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Abstract

The results presented in this paper are part of a research project to investigate the possibilities

to apply massively parallel architectures for numerical weather forecasting. Within numerical

weather forecasting several numerical techniques are used to solve the model equations. This

paper compares the performance of implementations on a MasPar system of two techniques,

�nite di�erence and spectral, that are adopted in the numerical weather forecasting model

HIRLAM. The operational HIRLAM model is based on �nite di�erence methods, while the

spectral model is still in a research phase. Also the di�erences in relative performance of these

methods on the MasPar and vector architectures will be discussed.

1 Introduction

The HIRLAM (HIgh Resolution Limited Area Modeling) forecasting system has been developed

within a common research project among the weather services of Denmark, Finland, Iceland,

Ireland, the Netherlands, Norway, and Sweden [12, 6]. The application of this forecasting system

requires signi�cant computing power. Present operational applications of the HIRLAM system

are using super- or minisuper-computers including vector-processors and a moderate degree of

parallelism (2-8 processors). The forecasting model has also been applied in research mode on high

end workstations. To be able to simulate and forecast weather developments with more details,

it is of general interest to apply the model with increased spatial resolutions. Present operational

implementations can describe scales of motion of the order of 50{100 km while there is a need to

move towards descriptions of spatial scales of the order of a few kilometers. The needed computer

power for such resolutions, together with the general parallel structure of the weather prediction

problem, makes it interesting to apply the HIRLAM model on massively parallel architectures.

In this paper the performances of di�erent numerical methods within the HIRLAM forecast

model on a massively parallel platform are compared. Also the performance di�erences compared

to a vector architecture are discussed. In section 2 a short overview of the HIRLAM model

and its equations is given. Section 3 describes the numerical methods and their impact on the

parallelization of the model. The MasPar hardware and software are presented in section 4. The
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parallelization strategy is brie
y outlined in section 5. Performance results are shown and discussed

in section 6. Section 7 �nishes with some concluding remarks.

2 HIRLAM

A modern atmospheric model such as HIRLAM, consists of two main parts. The �rst is called the

`dynamics'; its task is to solve the basic model equations. The second part is called the `physics';

it describes the aggregate e�ect of the physical processes with scales smaller than the model

resolution, on the larger, resolved, scales. Some physical processes like radiation, not directly

described by the basic model equations, are also parameterized.

The basic set of equations in a atmospheric circulation model consists of a set of three-

dimensional coupled non-linear hyperbolic partial di�erential equations (PDEs). They are solved

in the dynamics part of the model. The equations are known as the Primitive Equations, and can

be derived from the Navier{Stokes equations (see e.g. [7]). The equations describe �ve prognostic

variables: two horizontal wind components u and v, the temperature T , the speci�c humidity q,

and the surface pressure p

s

.

In the HIRLAM forecast model [10] the prognostic variables are computed on a spherical

horizontal coordinate system with longitude � and latitude �. The vertical coordinate �(p; p

s

) is

hybrid between pressure based and terrain following coordinates with �(0; p

s

) = 0 and �(p

s

; p

s

) =

1.

Within this coordinate system the primitive equations can be expressed as

� two horizontal momentum equations:
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� the hydrostatic equation (which is basically an approximated form of the vertical momentum

equation):
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� the thermodynamic equation:
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� the moisture equation:
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� the continuity equation:
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In these equations we have the geopotential � (= gz), the Coriolis parameter f = 2
 sin �, the

earth angular velocity 
, the earth radius a, and the virtual temperature T

v

= (1+(�

�1

� 1) q)T .

In this last formula � = R

d

=R

v

, where R

d

is the gas constant for dry air and R

v

is the gas

constant for water vapor. Furthermore, � = R

d

=C

pd

with C

pd

the speci�c heat for dry air at

constant pressure, and ! is the pressure vertical velocity (dp=dt), which is evaluated by vertical

integration of the continuity equation (see [10]). The symbol � denotes C

pv

=C

pd

with C

pv

the

speci�c heat for moist air at constant pressure. Also
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Finally, P

X

is the tendency for variable X from (vertical) parameterized processes calculated by

the physics part of the model, and the term K

X

describes the tendency for variable X from

horizontal turbulent mixing, which is called horizontal di�usion (see section 3).

