
A DATA PARALLEL HIRLAM FORECAST MODEL

Lex Wolters

�y

, Robert van Engelen

z

High Performance Computing Division,

Dept. of Computer Science, Leiden University

P.O. Box 9512

2300 RA Leiden, The Netherlands

fllexx,robertg@cs.leidenuniv.nl

Gerard Cats

y

Royal Netherlands

Meteorological Institute

P.O. Box 201

3730 AE De Bilt, The Netherlands

cats@knmi.nl

Nils Gustafsson

y

Swedish Meteorological and

Hydrological Institute

S-60176 Norrk�oping, Sweden

ngustafsson@smhi.se

Tomas Wilhelmsson

NADA

Royal Institute of Technology

Stockholm, Sweden

towil@nada.kth.se

ABSTRACT

This paper describes the current status of our research on data parallel implemen-

tations of the complete HIRLAM forecast model with both gridpoint and spectral

dynamics, on massively parallel architectures. It is part of a research project, that

investigates the possibilities to apply parallel computer systems for routine numerical

weather forecasting.

1 Introduction

In our research to investigate the (dis)advantages and the (in)e�ciency of data par-

allel implementations of the HIRLAM forecast model on massively parallel computer

systems, we have achieved new results compared to the situation described in [9].

This paper summarizes these results, of which some are preliminary.

The HIRLAM system [3, 6] was developed by the HIRLAM-project group, a

cooperative project of Denmark, Finland, Iceland, Ireland, The Netherlands, Norway,

and Sweden. The model, which is used for producing limited area numerical forecasts,

is in use at several of the meteorological services participating in the HIRLAM project

for their routine weather forecasting.

�

Support was provided by the Esprit Agency EC-DGIII under Grant No. APPARC 6634 BRA III.

y

Support was provided through the Human Capital and Mobility Programme of the European Community.

z

Support was provided by the Foundation for Computer Science (SION) of the Netherlands Organization for

Scienti�c Research (NWO) under Project No. 612{17{120.

On the basis of the achieved performances in full production runs several issues

will be discussed. After a short introduction in section 2 about data parallelism,

section 3 compares the parallel e�ciency of numerical methods (semi-implicit versus

fully-explicit, gridpoint versus spectral). Some execution pro�les will be presented

in section 4 and compared to one obtained on a traditional vector-architecture. Sec-

tion 5 deals with non-numerical topics, like pre/post-processing and I/O. Preliminary

results with the semi-Lagrangian formulation will be presented in section 6. Finally,

section 7 shows �rst results concerning the relation between the achieved performance

and the selected data-distribution on a MasPar and a CRAY T3D system.

It should be clear that the goal of this paper is to provide the reader with a

global overview of our results only. It falls outside the scope of this paper to include

all results and to describe all details. However, we will give for each topic in the

corresponding section one or more references to publications in which a complete

and detailed presentation of that speci�c topic can be found.

2 Data Parallelism

Data parallelism is one of the programming models to exploit parallel systems. It is

based on the fact that data are distributed in some way over a possibly restricted

set of processors. On current parallel platforms this is achieved by including com-

piler directives in the source code or by using a default distribution. Parallel code

segments are indicated by array or vector syntax, e.g. Fortran 90 syntax [1]. If dur-

ing the parallel execution a processor needs data that reside on an other processor,

communication is required. However, within the data parallel programming model

no calls to communication primitives have to be included in the code, since the com-

piler will take care of that. This is known as implicit communication. It is one of

the advantages of data parallelism, in particular compared to programming models

with explicit communication, where the programmer has to include send and receive

statements or equivalent primitives. The requirement that one should use array or

vector syntax is not a real drawback, because powerful tools are available to transform

Fortran 77 code to Fortran 90 code. From a point of maintenance this an important

observation.

