
Memory Hardware Support for

Sparse Computations

�

Arnold J. Niessen Harry A.G. Wijsho�

High Performance Computing Division,

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

+31 71 277037, fax: +31 71 276985

niessen@cs.leidenuniv.nl

�

This work was supported in part by the Esprit Agency DG XIII under Grant No. AP-

PARC 6634 BRA.

1



Contents

1 Introduction 5

2 Related work 7

3 Vector storage designs 8

3.1 Element-wise storage : : : : : : : : : : : : : : : : : : : : : : : : : 8

3.2 Block-wise storage : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.3 Performance comparison : : : : : : : : : : : : : : : : : : : : : : : 16

4 Matrix storage designs 19

4.1 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4.2 Implementation using interleaved memory and write bu�ers : : : 26

4.3 Performance comparison : : : : : : : : : : : : : : : : : : : : : : : 27

5 Example: Sparse matrix Vector Multiply 29

6 Implementation issues 30

7 Cache 32

8 Conclusions 34

2



List of Tables

1 System parameters and their assumed size. : : : : : : : : : : : : 6

List of Figures

1 Architecture for element-wise storage of vectors : : : : : : : : : : 8

2 Contents of memory in vector storage design : : : : : : : : : : : 9

3 Contents of memory in block-wise vector storage design : : : : : 13

4 Architecture for block-wise storage of vectors : : : : : : : : : : : 14

5 Memory e�ciency of vector storage compared with row-wise stor-

age (assuming � = 5). : : : : : : : : : : : : : : : : : : : : : : : : 17

6 Contents of memory in matrix storage design : : : : : : : : : : : 19

7 Storage of matrix A. : : : : : : : : : : : : : : : : : : : : : : : : : 20

8 Architecture for element-wise matrix storage : : : : : : : : : : : 21

9 Storage of matrix A after row 2 has been deleted. : : : : : : : : : 24

10 Storage of matrix A after row 2 has been deleted and reinserted. 25

11 Memory e�ciency of matrix storage compared with row-wise stor-

age (assuming � = 5). : : : : : : : : : : : : : : : : : : : : : : : : 28

12 Memory cycles per operation for some hardware designs : : : : : 28

13 Memory references for SpMxV using row-wise storage. : : : : : : 29

3



Abstract

Address computations and indirect, hence double, memory accesses

in sparse matrix application software render sparse computations to be

ine�cient in general. In this paper we propose memory architectures that

support the storage of sparse vectors and matrices. In a �rst design, called

vector storage, a matrix is handled as an array of sparse vectors, stored

as singly-linked lists. Deletion and insertion of a vector is done row- or

column-wise only. In a second design, called matrix storage, a higher level

of sophistication is achieved. A sparse matrix is stored as a bi-directionally

threaded doubly-linked list of elements. This approach enables both row-

and column-wise operations. Reading a row (column) can be done at the

speed of one element (real value and indices) per memory cycle, while

extracting or updating takes 2 memory cycles. Inserting an element can

be done once every 2.5 memory cycles. A pipelined variant with 3-fold

interleaved memory and write bu�ers yields higher e�ciency, close to one

sparse matrix element per memory cycle for all basic vector operations.

In-memory operations also decrease the burden on processor, cache, and

bus.

4



1 Introduction

Due to the importance of sparse matrix applications, research has been con-

ducted to tackle problems that are inherent to software controlled sparse data

storage: �ll-in, data movement, need for memory management, indirect address-

ing, and hard-to-optimize (obscured) code.

In this paper we introduce some special-purpose memory architectures for

the storage of sparse matrices. These memories are intended to be embedded in

existing processor systems or future general purpose computing environments.

We assume that a processor performs the following operations on a matrix: (1)

reading a row (or column) of a matrix, (2) extracting (reading while deleting)

a row (or column) of a matrix, and (3) inserting (part of) a row (or column),

assuming the elements to be inserted are non-entries. In general, elements can

not be dealt with individually, although the insertion of single non-entries is

easy for most designs. Selective deletion of elements of a row which is being

read is also possible, but not described in this paper.

All proposed architectures have some properties in common: they all use

unordered storage for the vectors involved (motivated by [9]); the control is

micro-coded for simplicity, whereas hard-wired control logic would give equal

performance and be more logical; and all architectures are proposed without a

cache. An additional proposal for a cache has been made in this paper, but no

performance data is available yet about this part. Because this cache is capable

of handling a matrix on a element-by-element, the main goal of the hardware

architectures as described in this paper is to handle vectors e�ciently, i.e., read-,

extract-, or insert-operations of a row or column can be done at a �xed rate of

1 element per 1 up to 4 memory cycles.

This paper is organized as follows. The �rst two architectures (based on vec-

tor storage design) presented in Section 3 treat a matrix as an array of sparse

vectors. Consequently, only row-wise (or only column-wise) operations can be

dealt with. The main advantage of vector storage design is the relatively low

overhead in terms of hardware and memory quantity. The architectures pre-

sented in Section 4 are based on matrix storage design and implement a matrix

using a complicated storage scheme. This requires a more complex hardware de-

sign and increases the required amount of memory, but integrates both row-wise

and column-wise read, extraction, and insertion.

The behaviour of the memory architecture for an example, sparse matrix

vector multiply, is shown in section 5, and a comparison with Some possible

ways for integration in an existing computing environment are discussed in

section 6. A proposal for a cache, and the example of a saxpy operation, is

discussed in Section 7. Finally, we state some conclusions in Section 8.

In Table 1 some of the parameters of the architectures and matrices involved

are listed, as used in this paper. In order to explain the storage schemes used

in this paper, we will use the following example sparse matrix A:

5



meaning magnitude

N max. order of sparse matrix A N < 2

16

R(i) number of entries in row i

C(i) number of entries in column i

� av. number of entries per row

1

N

�

P

N

i=1

R(i)

M number of elements per block

m size of memory system 2

22

(4 M-word)

f size of register �le 4

r size of real in bits 64

(double precision 
oat)

c size of row/col. index in bits 16

p size of pointer in bits 22

Table 1: System parameters and their assumed size.