3 Numerical methods

As mentioned in section 2 the dynamics part of HIRLAM solves the equations 1{6. The solution

can be obtained by several numerical methods. Firstly, it is possible to choose between a gridpoint

(�nite di�erence) method or a spectral method. These methods will be discussed in sections 3.1

and 3.2. A second option is based on the di�erence in numerical stability between explicit and

implicit methods. This will be discussed in section 3.3. The third option describes the atmosphere

in a semi-Lagrangian formulation instead of an Eulerian representation. It is still in a research

phase, and will not be addressed in this paper.

The terms P

X

in equations 1{6 are calculated by the physics part of HIRLAM. It contains

routines for integration and �ltering algorithms, etc. Almost all physical processes take place in

the vertical direction without any horizontal dependencies. Therefore the parallelization of this

part of the model is trivial, if the required data in the vertical column of each horizontal datapoint

are stored in the memory of one processor.

Horizontal di�usion is considered to be part of the dynamics (the terms K

X

in equations 1{6).

Due to horizontal advection and physical parameterization schemes aliasing e�ects have a tendency

to accumulate energy on the shortest resolvable wavelengths. In numerical forecast models this

e�ect is called non-linear instability and it must be controlled by the so-called horizontal di�usion

(or �ltering) that removes energy from the shortest wave lengths.

An important and critical part of any limited area model is the adoption of the model variables

along the horizontal boundaries to externally given boundary conditions provided by e.g. a global

forecast model. In the present HIRLAM model this adoption is carried out by relaxation towards

the boundary conditions in a boundary relaxation zone [9]. Full weights (=1.0) are given to the

external boundary values along the outer boundary of the boundary relaxation zone. Zero weights

(= 0) are given along the inner boundary of the boundary relaxation zone.

In the following subsections we will describe each numerical method within the HIRLAM

dynamics in more detail. In particular the resulting type of communication on a parallel system

will be presented. The 
ow of computations for each method is also shown.

3.1 Gridpoint version

The gridpoint version [10] of HIRLAM is used operationally by several weather services. It is

based on �nite di�erence methods. As an illustration we consider the simple example of the

one-dimensional advection of temperature. In analytic form one has
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(7)
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Figure 1: The horizontal (a) and vertical (b) discrete grid in the HIRLAM model.

with temperature T and wind-component u in the x-direction at time t. In the most simple form

(a non-staggered horizontal grid) the discrete gridpoint version with a leap-frog time-stepping

results in

T (x; t+�t) = T (x; t��t) +

�t

�x

u(x; t) (T (x+�x; t) � T (x��x; t)) ; (8)

where T (x; t) is the temperature in gridpoint x at time t, u(x; t) is the wind-component in the

x-direction in gridpoint x at time t, �t is the time step, and �x is the grid-distance in the

x-direction.

In the HIRLAM model a more complex discretization is implemented. The variables are de�ned

and calculated on a staggered grid. In the horizontal plane this is the so-called Arakawa C-grid [2],

which is shown in �gure 1a. In �gure 1b the vertical structure is presented. As time discretization

the well-known leap-frog method is implemented in the HIRLAM model.

In the fully-explicit gridpoint version of HIRLAM the following calculations are carried out

during one time step with the assumption that the values of the variables at time t and t��t are

available:

1. Compute the explicit dynamical tendencies at time t.

2. Compute the physical tendencies at time t��t. Some of the parameterization schemes also

use dynamical tendencies to derive values valid at time t+�t.