Data parallelism has two possible disadvantages. The �rst one concerns the fact

that the resulting e�ciency of the program depends highly on the capacities of the

compiler to generate e�cient code. In programming models with more explicit com-

munication (e.g., message passing), the programmer can take advantage of his knowl-

edge about the program and include the most e�cient communication primitives at

the best locations in the code. However, it can be expected that this code with mes-

sage passing will be more di�cult to maintain, in particular if the same code will

be adapted and modi�ed by several programmers. The second disadvantage of data

parallelism is more serious. Currently this programming model can only be applied

in problems which lead to regular data distributions. Irregular data distributions,

e.g. in �nite element codes, can not be handled e�ciently in this model. Fortunately,

many numerical weather prediction codes are based on �nite di�erence or spectral

methods, that lead in general to very regular data distributions.

In our investigation we have used mainly MasPar systems. These systems have

a SIMD architecture with 1024{16384 processors. The processors are physically and

logically arranged in a two dimensional grid with wrap-around. Basically, data par-

allelism is the only programming model available for MasPar systems. Two types of

communications are implemented: Xnet communication for nearest neighbor com-

munications and Router communication for communication between arbitrary pro-

cessors. For more detailed information concerning MasPar platforms the reader is

referred to [7].

After our { still ongoing { research activities on Maspar systems, we also started

to investigate the MIMD CRAY T3D parallel system. A T3D system contains from

32 up to 2048 Dec Alpha processors. These processors are physically distributed in

a torus, but can be mapped logically in any grid structure. As programming model

the T3D supports data parallelism, work sharing, message passing based on PVM,

and a so-called shared memory model. More details about the CRAY T3D systems

can be found in e.g., [2].

3 Di�erent Numerical Methods

A modern atmospheric model such as HIRLAM, consists of two main parts. The �rst

is called the `dynamics', which solves the basic model equations known as the primi-

tive equations (see e.g., [4]). The second part is called the `physics', which describes

the aggregate e�ect of the physical processes with scales smaller than the model res-

olution, on the larger, resolved, scales. Some physical processes like radiation, not

directly described by the basic model equations, are also parameterized.

To solve the primitive equations in the dynamics, HIRLAM provides di�erent nu-

merical methods: fully explicit versus semi-implicit techniques, and gridpoint versus

spectral methods. The physics is independent of the applied numerical method in

the dynamics. In this section we show a few results concerning the comparison of

these methods with respect to their data parallel implementation on a MasPar MP-2.

More results and backgrounds on this topic can be found in [10, 11, 12]. In [11] a

detailed description of the programming techniques is given.

In table 1 the resulting execution times for one time step using the di�erent meth-

ods in the dynamics are shown. From this table we observe that the execution time

for the fully explicit gridpoint method is the smallest. However, this method requires

a �ve times smaller time step than the other two methods, which are therefore favor-

able. Due to this signi�cant di�erences in time steps, we should drop the fully explicit

method, despite the fact that the semi-implicit gridpoint and spectral formulations

depend on global communications while the fully explicit gridpoint formulation needs

only nearest-neighbor communications.

Table 1: Elapsed time (in sec) for the dynamics per time

step on a MasPar MP-2 with 4K processors.

Method Dynamics

Fully explicit gridpoint 0.14

Semi-implicit gridpoint 0.29

Spectral 0.39

To compare the semi-implicit gridpoint method and the spectral version in more

detail, we present in table 2 some execution times for one time step achieved by

both methods. Before drawing some conclusions based on this table, we should make

the following remarks. The spectral method in a limited area model required a so-

called extension zone (see [5]) to obtain periodicity and to allow the use of e�cient

Fast Fourier Transforms (FFT). The gridsizes for the spectral model given in table 2

include this extension zone. The actual sizes of the spectral integration area are

equal to 50� 50� 16 and 110 � 100 � 16. A second point is related to the fact that

in the HIRLAM gridpoint model the two- and three-dimensional �elds are stored

as one- and two-dimensional arrays, respectively, by combining the two horizontal

dimensions to one. The code for the spectral model dynamics is more recent than

the gridpoint model code. The two- and three-dimensional �elds are stored indeed as

two- and three-dimensional arrays, respectively. To couple this code to the physics

routines, which are identical to those in the gridpoint model, the arrays must be

re-dimensioned by the Fortran 90 intrinsic function `reshape' [1] before and after

physics.