A =

0

B

B

@

10:0 0:0 3:0 0:0

0:0 20:0 8:0 5:0

4:0 0:0 30:0 0:0

1:0 0:0 6:0 40:0

1

C

C

A

6



2 Related work

In the past, a number of special purpose machines has been proposed or built.

In [18], a dedicated processor, called `The White Dwarf', is described by Wolfe

et al. for accelerating �nite element analysis algorithms. Their system contains

a wide memory organization, two 
oating point units and an ALU. This system

has special support in memory for e�cient link traversal. A special microcode

compiler for a modi�ed C subset supports the system.

In [17], Wing proposed a systolic array of processors with associative mem-

ory, connected in a ring. To solve a system of sparse linear equations, the

columns are distributed over the processors in an interleaved manner.

In [1, 2], Amano et al. described a dedicated hierarchically built parallel

machine with sophisticated shared memory that enables parallel con
ict free

reads. Although this machine is built to solve linear equations, it has a much

broader range of use.

Others described architectural support for sparse computations. Banerjee et

al. described a concept in [3] to enhance the memory usage of a SIMD machine

for sparse computations. A special block of hardware reorders references to an

array, distributed over parallel memories, such that per time step as many array

elements as possible can be referenced without con
icts. This is described for

both densely and sparsely stored arrays.

PSolve is a concurrent algorithm, described by Davis and Davidson in [8], for

solving sparse systems of linear equations on parallel processors. In their paper,

a so-called `vector alignment unit' is proposed to achieve vector performance on

a vector processor. This unit aligns two ordered sparse vectors for processing in

an ALU, adding zeros to the input vectors if needed.

A similar alignment unit is described by Ibbett et al. in [12], together with

the hardware support for the storage of ordered sparse vectors as a singly linked

list of blocks. Variable-sized blocks are supported, as well as garbage-collection.

Hardware gather/scatter is in use on commercially available machines (e.g.,

the CRAY-2 and CRAY X-MP). The bene�ts of gather/scatter for sparse Gaussian

elimination are discussed by Lewis and Simon in [14].

A VLSI design for sparse matrix vector multiply is presented in [6, 7] by

Codenotti et al.. A regular and reprogrammable grid is used to store the sparse

matrix. This grid transports the matrix entries to a ring of cells. These cells

perform the multiplications and store the vector.

7



system

Processor-

Control

xm p

m xc

m xr

Y = (A == nil)

A Y

RAM

RAM

da
ta

da
ta

da
ta

in

V

C
control R

E

ou
t

RAM

pointer

F,G

latch/counter

ou
t

ad
dr

es
s

ad
dr

es
s

ad
dr

es
s

latch/counter

real

A

P

C
column index

V
Vbus

Cbus

p

p

p

in

latch

in
ou

t

Figure 1: Architecture for element-wise storage of vectors

3 Vector storage designs

This section describes two variations on vector storage designs. In both designs

matrices are stored as an array of vectors. In the �rst design, a vector consists

of matrix elements in a linked list, in the second design a vector consists of a

list of linked blocks of matrix elements.

3.1 Element-wise storage of vectors

Figure 1 depicts a simple hardware scheme to store singly-linked lists of ele-

ments. To illustrate the way this system works, Figure 2 shows a possible way

how the example matrix A can be stored. The contents of �eld P at address A

is denoted as M[A].P.

The pointer to the �rst unused memory place is stored in address 0. The

pointers to the N rows are stored in memory locations 1..N . For simplicity, we

decide not to include a vector element at the pointer's place. This simpli�es

the use of the system, but increases the memory demand. Simply by changing

the microcode in the control unit, the system may operate with this element

if desired. The other, empty, places in memory are linked together during

initialization.

In Figure 1, dotted lines indicate control lines, straight lines are buses. The

memory is partitioned in a number of blocks:

� V : This memory part stores the actual real values of elements in the

8



A M[A].V M[A].C M[A].P comment

0 - - 12 empty list pointer

1 - - 5 row pointer 1

2 - - 7 row pointer 2

3 - - 6 row pointer 3

4 - - 10 row pointer 4

5 3.0 3 15 a

13

6 4.0 1 13 a

31

7 8.0 3 11 a

23

8 5.0 4 nil a

24

9 1.0 1 16 a

41

10 40.0 4 9 a

44

11 20.0 2 8 a

22

12 - - 14 empty

13 30.0 3 nil a

33

14 - - 17 empty

15 10.0 1 nil a

11

16 6.0 3 nil a

43

17 - - 18 empty

18 - - 19 empty

19 - - nil empty

Figure 2: Contents of memory in vector storage design

9



matrix (also called primary storage).

� C : For every value stored in V, C contains the value of the column index

(part of the so called overhead storage).

� P : The P �eld points to a next element. For addresses in use, P points to

the next element in the row under consideration. For unused addresses, P

points to a next unused address, hence linking all available free memory

together. In both cases, P can have a special value nil to indicate the end

of a list. We choose nil equal to 0 for reasons of simplicity.

Other parts in the design are:

Control : Control is the main control unit of the system. It is a simple and


exible micro-programmed unit, using well-known technology [11].

Processor-system : The interface to the host consists of 4 buses: (1) the V-bus

for reals; (2) the C-bus for column indices; (3) the sync-bus for synchronization

signals; and (4) the command-bus, used for the `instructions' for the control-

unit, containing information such as the number of the row to be handled, the

order of the matrix N , and the type of operation needed. This bus can be

implemented in several ways: (4a) as an I/O mapped device, with an explicit

address where instructions can be written to; (4b) directly connected to the

processor hardware; or (4c) implicitly using the standard control signals. See

Section 6 for more details.

Multiplexor/Data latch/Tri-state : These blocks consist of a two-stage block

(multiplexor and data latch). Under control of Control, the data latches can

be �lled each memory-cycle with data on one of the buses, to be written into

memory. The latches are provided with tri-state outputs to enable reads from

memory. All multiplexors/latches function independently and simultaneously.

A: address latch, in which the address of the next memory reference will be

clocked. During list traversal, A is �lled with the output of P. During initializa-

tion or clear-up phase, A can also be clocked with data from E, control or G. E :

E is used as an extra register to store the �rst address of the empty list. This

information is normally stored in memory at address 0, but sometimes a backup

is needed during initialization or during writes. E is also used during initializa-

tion as a counter. F,G : F and G are extra registers which normally hold the

value of A during the previous cycle, because this value is needed during the

clear-up phase.