3. Compute the horizontal di�usion tendencies at time t��t.

4. Perform a Leap-frog time step and apply a time �lter to obtain new values at time t +�t

and t. The time �lter suppresses any discrepancies between odd and even time steps due to

the leap-frog scheme.

Concerning the parallelization of the example given by equation 8 it can be seen that only

nearest neighbor communications are required, since the new value of the variable T depends

only on values of neighboring gridpoints. This holds also for the gridpoint version of HIRLAM in

general.
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Extension Zone

Boundary Relaxation Zone

Integration Area

Figure 2: Inner integration area, boundary relaxation zone, and

extension zone as used by the spectral HIRLAM model.

3.2 Spectral version

The spectral version is based on solving the primitive equations by a spectral transform tech-

nique [4, 15]. These transforms require periodic boundary conditions. This is straightforward for

a global geometry, since this geometry allows for a natural periodic variation of all variables in

both directions. To introduce this technique in a limited area model initial steps were taken by

Haugen and Machenhauer [8], who developed a spectral limited area shallow water model based on

the idea of extending the limited area in the two horizontal dimensions in order to obtain period-

icity in these two dimensions and to permit the use of e�cient Fast Fourier Transforms. The same

idea has been implemented by Gustafsson [5] into the full multi-level HIRLAM framework. The

geometry of using an extension zone to obtain periodic variations in both horizontal dimensions

of the forecast model variables is illustrated in �gure 2.

To apply the spectral transform technique for equation 7 one will start the integrations from

spectral coe�cients

^

T and û, de�ned by e.g.

T (x; t) =

1

p

2�

X

k

^

T (k; t) exp(ikx) ; (9)

^

T (k; t) =

1

p

2�

X

x

T (x; t) exp(�ikx) ; (10)

where k is the wave-number. The computation of non-linear terms is carried out in gridpoint space

and the gridpoint values of the �elds and their derivatives are obtained by inverse transforms, e.g.,

@T

@x

=

1

p

2�

X

k

ik

^

T (k; t) exp(ikx) : (11)

Once the gridpoint values of u and @T=@x have been obtained in gridpoint space, it is easy to

carry out the multiplication and then to do a transform back to spectral space for d

^

T=dt.

In the present formulation, the following steps of computation are carried out during each time-

step of the model integration. At the start of the time step the dynamical variables in spectral

space and the physical variables in grid-point space are assumed to be available at time steps t

and t��t.

5



1. Carry out inverse Fourier-transforms to obtain grid-point values of model state variables and

their horizontal derivatives in the transform grid at time t.

2. Compute the explicit dynamical tendencies at time t.

3. Carry out inverse Fourier-transforms to obtain grid-point values of the model state variables

in the transform grid at time t��t.

4. Compute the physical tendencies at time t��t. Some of the parameterization schemes also

use dynamical tendencies to derive values valid at time t+�t.

5. Extend the tendency �elds from the inner integration area to the extension zone by boundary

relaxation towards the area extended geostrophical tendencies of the lateral boundary �elds.

6. Fourier transform of the sum of dynamical and physical tendency �elds to spectral space.

7. Compute horizontal di�usion tendencies at time t��t.

8. Time stepping and time �ltering to obtain new (preliminary) values at time t+�t and t.

9. Carry out boundary relaxation by inverse Fourier transforms to gridpoint space, relaxation

towards the area extended lateral boundary �elds and Fourier transforms back to spectral

space of all model state variables at time t+�t.

As can be seen from e.g. equation 11 the performance of the spectral HIRLAM is crucially

depending on the availability of e�cient FFT subroutines, which result in global communications

on a parallel system. For the current implementation we used the package for `Super-Parallel' FFTs

of Munthe-Kaas [14], which was designed and developed for applications on SIMD computers. For

details concerning these `Super-Parallel' FFTs the reader is referred to [14].