From table 2 one can conclude that the elapsed times for executing the dynamics,

which is the essential di�erence between the two models, show that the spectral model

takes 30{70% more time than the gridpoint model. Furthermore, the scalability for

the gridpoint model is quite well both with respect to the number of processors and to

the number of gridpoints. For the spectral model we observe a non-linear increase in

computing time for the FFTs as function of the number of horizontal points. Finally,

Table 2: Elapsed execution times (in milliseconds) using various MasPar MP-2

con�gurations for one time step by the semi-implicit gridpoint and spectral

models on di�erent grid sizes. The additional time required for the `reshaping'

of the data in the spectral model (see text) is given between parenthesis.

proc. Grid size Dynamics Physics

Gridpoint Spectral

1K 64 � 64 � 16 1052 1569 773 (+140)

4K 64 � 64 � 16 291 390 209 (+0)

16K 128 � 128 � 16 302 472 204 (+0)

the necessary `reshaping' of the data structures in the spectral model require extra

time, which is given between parenthesis in table 2, and becomes substantial when

the number of datapoints is larger than the number of processors.

4 Execution Pro�les

In this section several execution pro�les of the semi-implicit gridpoint model on a

MasPar MP-2 are discussed and compared to the pro�le obtained on a one processor

CRAY C90. For more detailed information and other results the reader is referred

to [12].

The calculation of the semi-implicit corrections requires the solution of a set

of Helmholtz equations. In the HIRLAM reference code this Helmholtz solver is

based on a direct method, which consists of a Fourier sine-transform in the east-west

direction, followed by a Gaussian-elimination in north-south. Several constraints

within the applied Fourier sine-transform algorithm result in an extension of the

integration area by several rows and columns. It is clear that this is not advisable for

a massively parallel system. Therefore we replaced the direct Helmholtz solver by an

iterative solver based on the Conjugate Gradient (CG) method.

Table 3 shows execution pro�les for the semi-implicit gridpoint dynamics. The

percentages of the total elapsed time for one time step are presented for the dif-

ferent components: to calculate the explicit dynamical tendencies, to carry out the

horizontal di�usion, the total costs for the semi-implicit corrections, the percentage

for other routines (e.g., time �lter, time stepping, boundary relaxation, extension

of �elds), and to perform the physics. The percentage for the CG algorithm is pre-

sented separately. Concerning the Cray pro�le it should be mentioned that the pro�le

is almost independent of the grid size, and it is based on an implementation of the

HIRLAM reference code, and therefore contains the original Helmholtz solver.

From table 3 one can observe the following facts: the calculations of the dynamical

tendencies and the horizontal di�usion are relatively cheaper using con�gurations

with more processors for the same grid; this does not hold for the semi-implicit costs,

in particular for CG. Comparing the MasPar and Cray pro�les shows that on the

Table 3: Percentages of execution times using various MasPar MP-2 con�gurations

split into the di�erent components of the semi-implicit gridpoint version.

system, Grid size Dyn. Hor. Semi-implicit Others Phys.

processors tend. di�. Total CG

MP-2, 1K 64 � 64 � 16 13 7 22 10 16 42

MP-2, 4K 64 � 64 � 16 9 4 30 17 15 42

MP-2, 4K 128 � 128 � 16 13 7 23 11 15 42

MP-2, 16K 128 � 128 � 16 9 4 32 19 14 42

C90, 1 proc. any 17 5 11 na 7 60

MP-2 58% and 42% of the total time is spent in the dynamics and in the physics,

respectively, while for the C90 these numbers are 40% and 60%; the costs for the

semi-implicit corrections are signi�cantly smaller on the C90 compared to the results

on the MP-2; on the MasPar the `other' routines contribute considerably more to the

total elapsed time than on the Cray (15% versus 7%).