We use pseudo-code to clarify the implementation of operations on the archi-

tecture. `=' denotes an assignment, and `==' a compare. Every labeled fragment

of code is executed in one clock cycle. An atomic assignment is denoted like

[A,B] = [B,A], which means that the values of A and B are swapped.

In the sequel we will describe, in pseudo code, the following basic vector

operations:

� initialization of the hardware

� read vector R

� extract vector R

� insert (part of) vector R (assuming the inserted elements of vector R were

10



non-entries)

Initialization

The pointers P of locations 1..N are initialized to nil, to create an empty ma-

trix. The other addresses (0 and N+1..m-1) are linked together starting at

address 0 to form the list of free locations. We assume m > N + 1.

I1: A = 1

L1: while (A <= N) do [M[A].P, A] = [nil, A+1]

I2: [A, E] = [0, (N+1) mod m]

L2: while (E > 0) do [M[A].P, A, E] = [E, E, (E+1) mod m]

E1: M[A].P = E

The choice we made for nil=0, leads to a number of optimizations. For

example, some statements disappear. Since E counts modulo m, E equals nil

after executing the last increment.

Vector read

Reading a vector is a very straightforward operation. Communication to, or

from the processor-system is denoted using the `variables' Vbus and Cbus (where

R is the number of the requested row).

I1: A = R

I2: A = M[A].P

L1: while (A <> nil) do [Vbus, Cbus, A] = [M[A].V, M[A].C, M[A].P]

Vector extraction

The extraction of a vector involves, in addition to the vector read in the pre-

vious section, the rearrangement of the empty list and the initialization of the

row pointer

1

.

I1: A = 0

I2: [A, E] = [R, M[A].P]

I3: [A, G] = [M[A].P, M[A].P]

if (A <> nil) then

L1: while (M[A].P <> nil) do [Vbus, Cbus, A] = [M[A].V, M[A].C, M[A].P]

L2: [A, M[A].P, Vbus, Cbus] = [0, E, M[A].V, M[A].C]

E1: [A, M[A].P] = [R, G]

E2: M[A].P = nil

endif

Vector insertion

Insertion of a vector, or �ll-in of one or more elements to an existing vector, is

performed by adding the new elements to the list (at the beginning).

1

Vector extraction can be done more elegant without an if-statement, at the cost of 1 extra

clock cycle per vector.

11



I1: A = 0

I2: [A, E, G] = [M[A].P, M[A].P, 0]

L1: while ((insert more) and (A <> nil)) do

[M[A].V, M[A].C, A, G] = [Vbus, Cbus, M[A].P, A]

enddo

E1: if (G <> 0) then

[A, F] = [0, A]

E2: [A, M[A].P] = [R, F]

E3: [A, F] = [G, M[A].P]

E4: [A, M[A].P] = [R, F]

E5: M[A].P = E

endif

Vectors can be inserted one element per cycle, and the overhead per vector

is 7 clock cycles. The insertion of a single element costs 8 cycles using this

code. This can be decreased to 7 cycles without pipelining and 6 cycles with

pipelining. Using a technique used in matrix storage design later in this paper,

this could be reduced to 3 cycles for a single element by using di�erent memory

parts for the pointers in the empty list and pointers in vector lists.

3.2 Block-wise storage of vectors

A simple way to decrease the amount of memory needed per entry is to store

the elements in consecutive chunks of M reals. A vector consists of a singly

linked list of blocks of elements. Every block contains an extra bit per element

which may be true to indicate the end of a row (EOR).

For clari�cation, Figure 3 depicts a possible storage pattern of A. Figure 4

shows the architecture for this variant.

So, at the cost of internal fragmentation and one extra bit per element, we

can decrease the size of the P memory part by a factorM . We assume that the

block size M is a power of two, and that. the �rst N blocks (apart from block

0), are used as the pointers to vectors, and store the �rst (M � 1) elements of

these vectors. Register A is replaced by a counter and a smaller register.

Among the registers in Figure 4 there is a combination of two registers

Ah and Al, which replace the former register A. Al is a modulo M counter

which addresses one element within the (by Ah) speci�ed block. Ah remains its

value during the counting of Al , except when Al counts from M -1 to 0. If this

happens, Ah is loaded with M[Ah].P, addressing the �rst element of the next

block within a vector. The e�ective address of the Ah/Al combination can be

obtained by concatenating their bit patterns Ah##Al, and is used as the address

for the blocks V, C, and EOR (but not P).

Operation

We assume that the �rst N blocks (apart from block 0), are used as the pointers

to vectors, and store the �rst (M � 1) elements of these vectors. This is not

elegant, but one empty element is useful (for EOR detection), and a block of

unused elements would be too much waste. The fact that the �rst block in a

12



A M[A].V M[A].C M[A].EOR M[A].P comment

0 - - -

1 - - - 18 empty list pointer

2 - - 0 row 1 starts here

3 3.0 3 0 10 a

13

4 - - 0 row 2 starts here

5 8.0 3 0 16 a

23

6 - - 0 row 3 starts here

7 4.0 1 0 14 a

31

8 - - 0 row 4 starts here

9 40.0 4 0 12 a

44

10 10.0 1 1 a

11

11 - - 0 nil empty slot

12 1.0 1 0 a

41

13 6.0 3 1 nil a

43

14 30.0 3 1 a

33

15 - - 0 nil empty slot

16 5.0 4 0 a

24

17 20.0 2 1 nil a

22

18 - - - empty block

19 - - - nil

Figure 3: Contents of memory in block-wise vector storage design

13



system

Processor-

m xc

m xr

Control

RAM

RAM

da
ta

da
ta

V

C
control R

ad
dr

es
s

ad
dr

es
s real

C
column index

V
Vbus

Cbus

ou
tlatch/counter

Ah

da
ta

ad
dr

es
s

xm

RAM

EOR
end-of-row

1

Y = (A == nil)

A Y

da
taRAM

pointer

ad
dr

es
s

P

ou
t

Al
counter

latch

log(M)

p-log(M)

log(M)

(p-log(M))xm

Gl

Fh,Gh

in

in
ou

t

p-log(M)

in

in
ou

t

latch

in

E

latch/counter

ou
t

p-log(M)

Figure 4: Architecture for block-wise storage of vectors

14



vector has a special status complicates the vector handling, but poses no real

problems. (Again, by a change in microcode the variations in which the �rst

block is either completely full or completely empty can be implemented).