3.3 Semi-implicit time stepping

An other option within the HIRLAM model concerns the fully explicit or semi-implicit time-

integration of the dynamics. Equation 8 is an example of an explicit scheme. Finite di�erence

schemes have to ful�ll the CFL-criterion, which limits the ratio between the spatial discretization

size and the time step with respect to some characteristic velocity within the model. The primitive

equation model describes both fast (gravity) waves and slow meteorological (Rossby) waves. One

is mainly interested in the last type. However, the time step in an explicit scheme is limited by the

higher velocity of the gravity waves. The semi-implicit method makes it possible to `slow down'

the gravity waves and therefore results in a longer time step up to a factor �ve. On the other

hand, the calculation of the semi-implicit corrections requires the solution of a set of Helmholtz

equations. In the spectral formulation, there are almost no costs associated with such Helmholtz

solver, because the spectral components are the eigenfunctions of the Helmholtz operator. But in

gridpoint models the additional costs can be substantial, since a Helmholtz solver requires global

communication on distributed memory machines. On vector machines with shared memory is has

been shown that these costs are relatively small.

3.4 Comparison between the gridpoint and spectral versions

There is no clear answer yet to the question whether it is preferable to apply the spectral or the

gridpoint technique for a particular model con�guration and for a particular computer architecture

requires. From a meteorological point of view the comparison of the gridpoint and spectral methods

should be based on physical considerations. However, a discussion of these considerations (see

e.g. [8]) falls outside the scope of this paper.

With regard to computational e�ciency of the spectral HIRLAM versus the gridpoint HIRLAM,

one has to take into account the following observations. First of all, the spectral model requires

an extension zone to obtain double periodicity. Ideally, the number of gridpoints in the extended
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area should be about 25% larger than in the inner computational area (10% in each direction).

On a parallel architecture this may result in the fact that an equal percentage of processors have

to be applied to perform the extra calculations in this `arti�cial' area.

Secondly, it is generally agreed that for a gridpoint model based on a second order horizontal

di�erence scheme, the shortest waves that can be forecasted with a similar accuracy as in a spectral

model are the four grid distance waves. The shortest wave in a spectral model generally corre-

sponds to three grid distances in the transform grid. Thus, the number of horizontal gridpoints

in a gridpoint model should be roughly twice (� (4=3)

2

) the number of transform gridpoints in a

spectral model to obtain a similar accuracy.

The third observation deals with the required time steps in both versions. They are dictated

by the stability of horizontal and vertical advection. In [11] it has been shown that in case of an

identical grid geometry, the spectral model is expected to require a shorter time step due to the

inherent higher order accuracy of the computation of horizontal derivatives. However, it has often

been possible (see e.g. [16]) to apply spectral models with time steps similar to those of gridpoint

models.

As a result of these observations we have taken in our performance comparisons the conservative

approach of assuming the same time step for the spectral model with a 70 km transform grid as

for the semi-implicit gridpoint-model with a 55 km grid. Furthermore, the positive e�ect of the

improved accuracy of the spectral model is assumed to be equal to the negative e�ect of the need

for an extension zone. Both versions produce a forecast for the same physical area.

4 MasPar Hardware and Software

The parallel platform used in this investigation is a MasPar MP-2 system. It has a SIMD architec-

ture with from 1,024 (1K) up to 16,384 (16K) processors. These processors are called processing

elements (PEs) and are organized in a two-dimensional mesh (the PE-array). A full 16K system

has a peak performance of 68,000 Mips and 2,400 M
op/s (64-bits) or 6,300 M
op/s (32-bits). The

PE-array is controlled by the Array Control Unit (ACU), which is responsible for the instruction

decode and broadcast of instructions and data. The PE-array and ACU form the Data Parallel

Unit (DPU). A MasPar system needs a front-end, that serves as an interface to the DPU and is

host for tools and compilers. For a more detailed description of MasPar systems the reader is

referred to e.g. [13].

The programming model on the MasPar system is data-parallelism. For Fortran programs the

MasPar Fortran (MPF) compiler is provided. This compiler is an implementation of Fortran 90.