Finally, some remarks concerning the e�ciency on MasPar systems and a CRAY

C90. On a MasPar MP-1 one can achieve in the dynamics part � 50% of the theo-

retical peak-performance. For the di�erent physics routines this number varies from

53% to 86%. On a MP-2 the dynamics routines have an e�ciency between 19% and

28%, while for the physics one obtains 30{52%. A one processor CRAY C90 results

in an overall e�ciency of 45%. See for more details [11, 12].

5 Non-numerical topics

This section deals with two aspects of a full HIRLAM production run that have not

been addressed yet: I/O and pre/post-processing. For all details the reader is referred

to [11, 12]. Examples of input are the initial and lateral boundary data. The output

consists for instance of the calculated �elds. All these data are stored in the standard

GRIB (gridded binary) format. Pre- and post-processing routines transform these

GRIB �les into internal computer words and vice versa.

To investigate the in
uence of these non-numerical issues on a massively paral-

lel system we executed several full 6-hour production runs with the semi-implicit

gridpoint HIRLAM model on di�erent MasPar con�gurations. The resulting elapsed

times are presented in table 4. This table demonstrates that the execution time of the

pre- and post-processing routines together with the I/O routines dominates the total

execution time. This is mainly due to the fact that these routines are not parallelized

and therefore are executed sequentially on the front-end of the MasPar.

Table 5 shows some results if one makes the e�ort to parallelize the routines in-

volved with I/O and pre/post-processing. A comparison with a 4-processor Convex

C-3840 is also presented. From this table is can be concluded that the paralleliza-

Table 4: Total elapsed times (in sec) to complete a 6-hour production run with the

semi-implicit gridpoint HIRLAM model on di�erent MasPar con�gurations. This

time is split into two parts: one part shows the time spent in the pre/post-processing

and I/O routines, and the other part denotes the time for the actual forecast.

MP-2 Grid size Pre- and post- Forecast Total

proc. proc. & I/O time

1K 64 � 64 � 16 145 106 251

4K 64 � 64 � 16 91 33 124

4K 128 � 128 � 16 445 109 554

16K 128 � 128 � 16 292 34 326

Table 5: Pro�ling of pre/post-processing versus model integration.

Stage in forecast MasPar MP-2, 16K Convex C-3840, 4 proc.

Input, unpacking,

and pre-processing 8.7% 3.7%

Time integration 83.1% 92.9%

Post-processing,

packing, and output 8.2% 3.4%

tion of the I/O and pre/post-processing routines leads to acceptable results for full

operational forecast runs on the MasPar MP-2. However, compared to the results

on the Convex the MP-2 percentages are still high. It should be noticed that these

percentages are strongly dependent on the amount of data, in which the modeller

is interested. This can be speci�ed by the user. In general one can conclude that

the role of these non-numerical issues on the performance of full production runs on

parallel systems should not be underestimated.

6 Semi-Lagrangian Formulation

The semi-Lagrangian formulation is one of the methods to increase the time step

signi�cantly compared to the more common Eulerian formulations. Therefore it has

become very attractive for numerical weather forecasting. A detailed physical and

mathematical description of the semi-Lagrangian methods can be found in the review

article [8]. The HIRLAM forecast model contains a two-time-level semi-Lagrangian

method with di�erent interpolation routines. We have implemented this method

including a linear/cubic interpolation on a MasPar MP-2.

A detailed description of the di�erent implementations falls outside the scope of

this paper. The reader can �nd all details in [13]. We restrict ourselves to providing

a global idea on the problems in implementing this method. Also some preliminary

results are presented in this section.

From a numerical point of view, semi-Lagrangian methods consist of three steps

(see also �gure 1). In the �rst step the trajectory of each particle is determined. For

each grid point (arrival point) the displacements in three dimensions to the departure

point of the particle at the beginning of the time step are determined. This is achieved

by an inter- or extrapolation of the horizontal and vertical velocities. The second step

consists of the evaluation of the value of the required variable at the departure point.