We illustrate the behavior of the system with the basic operations, focusing

on the loop only.

Initialization

The initialization is coded as:

I1: Ah = 1

L1: while (Ah <= N) do [M[Ah].P, M[Ah##0].EOR, Ah] = [nil, true, Ah+1]

I2: [Ah, E] = [0, (N+1) mod (m/M)]

L2: while (E > 0) do [M[Ah].P, Ah, E] = [E, E, (E+1) mod (m/M)]

E1: M[Ah].P = E

Vector read

Reading a vector consists of counting within �elds of the linked records:

I1: [Ah, Al] = [R, 0]

I2: [rdy,Al] = [M[Ah##Al].EOR, Al+1]

L1: while (not rdy) do

[Vbus, Cbus, rdy] = [M[Ah##Al].V, M[Ah##Al].C, M[Ah##Al].EOR]

if (Al == M - 1) then [Ah, Al] = [M[Ah].P, 0]

else Al = Al + 1

enddo

The if-statement looks tricky, but it merely indicates the operation of the

combination Al and Ah.

Vector extraction

During vector extraction all records but the �rst one of the row to be extracted

are added to the list of empty records:

15



I1: [Ah, Al] = [R, 0]

I2: [rdy, Gh, Al] = [M[Ah##Al].EOR, M[Ah].P, Al+1]

L1: while (not rdy) do

[Vbus, Cbus, rdy, Fh] = [M[Ah##Al].V, M[Ah##Al].C, M[Ah##Al].EOR, Ah]

if (Al == M - 1) then [Ah, Al] = [M[Ah].P, 0]

else Al = Al + 1

enddo

E1: if (Gh <> nil) then

Ah = 0

E2: [Ah, E] = [Fh, M[Ah].P]

E3: [Ah, Al, M[Ah].P] = [R, 0, E]

E4: [Ah, M[Ah##Al].EOR, M[Ah].P] = [0, true, nil]

E5: M[Ah].P = Gh

else

E1: [Ah, Al] = [R, 0]

E2: M[Ah##Al].EOR = true

endif

Vector insertion

In contrast to the vector storage design, we demand that the vector which is to

be inserted is empty.

I1: [Ah, Al, Gl] = [0,0,0,0]

I2: [E, Ah] = [M[Ah].P, R]

I3: [M[Ah].P, M[Ah##Al].EOR, Gh, Al] = [E, false, Ah, Al+1]

L1: while ((insert more) and (Ah <> nil)) do

[M[Ah##Al].V, M[Ah##Al].C, M[Ah##Al].EOR, Gh, Gl] =

[Vbus, Cbus, false, Ah, Al]

if (Al == M - 1) then [Ah, Al] = [M[Ah].P, 0]

else Al = Al + 1

enddo

E1: [Ah, Al] = [Gh, Gl]

E2: if (Ah == R) then

[M[Ah##Al].EOR, M[Ah].P] = [true, nil];

else

[M[Ah##Al].EOR, E] = [true, M[Ah].P];

E3: [M[Ah].P, Ah] = [nil, 0];

E4: M[Ah].P = E;

endif

3.3 Performance of vector storage design

In this section we compare the memory e�ciency and the achievable bandwidth

between traditional software and architectural solutions.

To store a matrix with N �� entries using vector storage, we need N pointers

of r+c+p bits plus N �� memory words of r+c+p bits (Note that p bits would

su�ce, but the current design uses r+c+p bits per pointer because the memory

sizes of the V, C, and P parts are equal). The memory overhead compared to a

frequently used standard software implementation, the row-wise storage scheme

(see for example [9, 15, 19]), is illustrated in Figure 5. For the example size,

and � = 5, the software vector storage is 38% more expensive in memory use

than hardware row-wise storage. The hardware overhead in the vector storage

16



example relative

size overhead

primary SRW N�r 320 N

storage HVS N�r 320 N

storage HBS N�r 320 N

overhead SRW N�c 80 N 25 %

storage HVS N�(c+ p) 190 N 59 %

p.el. HBS N�(c+

p

M

) 135 N 42 %

overhead SRW N2p 44 N 14 %

storage HVS N (r + c+ p) 102 N 32 %

p.matrix HBS N (r + c+

p

M

) 137 N 43 %

total SRW 444 N 39 %

HVS 612 N 91 %

HBS 592 N 85 %

SRW = software row-wise

HVS = hardware vector storage

HBS = hardware block-wise vector storage

Figure 5: Memory e�ciency of vector storage compared with row-wise storage

(assuming � = 5).

design is small, in terms of transistor counts, but can be substantial in wiring

and pin counts.

The pointer overhead can be decreased by block-wise storage, but internal

fragmentation is introduced. The average memory use compared to row-wise

storage in also depicted in Figure 5. The optimal value of M is approximately

q

p�(2�+1)

r+c

. Our example values give an optimal value for M of approximately

1.74. Only matrices which have a close to dense structure will bene�t from a

larger blocking factor M in the design.

The `execution' time (in memory cycles) for the operations above are (for a

vector with n elements): for initialization: m+2 clock cycles, for read vector:

n+2 clock cycles, for extract vector: n+5 clock cycles, and for insert vector:

n+7 clock cycles.

We compare these results to a software scheme performing the same oper-

ations on a row-wise storage. We assume a 64-bit memory system, which is

the bottleneck in the system during these operations and count the memory

accesses only. No caching is assumed. In this case the initialization of relevant

data structures in software (both LOW() and HIGH() arrays) would cost approx-

imately 2N memory accesses. Reading or extracting a vector costs 2 memory

accesses per element. All address computations can be executed at the register

level, without introducing considerable overhead.

The (partial) insert of a vector costs 2 memory accesses per element, plus pos-

sible data movement and (expensive) garbage collection.

Hence, we gained a factor of 2 in execution speed. In addition, we removed

the need for garbage collection, at the cost of a bus width increase factor of

17



1.59. (In a 32 bits architecture, this factor would have been 3.19, compared to

a gain factor of 3 in execution speed).