Operations on Fortran-arrays expressed by Fortran 90 array-syntax will be executed in parallel,

and the arrays involved will be distributed over the PEs. Operations with Fortran 77 syntax will

be executed sequentially. It should be mentioned that this model does not contain any explicit

message passing primitives. The compiler generates communication operations if necessary.

The details concerning the hardware and software in this investigation are: the MasPar MP-2

system was a MasPar DPU Model MP-2216 (128 rows, 128 columns) with a DEC 5000/240 front-

end. All tests were performed with system release 3.2.0 of the MasPar software, which included the

Vast-II (version 3.06), and the MPF compiler (version 2.2.7). In all cases the {nodebug and {Omax

compiler-options were speci�ed, which prevents the inclusion of extra code for debug purposes,

and performs the highest degree of optimization possible on a MasPar system.

5 Implementation issues

In this section only a few important issues concerning the implementation of HIRLAM on a MasPar

system are addressed. A complete list of implementation issues can be found in [18], in which the

issues mentioned here are also discussed in more detail.

To minimize the number of communications a data distribution has been applied where the

data are mapped on the two-dimensional processor-array by projection of the vertical dimension
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onto the horizontal plane. This type of data distribution has become very common for this kind

of application. The reason is the fact that the dependencies, that could result in communications

between the processors, in the physics part of a forecast model are almost exclusively in the vertical

direction, in contrast to those in the dynamics, which are mainly in the horizontal directions (see

for HIRLAM: section 3). The number of dependencies in the physics is much larger than in the

dynamics. Therefore, to minimize the number of communications the given data distribution is

applied in most cases.

In the HIRLAM gridpoint model the two- and three-dimensional �elds are stored as one-

and two-dimensional arrays, respectively, by combining the two horizontal dimensions to one.

As a result many compiler directives had to be included in the MasPar data-parallel gridpoint

implementation to realize the desired data distribution.

The code for the spectral model dynamics is more recent than the gridpoint model code. The

two- and three-dimensional �elds are stored indeed as two- and three-dimensional arrays, respec-

tively. To couple this code to the physics routines, which are identical to those in the gridpoint

model, the arrays must be re-dimensioned by the Fortran 90 intrinsic function `reshape' [1] before

and after physics.

An other issue concerns the Helmholtz solver in the semi-implicit gridpoint version. In the

original HIRLAM production code the Helmholtz solver is based on a direct method, that consists

of a Fourier sine-transform in the east-west direction, followed by a Gaussian-elimination in north-

south. Several requirements of the applied Fourier sine-transform result in an extension of the

integration area by several rows and columns. It is clear that this is not favorable on a massively

parallel system. Therefore the direct Helmholtz solver has been replaced by an iterative solver

based on the Conjugate Gradient (CG) method [3].

6 Performance Results

In this section the performance results of the data-parallel implementation on a MasPar MP-

2 system are presented. Section 6.1 starts with the execution times for one time step by the

gridpoint and spectral HIRLAM models. In sections 6.2 and 6.3 the performances of the gridpoint

and spectral dynamics, respectively, are discussed in more details. Also the relative performances

of speci�c numerical components within the dynamics are compared with the performances on a

Cray C90. Finally, section 6.4 addresses a topic which is essential in full production runs: I/O.

6.1 Performance for one time step

In table 1 the execution times for one time step achieved by the semi-implicit gridpoint and

spectral models are shown. Timings are given for di�erent con�gurations of the MasPar MP-2

system and di�erent gridsizes. It should be mentioned that the given gridsizes for the spectral

model include the extension zone (see 3.2). The actual sizes of the spectral integration area are

equal to 50� 50� 16 and 110� 100� 16.

Table 1: Elapsed execution times (in milliseconds) using various MasPar MP-2 con�gurations

for one time step by the semi-implicit gridpoint and spectral models on di�erent grid sizes. Also

the break down into the time spent in the dynamics and in the physics is shown. See text for

more details.

