-implicit gridpoint and spectral formulations depend on global communications

and the fully explicit gridpoint formulation needs only nearest-neighbor communications, the �rst

two methods are favorable. This is due to the fact that these methods allow a �ve times larger

time step. Comparing the execution times of the semi-implicit gridpoint method and the spectral

version shows that the semi-implicit is the fastest way to calculate the 6-hour forecast. However,

the di�erence is not very signi�cant contrary to the fact that the number of global communications

Table 3: Execution times (in sec) to calculate a 6-hour forecast on a MasPar MP-2

with 4K processors. See text for details.

Method Dynamics Physics Statistics Total

Semi-implicit 72 � 0.29 = 20.9 24 � 0.21 = 5.0 72 � 0.05 = 3.6 29.5

Spectral 72 � 0.40 = 28.8 24 � 0.20 = 4.8 72 � 0.05 = 3.6 37.2

Fully explicit 360 � 0.14 = 50.4 24 � 0.21 = 5.0 72 � 0.05 = 3.6 59.0

11

Table 4: Total elapsed times (in sec) to complete a full production with the semi-

implicit gridpoint HIRLAM model on di�erent MasPar con�gurations. Also the dif-

ferentiation into the pre- and post-processing time and into the actual forecast time

are shown. The pre/post-processing time is split into time for the front-end to back-

end communications and visa versa (denote as copy), and the time spent in front-end

calculations and I/O (denoted as front-end).

Model and Grid size Pre- and post-processing Forecast Total

processors Copy Front-end Total time

MP-1 1K 64� 64� 16 42 63 105 217 322

MP-1 4K 64� 64� 16 24 60 84 66 150

MP-1 4K 128� 128� 16 133 202 335 222 557

MP-2 1K 64� 64� 16 86 59 145 106 252

MP-2 4K 64� 64� 16 33 58 91 33 124

MP-2 4K 128� 128� 16 249 196 445 109 554

MP-2 16K 128� 128� 16 100 192 292 34 326

is considerably larger in the spectral formulation. One reason for this is the highly optimized FFT

package that has been used for the spectral model. This also shows an advantage of the spectral

method with respect to parallelization aspects. As explained, all inter-processor communication

in the spectral model occur within the FFT package. So if one wants to reduce the communica-

tion overhead, one could concentrate on this package, while in a gridpoint model inter-processor

communication is spread throughout large parts of the code (see also [2, 6]).

In the comparison above, the positive e�ect of the improved accuracy of the spectral model

was assumed to be equal to the negative e�ect of the need for an extension zone.

Production Runs

Until now we have only considered the performance of the routines executing the computations

for a forecast. However, a full production run does not consist of calculations only. In a HIRLAM

production run we need �rst of all initialization �elds for the various physical variables. These

values are available as �les on disk, and are read during the input phase at the start of the run.

Secondly, since we deal with a limited area model, there will be an input phase for new boundary

values every 6 hours. Furthermore, every hour the values of several �elds are written to disk to

obtain information about the changes of the variables. These issues can be considered as the I/O

phase, which exists in every computer program.

However, all data on disk is stored in a standardized, machine-independent format. As a result

this data needs to be transformed to/from this standard. This is also a part of the full production

run. Besides, there are several other transformations from the raw calculated variables into other

information, that is useful to produce a weather forecast.

To investigate the inuence of these issues for a massively parallel system we executed several

full 6-hour production runs with the semi-implicit gridpoint HIRLAM model on di�erent MasPar

con�gurations. The resulting elapsed times are presented in table 4. To get the timings for an

actual production run, which simulates 36 or 48 hours, one should multiply the numbers in this

table by 6 or 8, respectively, ignoring the few seconds required for initialization.

In our implementation all the `extra' issues within a full production run mentioned in this

section are executed on the front-end of the MasPar system. We consider them as the pre- and

post-processing phases of the production run. As a result of our implementation the data has to

be copied between the DPU (back-end) and the front-end. Also these copies are assumed to be

part of the pre- and post-processing phases.