The execution time for the block-wise vector storage is slightly better. The

number of memory cycles remains the same. The hardware will operate at the

same speed of 1 element per memory cycle. There is, however, one advantage:

because the elements within a block fall always in the same page, the memory

access time for all but the �rst element will pro�t from a faster access time if

page mode DRAM is used

2

. The speed-up due to this e�ect is approximately

2�M

M+1

, compared to element-wise storage without any bene�t from page-mode

DRAM.

2

In the element-wise system there was no support for page mode DRAM. The linked-list is

initially a concatenation of all memory elements, thus pro�t of page-mode DRAM is expected.

However, as computations proceed, the linked-list gets more and more scattered over memory

and the advantage drops. Garbage collection might be used to improve this situation.

18



V R C P W E N S comment

0 - - - 12 - - - - empty list

pointer

1 - - - - 15 5 15 9 row/col 1

2 - - - - 8 7 11 11 row/col 2

3 - - - - 13 6 16 5 row/col 3

4 - - - - 16 10 8 10 row/col 4

5 3.0 1 3 - 1 15 3 7 a

13

6 4.0 3 1 - 3 13 9 15 a

31

7 8.0 2 3 - 2 11 5 13 a

23

8 5.0 2 4 - 11 2 10 4 a

24

9 1.0 4 1 - 10 16 1 6 a

41

10 40.0 4 4 - 4 9 4 8 a

44

11 20.0 2 2 - 7 8 2 2 a

22

12 - - - 14 - - - - empty

13 30.0 3 3 - 6 3 7 16 a

33

14 - - - 17 - - - - empty

15 10.0 1 1 - 5 1 6 1 a

11

16 6.0 4 3 - 9 4 13 3 a

43

17 - - - 18 - - - - empty

18 - - - 19 - - - - empty

19 - - - 0 - - - - empty

Figure 6: Contents of memory in matrix storage design

4 Matrix storage designs

The main disadvantage of the vector storage design is the inability to switch

between row-wise and column-wise operation. The matrix storage design is

proposed in order to combine the two di�erent types of operation. To realize

this, entries have to be linked in two directions, both column-wise and row-wise.

Furthermore, if we extract a row, we need for every element in that row its two

column-neighbors to update the involved column vector as well. The total data

structure can be described as a bidirectionally doubly linked list. Singly linked

bidirectionally linked lists have been used in production codes for static data

structures, for example in SPICE [16]. Figures 6 and 7 illustrate the storage

scheme for our example matrix.

The N row-pointers are stored at locations 1..N , using memory blocks W

and E, initiating N circular doubly-linked lists. The N column-pointers are also

mapped at addresses 1..N , but in memory blocks N and S.

4.1 Implementation of matrix storage

Figure 8 shows the elementary design. It is a straightforward extension of the

vector storage design. Block C is duplicated as the block R and for every

19



R(1)

R(2)

R(3)

R(4)

C(2) C(3) C(4)

A(4,1) A(2,2) A(1,3) A(4,4)

A(3,1) A(2,3) A(2,4)

A(1,1) A(3,3)

A(4,3)

E
0

1

1

2 3 4

2

3

4

5

76 8

10119

15 13

16

Empty list pointer

Used storage

Row pointers

12 14 17 18 19

Free storage

C(1)
Column

pointers

Figure 7: Storage of matrix A.

20



tri-state

Multiplexor/

Data-latch/

tri-state

Multiplexor/

Address-

latch

Multiplexor/

Data-latch/

tri-state

Multiplexor/

Address-

latch

Multiplexor/

Data-latch/

tri-state

Multiplexor/

Address-

latch

Multiplexor/

Data-latch/

tri-state

Multiplexor/

Address-

latch

Multiplexor/

Data-latch/

Multiplexor/

Address-

latch

Multiplexor/

Address-

latch

Multiplexor/

Address-

latch

tri-state

Multiplexor/

Address-

latch

Multiplexor/

Data-latch/

system

Processor-

Control

RAM

V

m x r

RAM

R

m x c

RAM

RAM

RAM

RAM

RAM

C

P

W

E

N

m x c

m x p

m x p

m x p

m x p

RAM

S

X

Reg.file

m x p

f x p

Cbus

Rbus

Vbus
V

R

C

Figure 8: Architecture for element-wise matrix storage

21



element the row number is stored in R. Instead of the pointer P, we now use 4

pointers W, E, N, and S, for the pointers in four directions. Block P remains

and is used to link free memory places together.

The following blocks have to be added for the matrix storage design:

Multiplexor/Address latch/Counter : These blocks consist of a two-stage block

(multiplexor and address latch). Under control of Control, the address latches

can be �lled each memory-cycle with an address on one of the buses. The latches

have also an increment capability. All multiplexors/latches function indepen-

dently and simultaneously.

X : X is a small register �le to store temporary values during the compu-

tation. We sometimes name the registers (e.g. X[counter]) to indicate their

function. Some of these registers have also a count pin to increment the register

contents.

The design in Figure 8 can be made more speci�c by looking at the usage.

The number of address latches can not be decreased, because the memory parts

perform possibly di�erent operations on possibly di�erent addresses. But most

address-latches use only 3 of their inputlines; the multiplexors can be simpli�ed

using the exact knowledge which lines are used. This also reduces the size of

the micro-instructions.

We will present example codes for the some basic operations on rows below.

Initialization can be done in m memory cycles.

We use the following registers in the register �le: X[Prv], X[Cur], and

X[Nxt] for respectively the previous, current, and next element in the vector,

and X[Up] and X[Lo] for respectively the upper and lower element (in the

column vector). We will abbreviate these registers in the code fragments in this

section as Prv, Cur, Nxt, Lo, and Up. Some of these registers are not actually

used, as we will see in the sequel.

Initialization

For the �rst locations 1..N , the 4 pointers W, E, N, and S have to point to

themselves, indicating empty circular doubly-linked lists. All other addresses

have to be linked together to form a singly-linked list of unused locations.