# processors Grid size One time step Dynamics Physics

Gridpoint Spectral Gridpoint Spectral

1K 64� 64� 16 1825 2482 1052 1569 773 (+140)

4K 64� 64� 16 500 599 291 390 209 (+0)

4K 128� 128� 16 1841 2786 1070 1832 771 (+173)

16K 128� 128� 16 506 676 302 472 204 (+0)
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From table 1 the following conclusions can be drawn:

{ The elapsed times for one time step show that the spectral model takes 20{50% more time

than the gridpoint model. Limited to the essential di�erence between the two models, which

is the dynamics, one sees a 30{70% increase in execution time.

{ Since the physics code is the same for both models, the timings for the physics should be

equal. However, the necessary `reshaping' of the data structures in the spectral model (see

section 5) require extra time, which is given in parentheses in the `physics' column. In

case the number of datapoints is larger than the number of processors this time becomes

substantial.

In the next sections the achieved times for both models will be investigated in more detail.

6.2 Gridpoint model pro�le

Table 2 shows an execution pro�le for the semi-implicit gridpoint dynamics. The di�erent compo-

nents within one time step were discussed in sections 3.1 and 3.3. The elapsed time for one time

step is divided into the time for calculating the explicit dynamical tendencies, the time to carry

out the horizontal di�usion, the total costs for the semi-implicit corrections, and the time for other

routines. These routines are e.g. the time �lter, time stepping, boundary relaxation, extension of

�elds. The execution time for the CG algorithm is presented separately. Based on table 2 the

following observations can be made:

{ Four times as many processors allows four times more gridpoints. It results in the same

elapsed time for each components except for CG. To obtain the same accuracy the number

of iterations in CG is increased by approximately 10% for the larger grid compared to the

smaller one.

{ The calculations of the dynamical tendencies and the horizontal di�usion show a superlinear

behavior with respect to an increase in the number of processors. This does not hold for the

semi-implicit costs, in particular again for CG.

{ The execution time for a fully-explicit version can also be derived from this table: the time

spent in the semi-implicit part should be subtracted from the total time, but the time step

for the dynamics should be �ve time smaller. It is clear that these two changes do not

compensate; the total execution time for a fully-explicit version is approximately 2{3 times

larger than for the semi-implicit model.

Comparing this implementation with an implementation on a vector architecture shows also

some interesting di�erences. On a one processor Cray C90 the following numbers can be measured

for the HIRLAM reference code: during one time step (� 3:5 s for a 128 � 128 � 16 grid) 40%

of the total time is spent in the dynamics, of which 17% in calculating the dynamical tendencies,

5% in the horizontal di�usion, 11% in the semi-implicit calculations, and 7% in other routines.

The physics take 60%. Before discussing the di�erences with the MasPar implementation, some

Table 2: Elapsed execution times (in milliseconds) using various MasPar MP-2 con�gurations

split into the di�erent components of the gridpoint dynamics. See text for details.

# processors Grid size Dynamical Horizontal Semi-implicit Others

tendencies di�usion Total CG

1K 64� 64� 16 243 118 409 184 282

4K 64� 64� 16 44 22 149 84 76

4K 128� 128� 16 242 119 430 204 279

16K 128� 128� 16 44 22 163 97 73
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remarks concerning the Cray pro�le should be made: 1) this relative pro�le is almost independent

of the gridsize; 2) it is based on an implementation of the HIRLAM reference code, and therefore

contains the original Helmholtz solver (see section 5); 3) the calculations on the Cray are in 64-

bits, while they are in 32-bit on the MasPar. The reason is that we have not seen that 32 bits is

insu�cient for the HIRLAM model at the resolution studied here. Therefore the best comparison

should be between a 32-bits MasPar and 32-bits Cray. However, this last machine is not available,

so the Cray is too expensive for its purpose.