From table 4 one can draw the following conclusions:

{ The pre- and post-processing time dominates the total execution time in several runs or

12

counts for a considerable part to it.

{ The `copy'-timings do not scale with the amount of data. This is mainly due to the fact

that, in case one does not use the full number of processors on a MasPar system, the data

is replicated to the subsets of unused processors. This is embedded in the MasPar runtime

system to provide nearest-neighbor communications even if not all PEs are used in particular

for circular shifts (communications with toroidal wrap-around). The overhead for these

replications is related to the ratio between the number of physical PEs on the system and

the number of PEs that is actual used. In our results the only timings without this overhead

are those obtained with 4K and 16K processors on the MP-1 and MP-2, respectively.

{ The `front-end' timings for each grid size are nearly equal on the various con�gurations.

Based on the achieved results it seems that parallel computing is not useful for numerical

weather forecasting. However, the observed `overhead' is mainly due to the basic idea of our

implementation, see section 3, namely to concentrate on the parallelization of the most time

consuming routines on vector and scalar architectures. These are the routines where all calculations

are performed. On a parallel machine all routines become important, which is a direct consequence

of Amdahl's law. There are several ways to improve the observed overhead:

1. Replace the front-end by a faster machine with better I/O capacities. This will a�ect the

front-end calculations.

2. Execute the pre- and post-processing on the DPU. A large part of these computations can

be executed in parallel. This is currently under investigation. First results show that the

execution time for pre- and post-processing can be reduced to less than 10% of the total

execution time. However, this requires obviously extra implementation e�orts.

3. Dump the calculated values of the desired variables directly from the back-end on disk in a

raw form. MasPar systems provide several hardware and software improvements to read or

write data directly by the DPU from or to disk in a fast way. Subsequently, a second process

could perform all the pre- and post-processing concurrently with the forecast calculations.

5 Conclusions

To conclude a summary of the main results:

� The semi-implicit and spectral versions of the HIRLAM model are preferable to a fully

explicit gridpoint version, despite the global communications needed versus the nearest-

neighbor communications.

� The semi-implicit gridpoint version results in a higher performance than the spectral version.

� Copying data into and out of a parallel system is time-consuming. This issue should not be

underestimated on a parallel architecture.

� The algorithms for numerical weather forecasting used in this application can be executed

e�ciently. In the gridpoint version they give evidence of a good scalability both to the

number of data points and to the number of processors. In the spectral version the algorithms

are scalable with respect to the number of processors. The non-linear increase in computing

time for the FFTs as function of the number of horizontal data points prevents scalability

with respect to the number of data points.

� The e�ort to port an application like HIRLAM to this class of parallel architecture is quite

considerable. However, this was also true for vector platforms when they entered the market.

Furthermore, for the gridpoint version other classes of parallel architecture require even

more e�ort due to the fact that communications can show up on many places. This does

13

not necessarily hold for the spectral model, since all communications are restricted to the

transform routines.

It is clear that parallel computer systems could play an important role in numerical weather

forecasting and climate simulations. Based on the results shown in this paper there is hope

that the computer power o�ered by parallel systems can be utilized e�ciently for these kinds

of applications. For an example of the resulting cost/performance relation the reader is referred

to [19].

Furthermore, this investigation shows that the applied programming model, data-parallelism

without explicit message passing, can lead to acceptably e�cient code for this application area.

This is mainly due to the fact that we deal here with regular computations. For irregular cases,

like sparse computations, present day compilers are frequently not smart enough to produce e�-

cient code. The role of the underlying hardware with respect to data-parallelism without explicit

message passing is not clear yet. The MasPar implementation is currently ported to the CM-5 of

Thinking Machines Corporation. Also the T3D of Cray will be investigated. It is expected that the

current version can be easily ported to these systems. How e�cient the resulting implementations

will be is still an open question.

Finally, it is interesting that the idea (see section 1) proposed by Richardson far before the

invention of what we call computers now, can be realized! Fortunately we do not need thousands

of humans to implement it, some sophisticated hardware with accompanying software will do the

job.