I1: [AW,AE,AN,AS,DW,DA,DN,DS,cntr] = 1

L1: while (A <= N) do

[AW,AE,AN,AS,DW,DE,DN,DS,cntr,M[AW].W,M[AE].E,M[AN].N,M[AS].S]=

[cntr+1,cntr+1,cntr+1,cntr+1,cntr+1,cntr+1,cntr+1,cntr+1,cntr+1,

DW,DE,DN,DS]

I2: [A, E] = [0, (N+1) mod m]

L2: while (E > 0) do [M[A].P, A, E] = [E, E, (E+1) mod m]

E1: M[A].P = E

Vector read

A vector read is simply a linked-list traversal. Assume that X[Cur] (Cur) points

to the �rst (next) element (in row Rbus) at the start of the �rst (or next) itera-

tion. Before every iteration the condition (X[Cur] 6= R) has to be checked. The

22



next element can be read using the following code:

Cur = M[Rbus].E

while (Cur <> nil) do

[Cur,Vbus,Cbus] = [M[Cur].E,M[Cur].V,M[Cur].C]

enddo

In the implemented micro-code the indirect addressing is removed by rewrit-

ing the code. For example, the code line X[Cur] = M[X[Cur]].E is replaced by

AE = X[Cur] followed by X[Cur] = M[AE].E. The address and data latches of

all memory blocks show up as variables in the code. The names are created by

adding an A or a D before the memory block name. The latches AE, AV, AR,

and AC have the same function as register X[Cur] before, and register X[Cur]

can be removed from the code.

AE = Rbus

[AE,AV,AC] = [M[AE].E,M[AE].E,M[AE].E]

while (AE <> nil) do

[AE,AV,AC,Vbus,Cbus] = [M[AE].E,M[AE].E,M[AE].E,M[AE].V,M[AE]C]

enddo

Vector extraction

Extraction of a vector involves the search for neighbours and the update of their

pointers. This costs two cycles per element. Figure 7 depicts a possible storage

of matrix A, and Figure 9 shows the change in the data structure after the

extraction of row 2.

I1: Cur = R

I2: [Cur, Empty] = [M[Cur].E, M[0].P]

L1: if (Cur <> R) then

while (Cur <> R) do

[Up, Lo, Cur, Prv, Vbus, Rbus, Cbus] =

[M[Cur].N, M[Cur].S, M[Cur].E, Cur, M[Cur].V, M[Cur].R, M[Cur].C]

L2: [M[Up].S, M[Lo].N, M[Prv].P] = [Lo, Up, Cur]

enddo

E1: M[Prv].P = Empty

E2: Empty = M[R].E

E3: M[0].P = Empty

E4: [M[R].E, M[R].W] = [R, R]

endif

Vector insertion

During insertion of a row, every new element is inserted as the �rst element of

the corresponding column. This costs 3 memory cycles per element. Figure 10

depicts the reinsertion of row 2 (in the order a

22

, a

23

, and a

24

) after the previous

delete of this row in Figure 9.

This can be coded as:

23



R(1)

R(2)

R(3)

R(4)

C(2) C(3) C(4)

A(4,1) A(1,3) A(4,4)

A(1,1) A(3,3)

A(4,3)

Column

pointers

A(3,1)
6

11 87

E
0 12 14 17 18 19

1

1

2 3 4

2

3

4

5 109

15 13

16

Used storage

Row pointers

Empty list pointer Free storage

C(1)

Figure 9: Storage of matrix A after row 2 has been deleted.

24



R(1)

R(2)

R(3)

R(4)

A(4,1) A(1,3) A(4,4)

A(1,1) A(3,3)

A(4,3)

E
0

A(3,1)
6

11
A(2,3)

C(2) C(3) C(4)
Column

pointers

1

2

3

4

5 109

15 13

16

Empty list pointer

Used storage

Row pointers

12 14 17 18 19

Free storage

8 7
A(2,2) A(2,4)

1 2 3 4
C(1)

Figure 10: Storage of matrix A after row 2 has been deleted and reinserted.

25



I1: [Prv,Cur,Empty] = [M[Rbus].W,M[0].P,M[0].P]

L1: while ((insert more) and (Cur <> nil)) do

Lo = M[Cbus].S

L2: [M[Cbus].S,M[Lo].N,Nxt] = [Cur,Cur,M[Cur].P]

L3: [M[Cur].N,M[Cur].S,M[Cur].E,M[Cur].W,M[Cur].R,M[Cur].C,M[Cur].V,Prv,Cur] =

[Cbus,Lo,Nxt,Prv,Rbus,Cbus,Vbus,Cur,Nxt]

endwhile

E1: if (insert more) out-of-memory-error

E2: [M[0].P,Cur] = [Cur,M[Rbus].W]

E3: M[Cur].E = Empty

E4: [M[Prv].E, M[Rbus].W] = [Rbus, Prv]

Rewriting this code to explicit register-form, a need for 4 memory cycles

per iteration is suggested by the code. However, the �rst and last statement

can be combined over the loop, improving throughput to 3 memory cycles per

iteration.

The number of memory cycles per element can be reduced to 2.5 by reorder-

ing statements and alternating inserts via the S and N banks.

4.2 Pipelined storage of matrices using interleaved mem-

ory and write bu�ers

If we increase the available memory bandwidth by interleaving, the operations

presented for the matrix storage design can be pipelined. Let b be the number

of memory banks. Interleaving o�ers the possibility to create a special bank,

bank 0, for the row and column pointers, and the V, R, C, and P blocks can be

omitted. Banks 1 up to b� 1 provide full functionality.

The microcode determines how interleaving can be exploited. Two of the

many possibilities are: (1) Every bank contains locally linked lists and the

elements of a vector are distributed over s (for s < b) separate linked lists, each

in a di�erent bank. The available bandwidth is increased by a factor s, but the

number of row pointers in bank 0 is also increased by a factor s. (2) Per vector

there is one linked list scattered over one or more banks. In the sequel, we will

show how method (2) can be exploited.

Vector read

The only gain that can be exploited during a read is the possibility to read more

than one vector at a time. However, some bank con
icts will occur. Neverthe-

less, if we prioritize the current vector read we might simultaneously start to

read (prefetch) the next b�2 vectors. An upper bound for the speed-up is b�1.