Because in general the departure point will not be a grid point, its value has to be

determined by an interpolation of values of grid points surrounding the departure

point. Finally, the third step updates the value of the variable at the arrival point.

The basic problem in implementing these methods on a massively parallel com-

puter are the irregular communications, that result from the interpolation routine.

Based on the fact that in the data parallel HIRLAM model on MasPar all horizontal

Figure 1: Calculation in a semi-Lagrangian formulation, projected on the

horizontal plane. The arrow shows the trajectory from the departure point to

the arrival point, which is a grid point. The grid points acting as interpolation

points in a linear/cubic interpolation are encircled.

grid points are distributed over the two-dimensional processor grid in a cyclic (so non-

blocked) and cut-and-stack way, one can describe the problem from a computational

point of view as follows: to update the value at the arrival point, the correspond-

ing processor needs the values of some neighboring processors around that processor

together with weights that already reside on that processor. It is known that these

neighboring processors form a 9� 9 square of processors with the `current' processor

as middle-point, which can also been seen from �gure 1 (see for all details [13]).

With these observations in mind several implementations are possible. The most

simplest one is to use the implementation from the reference HIRLAM code. This is

called the original version. In the reference code this means that for each grid/arrival

point the necessary interpolation points are obtained by indirect addressing in the

three dimensional arrays. With the applied data distribution this will result within

this data parallel version in indirect loads to obtain values on one processor and in

Router communications to move the required values to the processor correspond-

ing with the arrival point. This method shows a quite random memory access and

communication pattern. It turned out that the total extra time for this complete

implementation of the semi-Lagrangian method is 3.50 s per time step.

In other versions we tried to control the random behavior of the communications

and indirect addressing. The performance of these implementation was disappointing

(see [13]), except for one. This version is based only on nearest-neighbor communica-

tions (called Xnet communications on MasPar, see section 2). Therefore we call it the

Xnet version. The idea is to collect all possible 9� 9� k interpolation values on the

processors corresponding with an arrival point of a trajectory, where k is the number

of vertical levels. This can be realized by applying two series of cshift-routines [1]

Table 6: Extra times for executing one time step using the

semi-Lagrangian formulation with the di�erent implementations of

the interpolation routine in the spectral semi-implicit HIRLAM fore-

cast model with a 110� 100� 16 integration area on a MasPar MP-2

with 16K processors. Also the total execution time for one time step

in the spectral semi-implicit Eulerian formulation is shown.

Implementation Time (in sec)

Original 3.50

Xnet version 0.35

Eulerian time step 0.68

(see [13]). It results in an extra execution time of 0.35 s per time step.

In table 6 the resulting extra execution times for the di�erent implementations

of the semi-Lagrangian method per time step in the spectral HIRLAM forecast have

been gathered. Also the time for executing one time step of a corresponding run in

a spectral semi-implicit Eulerian formulation has been added, taken from [10]. As

mentioned before the semi-Lagrangian formulation allows a larger time step than the

Eulerian formulation. In the HIRLAM model we can take a three times larger time

step. This is related to the physics part of the model. Observing the additional

costs for the semi-Lagrangian method, as can be seen in table 6, it is clear that the

Xnet version leads to an overall improvement in total execution time of the model:

0:68+0:35 = 1:03 seconds per time step versus 3�0:68 = 2:04 seconds per time step

for the Eulerian version.

It can be concluded that the semi-Lagrangian formulation in numerical weather

prediction models can be implemented successfully on a massively parallel computer

system. However, two disadvantages can be observed: 1) the increased memory usage

per processor; 2) the interpolation routine is not portable anymore.

7 Data-distributions

In this section we present some �rst results concerning the question how the execu-

tion time depends on the distribution of the data over the processors. The di�erent

distributions in HIRLAM can be realized in two ways. Firstly, as mentioned earlier,

in the reference HIRLAM gridpoint model the two- and three-dimensional �elds are

stored as one- and two-dimensional arrays, respectively, by combining the two hor-

izontal dimensions to one. We call it the 1D model. To simplify the use of data

parallelism we have created a modi�ed code, in which the horizontal dimensions are

not combined. This code is called the 2D model. These two models will in general

result in di�erent data-distributions.