Concerning the di�erences between the MasPar and Cray results the following observations

can be made:

{ The ratio between execution times for the dynamics and the physics is signi�cantly di�erent;

on the MP-2 60% and 40% for the dynamics and the physics, respectively, while for the C90

these numbers are 40% and 60%.

{ The time for the semi-implicit corrections is signi�cantly smaller on the C90 compared to

the results on the MP-2.

{ On the MasPar the `other' routines contribute considerably more to the total elapsed time

than on the Cray (15% versus 7%).

6.3 Spectral model pro�le

Pro�ling the spectral model on the MP-2 and the C90 results in the following observations:

{ The most important factor in the total execution time is determined by the FFTs. For

128� 128� 16 grid the FFTs contribute for 75% to the dynamics on the MP-2. On the C90

this number is 65%.

{ The spectral version is not scalable with respect to number of datapoints. This can also be

seen from table 1. The reason for this fact are the FFTs.

{ The ratio's between the execution times of the dynamics and of the physics on the MP-2 and

C90 are again signi�cantly di�erent: on the MP-2 65{70% for the dynamics and 30{35% for

the physics, and on the C90 one observes 45% for the dynamics and 55% for the physics.

6.4 Full production runs

Full production runs of a numerical forecast model contain two aspects that have not been ad-

dressed yet: I/O and pre/post-processing. Examples of input are the initial and lateral boundary

data. The output consists for instance of the calculated �elds. All these data are given as binary

packed records, with the number of bits for each value in a particular �eld determined from the

required accuracy and the actual range of variation for that particular �eld. This GRIB (gridded

binary) format is a standard for storage and exchange of processed data within the meteorological

community. The pre/post-processing routines transform these GRIB �les into internal computer

words and vice versa.

We have demonstrated [17, 18] that I/O and pre/post-processing should be considered as

important issues on a massively parallel system like MasPar. The time spent in these parts of a

full production run could easily double the total execution time. This was mainly due to the fact

that these routines were not parallelized and therefore were executed on the front-end.

Table 3 shows some results if one makes the e�ort to parallelize the routines involved with

I/O and pre/post-processing. A comparison with a 4-processor Convex C-3840 is also presented.

From this table is can be concluded that contrary to what previously pessimistically has been esti-

mated [17] the MasPar MP-2 shows to be capable of handling the I/O needed for a full operational

forecast run. Compared to the results on the Convex the MP-2 percentages are still high.

It should be noticed that these percentages are strongly dependent on the amount of data, in

which the modeller is interested. This can be speci�ed by the user. In particular the frequency by
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Table 3: Pro�ling of pre/post-processing versus model integration.

Stage in forecast MasPar MP-2, 16K Convex C-3840, 4 proc.

Input, unpacking,

and pre-processing 8.7% 3.7%

Time integration 83.1% 92.9%

Post-processing,

packing, and output 8.2% 3.4%

which calculated �eld should be stored on disk, will in
uence the total post-processing and I/O

time signi�cantly with respect to the model integration time. Therefore the role of these issues on

the performance of full production runs on parallel systems should not be underestimated.

7 Concluding remarks

This investigation has resulted in a detailed performance comparison of di�erent numerical meth-

ods applied in the operational HIRLAM weather forecast model. The conclusions are listed and

discussed in section 6. The fact that nonnumerical aspects within such a model are also important,

has been demonstrated in section 6.4.

It is not clear yet, whether massively parallel computer systems will be applied for numerical

weather forecasting in the near future. It requires more research, in particular other parallel archi-

tectures should be investigated. Furthermore, not only the forecast model should run e�ciently,

but also the other important part of a forecast system, namely the analysis part dealing with

the observations, has to be implemented on such an architecture. However, the experiments in

this investigation demonstrate at least that a MasPar massively parallel system can provide an

interesting alternative to vector architectures, since scalability of the numerical algorithms in the

HIRLAM forecast model varies from reasonable to very good.
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