Vector extraction

The code presented in Section 4.1 for vector extraction is

L1: [Up, Lo, Cur, Prv, Vbus, Rbus, Cbus] =

[M[Cur].N , M[Cur].S, M[Cur].E, Cur, M[Cur].V, M[Cur].R, M[Cur].C]

L2: [M[Up].S , M[Lo].N , M[Prv].P] = [Lo, Up, Cur]

26



In the loop body the N and S banks are used twice, once for a read (each)

and once for a write. Using multiple banks and a write bu�er for con
icting

memory accesses enables the extraction to continue at a rate of one element per

memory cycle.

If the elements are distributed over at least 2 banks, the available memory

bandwidth is su�cient provided the matrix elements are reasonably distributed

over the banks. A full write bu�er will stall the pipeline.

Vector insertion

The S bank has the highest memory load during vector insertion: 3 references

per inserted element, as is illustrated by the following loop body:

L1: Lo = M[Cbus].S

L2: [M[Cbus].S,M[Lo].N ,Nxt] = [Cur,Cur,M[Cur].P]

L3: [M[Cur].N,M[Cur].S ,M[Cur].E,M[Cur].W,M[Cur].R,M[Cur].C,M[Cur].V,Prv,Cur] =

[Cbus,Lo,Nxt,Prv,Rbus,Cbus,Vbus,Cur,Nxt]

To pipeline the insert, we require the existence of b�1 linked lists of unused

memory locations, one per (full) bank. We assume that in step 1 the places

of the b � 1 heads of these b � 1 lists are known. Immediately after the �rst

read during the insertion of an element, it is known in which bank the `south

neighbor' of the element `to be inserted' remains. By placing this element in a

di�erent bank, we obtain a con
ict-free pipeline.

The pipeline stalls when it is impossible to �nd a free element (Cur) accord-

ing to the rule stated above. Hence, it is important for all rows and columns to

have a fair distribution of the elements over the memory banks. Increasing the

number of banks helps to ease this problem but is expensive.

4.3 Performance of matrix storage designs

Figure 11 compares the memory demands of the matrix storage design with row-

wise storage. This comparison is not fair, because a row-wise storage does not

allow column-wise operations. A software scheme based on the same method of

storage would consume about the same amount of memory.

Figure 12 presents an overview of the number of memory cycles per vector

element for the presented implementations. A software scheme would cost con-

siderably more due to the number of assignments which are parallelized in the

matrix storage design. In practice, no comparable implementations are used.

3

With page-mode DRAM: approximately

M+1

2�M

memory cycles.

27



example relative

size overhead

primary SRW N�r 320 N

storage HMS N�r 320 N

HPS N�r 320 N

overhead SRW N�c 80 N 25 %

storage HMS N�(5p+ 2c) 710 N 222 %

p.el. HPS N�(5p+ 2c) 710 N 222 %

overhead SRW N2p 44 N 14 %

storage HMS N (r + 5p+ 2c) 206 N 64 %

p.matrix HPS N4p 88 N 28 %

total SRW 444 N 39 %

HMS 1236 N 286 %

HPS 1118 N 249 %

SRW = software row-wise

HMS = hardware matrix storage

HPS = hardware pipelined matrix storage

Figure 11: Memory e�ciency of matrix storage compared with row-wise storage

(assuming � = 5).

vector storage matrix storage

element- block- standard pipelined

wise wise

3

worst- typ.

case

read 1 1 1 1 1

extract 1 1 2 2 1

insert 1 1 2.5 2 1

Figure 12: Memory cycles per operation for some hardware designs

28



software

RD ALOW N

RD AHIGH N

RD AVAL N � �

RD AIND N � �

RD B N � �

WR C N

total N � (3�+ 2)

Figure 13: Memory references for SpMxV using row-wise storage.

5 Example: Sparse matrix Vector Multiply

In this section we compare the performance of several designs for a frequently

used sparse matrix application: sparse matrix vector multiply (SpMxV). The

code for SpMxV based on row-wise storage is presented below:

do I=1,N

S = 0

do JA = ALOW(I),AHIGH(I)

S = S + AVAL(JA) * B(AIND(JA))

enddo

C[I]=S

enddo

The number of memory references for the arrays is presented in Figure 13.

We consider only references to ALOW, AHIGH, AVAL, AIND and B. The total

number of memory references is N � (3�+ 2). We assume no cache. This is

an unrealistic approach, but so far no cache has been included in the matrix

storage design.

Assuming we store the dense vector B at addresses 1..N , the standard matrix

storage design needs N � 2 �min(�; 1) references to obtain all elements of A and

B. Indirect addressing is handled within the matrix storage design, using the


exible micro-code. The overhead per vector disappears for � � 1 because of

the parallel reads in memory and the pipeline possibilities.

29



6 Implementation issues

By adding hardware it would be very simple to enable the processor to use

the memory within the architecture as a standard RAM. Hence, all the mem-

ory installed can be used for normal purposes if no sparse computations are

performed. The extra costs of this address logic are small. The width of the

memory system should be a multiple of the processor word length.

The use of microcode yields great 
exibility. For example, the free places in

the V-bank at addresses 1..N can be used (1) for an independent dense vector

(useful for sparse matrix vector multiply), or (2) can be used as a gathered

sparse (i.e., dense) vector of one of the rows or columns of the matrix, or (3)

can be used for the storage of the �rst element in a row (or column), or (4)

can be used for the storage of the diagonal elements (especially useful for LU-

decomposition). This decision is hardware-independent. It is also possible to

maintain a separation between the L and U elements during LU-decomposition,

either by consequently inserting the L elements at the east side and the U el-

ements at the west side of the row pointer, or by the use of a double header

array. Another hardware-independent choice is the way the interleaved mem-

ory is exploited. We proposed a linked-list across more banks, to enhance the

insertion of elements. An alternative implementation uses several linked-lists,

one per bank, to enhance the read of vectors.

To implement the support for more than one matrix at a time, some address

arithmetic is needed. For every matrix, a base address is added to address

pointers. Base addresses are found in a small table in the same memory.

In the sequel of this section we discuss a few possible ways to embed the

memory architecture in an existing computing environment.

Library functions

A very e�cient way to use the memory is by means of library functions. Such

a library consists of two parts: downloadable micro-code for the control unit of

the architecture and code for the host processor. The library can be highly opti-

mized for a number of frequently used problems and support general operations

for other problems.