The second method is based on two well-known ways to distribute data over pro-

cessors: cyclic and blocked distributions. In the cyclic distribution the �rst element

of an array is placed on processor 1, the second element on processor 2, and so on.

If the number of elements is larger than the number of processors, one starts again

with processor 1. This is known as the cut-and-stack technique. In a blocked dis-

tribution one divides the number of elements by the number of processors, and on

each processor a block of elements is placed, where the number of elements in one

block is equal to the outcome of the division. Hybrid methods are also known, both

for one dimension and for more dimensions. However, they are not applied in our

investigation.

The in
uence of the di�erent distributions on the execution time has not been

determined for the complete HIRLAM model yet. We restricted ourselves to one

time-consuming routine with relatively many communications: DYN. This routine

calculates the explicit dynamical tendencies of several variables by applying �nite

di�erence methods on the partial di�erential equations. This means that the com-

munications in DYN are between nearest-neighbor processors.

The �gures 2 and 3 show the resulting execution times on a MasPar MP-1 with

32 � 32 processors for cyclic and blocked distributions in the 2D and 1D model,

respectively. In these �gures the x-axis gives the gridsize, which is de�ned as the

number of gridpoints in one horizontal direction. A gridsize of 64 means an integration

area of 64 � 64 gridpoints. The number of vertical levels is equal to 16 in all tests.

Figure 2 shows a pattern, that could be expected for the 2D-version on a SIMD

architecture like MasPar. Since we have 32� 32 processors we observe an increase in

execution time at gridsizes 33 and 65. At these gridsizes the data is stacked in 4 and

9 layers on 32 � 32 processors, respectively. However, the observed execution times

are not increased by the same factors. Furthermore, there is no signi�cant di�erence

between the cyclic and blocked distribution.

The results for the 1D-version on the MasPar are presented in �gure 3. We observe

again two step functions, in which each step corresponds with a new data layer. For

the block distribution the communications are more regular and less in number than

in the cyclic distribution, which can also be seen in �gure 3. Despite this fact the

cyclic distribution is faster, which is due to the type of communication instructions

generated by the compiler.

Comparing �gures 2 and 3 leads to the conclusion that the 2D-version is not

necessarily always faster than the 1D-version. The performance of the 2D-version is

clearly more predictable.

We have implemented the same versions of DYN on a CRAY T3D with 8 � 8

processors. However, instead of data parallelism we had to use work sharing as

programming model due to compiler bugs. Work sharing requires signi�cantly more

programming e�orts, but is more
exible. With work sharing it is possible to simulate

data parallelism. We have performed some tests, that show that the T3D compiler

can generate more e�cient code for a work sharing program than for program based

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
s
)

grid size

cyclic
blocked

Figure 2: Execution times for the 2D version of DYN on a MasPar MP{1 with

32� 32 processors using di�erent data-distributions and varying the gridsize.

See text for more details

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
s
)

grid size

cyclic
blocked

Figure 3: Execution times for the 1D version of DYN on a MasPar MP{1 with

32� 32 processors using di�erent data-distributions and varying the gridsize.

See text for more details

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

t
i
m
e

(
m
s
)

grid size

cyclic
blocked

Figure 4: Execution times for the 2D version of DYN on a CRAY T3D with

8 � 8 processors using di�erent data-distributions and varying the gridsize.

See text for more details

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

t
i
m
e

(
m
s
)

grid size

cyclic
blocked

Figure 5: Execution times for the 1D version of DYN on a CRAY T3D with

8 � 8 processors using di�erent data-distributions and varying the gridsize.