Acknowledgements

We thank Ben Wichers Schreur (KNMI) for providing us the �gure of the HIRLAM integration

area. We also thank the anonymous reviewer and the guest editor for their comments, by which

the clarity and the contents of this paper have been improved.

References

[1] J.C. Adams, W.S. Brainerd, S. Walter, and J.T. Martin, Fortran 90 Handbook, Intertext,

New York, 1992.

[2] S.R.M. Barros and T. Kauranne, On the Parallelization of Global Spectral Weather Models,

submitted to Parallel Computing, 1993.

[3] J.W. Demmel, M.T. Heath, and H.A. van der Vorst, Parallel Numerical Linear Algebra, Acta

Numerica 1993, pp. 111-197, Cambridge.

[4] E. Eliassen, B. Machenhauer, and E. Rasmussen, On a Numerical Method for Integration of

the Hydrodynamical Equations with a Spectral Representation of the Horizontal Fields, Report

No. 2, Institut for Teoretisk Meteorologi, University of Copenhagen, 1970.

[5] G.J. Haltiner and R.T. Williams, Numerical Prediction and Dynamic Meteorology, second

edition, John Wiley & Sons, New York, 1980.

[6] U. G�artel, W. Joppich, and A. Sch�uller, Parallelizing the ECMWF's Weather Forecast Pro-

gram: The 2D Case, Technical Report 740, GMD, Sankt Augustin, 1993.

[7] N. Gustafsson, The HIRLAM Model, in proceedings of Seminar on Numerical Methods in

Atmospheric Models, ECMWF, Reading, UK, September 1991.

[8] J.E. Haugen and B. Machenhauer, A Spectral Limited-Area Model Formulation with Time-

dependent Boundary Conditions Applied to the Shallow-Water Equations, Mon. Wea. Rev.

121 (1993) 2631{2636.

14

[9] J.P. Singh, J.L. Hennessy, and A. Gupta, Scaling Parallel Programs for Multiprocessors:

Methodology and Examples, IEEE Computer, Vol. 26, No. 7, July 1993, 42{50.

[10] P. K�allberg (editor), Documentation Manual of the Hirlam Level 1 Analysis-Forecast System,

June 1990.

[11] B. Machenhauer, The Spectral Method, in Numerical Methods used in Atmospheric Models,

Volume II. GARP Publication Series, No. 17, 1979, 124{277.

[12] MasPar, MasPar MP-1 Hardware Manuals, July 1992.

[13] H. Munthe-Kaas, Super Parallel FFTs, SIAM J. Sci. Stat. Comput. 14 (1993) 349{367.

[14] S.A. Orzag, Transform method for calculation of vector-coupled sums. Application to the

spectral form of the vorticity equation, J. Atmos. Sci. 27 (1970) 890{895.

[15] D. Parkinson, Super Parallel Algorithms, in Supercomputing, NATO ASI series F, Vol. 62,

Springer, 1989.

[16] L.F. Richardson, Weather Prediction by Numerical Process, Cambridge University Press,

London, 1922.

[17] A.J. Simmons, Some aspects of the design and performance of the global ECMWF spectral

model, in proceedings of the Workshop on Techniques for Horizontal Discretization in Nu-

merical Weather Prediction Models, ECMWF, Reading, UK, November 1987, 249{304.

[18] L. Wolters and G. Cats, A Parallel Implementation of the HIRLAM Model, in G.-R. Ho�mann

and T. Kauranne (eds.), Parallel Supercomputing in Atmospheric Science, proceedings of the

Fifth ECMWF Workshop on the Use of Parallel Processors in Meteorology, World Scienti�c

Publ., 1993, 486{499.

[19] L. Wolters, G. Cats, and N. Gustafsson, Limited Area Numerical Weather Forecasting on

a Massively Parallel Computer, in proceedings of the 8

th

ACM International Conference on

Supercomputing, July 11{15 1994, Manchester, England, ACM press, 289{296.

15