See text for more details

on data parallelism (� 20% more e�cient). So, �gures 4 and 5 show the obtained

execution times for our tests based on the work sharing programming model. An

important restriction of the T3D compiler is that the dimensions of distributed arrays

should always be a power of two. Overall we see the same e�ects on the T3D as on

the MasPar taken into account that the T3D contains only 64 processors compared

to the 1024 processors on the MasPar. Therefore each processor on the T3D contains

signi�cantly more data points than on the MasPar. This investigation is not �nished

yet, so the �gures show only preliminary results. An important factor that could

in
uence these results considerably is the single node performance on the T3D. At

the moment this performance is very disappointing.

8 Conclusion

The results in this paper show that the numerical weather forecast model HIRLAM

can bene�t from massively parallel computer systems. However, several topics have

to be addressed in more detail, in particular I/O and data-distributions. Data paral-

lelism can be successfully applied as programming model on MasPar systems. Based

on preliminary results with the T3D it is clear that its compiler for this program-

ming model is not e�cient yet, in particular compared to other programming models

available for this system.

Acknowledgments

This work was sponsored by the National Computing Facilities Foundation (NCF)

for the use of supercomputer facilities, with �nancial support from the Netherlands

Organization for Scienti�c Research (NWO).

References

[1] J.C. Adams, W.S. Brainerd, S. Walter, and J.T. Martin, Fortran 90 Handbook,

Intertext, New York, 1992.

[2] Cray Research Inc., CRAY T3D System Architecture Overview, 1993.

[3] N. Gustafsson (editor), The HIRLAM 2 Final Report, HIRLAM Technical Re-

port No. 9, 1993, (available from SMHI, S-60176 Norrk�oping, Sweden).

[4] G.J. Haltiner and R.T. Williams, Numerical Prediction and Dynamic Meteorol-

ogy, second edition, John Wiley & Sons, New York, 1980.

[5] J.E. Haugen and B. Machenhauer, A Spectral Limited-Area Model Formulation

with Time-dependent Boundary Conditions Applied to the Shallow-Water Equa-

tions, Mon. Wea. Rev. 121 (1993) 2631{2636.

[6] B. Machenhauer (editor), The HIRLAM Final Report, HIRLAM Technical Re-

port No. 5, DMI, Copenhagen, Denmark, December 1988.

[7] MasPar, MasPar MP{1 Hardware Manuals, July 1992.

[8] A. Staniforth and J. Côt�e, Semi-Lagrangian Integration Schemes for Atmo-

spheric Models { A Review, Mon. Wea. Rev. 119 (1991) 2206{2223.

[9] L. Wolters and G. Cats, A Parallel Implementation of the HIRLAMModel, in G.-

R. Ho�mann and T. Kauranne (eds.), Parallel Supercomputing in Atmospheric

Science, proceedings of the Fifth ECMWF Workshop on the Use of Parallel

Processors in Meteorology, World Scienti�c Publ., 1993, 486{499.

[10] L. Wolters, G. Cats, and N. Gustafsson, Limited Area Numerical Weather Fore-

casting on a Massively Parallel Computer, in proceedings of the 8

th

ACM Inter-

national Conference on Supercomputing, July 11{15 1994, Manchester, England,

ACM press, 289{296.

[11] L. Wolters, G. Cats, and N. Gustafsson, Data-Parallel Numerical Weather Fore-

casting, to be published in a special issue of Scienti�c Programming on `Appli-

cation Performance Analysis'.

[12] L. Wolters, G. Cats, N. Gusta�son, and T. Wilhelmsson, `Computing the

Weather of Tomorrow in Parallel?', in Proceedings of the CWI-RUU Sym-

posia on Massively Parallel Computing and Applications, CWI, Amsterdam,

the Netherlands, to appear in a special issue of the IMACS Journal on Applied

Numerical Mathematics.

[13] L. Wolters, G. Cats, N. Gusta�son, and T. Wilhelmsson, Dataparallel Semi-

Lagrangian Numerical Weather Forecasting, to appear in the proceedings of

Frontiers 95, the Fifth Symposium on the Frontiers of Massively Parallel Com-

putation, February 6-9, 1995, McLean, Virginia, USA.