Compiler supported code generation

In [4, 5] a sparse compiler is described, capable of transforming code that op-

erates on dense matrices which are actually sparse, directly into corresponding

sparse code. During this conversion, the compiler can identify those parts of

the code that can exploit the proposed designs and target the resulting sparse

code accordingly. A similar approach is taken in [18].

Virtual memory

If a large enough address space is available, the following approach is feasible. A

subspace of 2

2c

words (2c address bits) is reserved for the sparse memory. The

30



memory simulates a dense matrix, i.e., the code may contain direct references to

dense, full matrices, which are in fact sparse. All operations are element-wise.

Clearly, this is very ine�cient in general. Every read or write to an entry takes

on average

�

2

memory cycles, reads or writes to non-entries consume on average

� memory cycles. However, writes to an arbitrary element which is known to

be a non-entry is possible in 3 memory cycles, and consecutive writes to known

non-entries can be pipelined resulting in a rate of 1 insertion per 2.5 memory

cycles (1 memory cycle for the interleaved design). The resulting e�ciency of

such a design might be discouraging, but fewer changes are needed in the code.

A combination of the addressing method described here and the sparse compiler

in the previous section may o�er new possibilities.

Prefetching sparse vectors

Because of the gap between cpu speed and memory speed, it is advantageous

to perform memory loads in advance without intervention of the processor (see

for example also [10, 13]). If instructions are implemented to prefetch complete

sparse vectors into a (second-level) cache, the processor may continue during the

prefetch. The sparse vector can be stored in the cache in two ways: dense (row-

wise storage) or sparse (by an automatic scatter). For a valid scatter operation

the dense vector in cache has to be initialized to zero. The sparse vector should

remain in cache until it is used, to pro�t from this approach.

31



7 Cache

So far, we did not implement a cache or cache support in the hardware design.

This is needed for two reasons: to reduce the latency of memory accesses, and

to enable element-wise operations, which are not supported by the DRAM.

Although the work on cache is preliminary, we propose the following cache

structure: a fully-associative cache to store the V values, which is not addressed

by the addresses used in the DRAM, but which is associatively addressed by the

row and column indices R and C. In addition, we need two bit-arrays of size N .

If a bit in this array is set, then we are sure that this row is completely in cache.

If it is not set, it may or may not be completely in cache. Cache control takes

care that any matrix element is either in cache or in DRAM, but never in both.

This simpli�es the use of the circuitry. The main disadvantage is the write-

back obligation of unmodi�ed data in cache which is no longer needed. The

advantage is the faster retrieval of arbitrary elements left in DRAM, because

the remaining vectors are - on average - of shorter length.

For every row (column), The associativity process can be used in two ways:

(1) match on R and C, and produce a matching cache-line, or a cache miss; or

(2) match on R or C, and produce the �rst matching cache-line for which the

so-called `used'-bit it false. Then, set the `used'-bit for that line. The cache

supports a reset of all the `used'-bits of a row. After such a reset, the row

elements can be read from cache one by one.

Replacement and placement policy

An LRU-based algorithm on vector-basis can be applied to replace vectors (and

put them back in DRAM). We have a choice of either writing the vector in cache

back into DRAM, or writing the vector back to DRAM on a element-by-element

basis.

If a read leads to a miss in cache, and the bit-array corresponding to the

row and column index of that element are both reset, the element may be in

DRAM. Two approaches to handle this situation are possible: (1) a (partial)

load of a row (or column) into cache, followed by a cache hit; or (2) the use of

a special cache bypass to load the element from memory.

The same two approaches hold for vector operations: a vector read of a row,

which is not known to be completely in cache, has to result in either (1) fetching

the rest of the vector from DRAM to cache, setting the corresponding bit in the

bit-array; or (2) reading the DRAM vector part (using the cache bypass) during

or after the cached elements have been read.

Example: vector addition

Consider a (possibly repeated) saxpy operation V = V + �W . First, V is read

into cache if it is not already completely present as indicated by the bit-array.

Since the elements are never duplicated, only the missing elements have to be

read. Then, W is read element by element from either DRAM or cache. For

32



every element of W , the corresponding element of V is searched for in cache.

The values of W and V are sent to the processor, using 0 if no element of V

could be found, and the returned value is inserted in the vector V . For � = 1,

the elements of W for which no corresponding element in V has been found

have to been inserted into V .

Clearly, this approach works only if the cache is large enough to store the

resulting vector V . If this is not the case, the use of a bit-array for the vector V

may be useful. In this bit-array the bits are set if and only if the corresponding

element of V is an entry in the data structure. On a cache miss, the corre-

sponding bit indicates the necessity to perform an insert or a search/update in

DRAM.

33



8 Conclusions

In this paper we presented two types of memory architectures, one for the storage

of sparse vectors and one for the storage of sparse matrices. These memories

are capable of vector read, extraction and insertion at a speed of 1 to 3 memory

cycles per element. Reading can be done at the highest speed by all systems.

The addition of write bu�ers and interleaving to the matrix storage improves

the insertion and extraction performance, but improves the bandwidth during

reads only if a parallel read can be exploited.

The main improvement of sparse computations is expected if the architec-

tures in this paper are extended with a cache and speci�c sparse compiler sup-

port. Future research is necessary in this direction.

Acknowledgements The authors would like to express their thanks to Aart

Bik and Olivier Temam for their helpful comments.

34



References

[1] Hideharu Amano, Takaichi Yoshida, and Hideo Aiso. (SM)

2

: Sparse Ma-

trix Solving Machine. In Proceedings on Computer Architecture, pages

213{220, 1983.

[2] Hideharu Amano, Takaichi Yoshida, Tomohiro Kudoh, and Hideo Aiso.

(SM)

2

-II : A new version of the Sparse Matrix Solving Machine. In Pro-

ceedings on Computer Architecture, pages 100{107, 1985.

[3] U. Banerjee, D. Gajski, and D. Kuck. Accessing sparse arrays in parallel

memories. Journal of VLSI and Computer Systems, pages 69{100, 1983.

[4] Aart J.C. Bik and Harry A.G. Wijsho�. Compilation techniques for sparse

matrix computations. In Proceedings of the International Conference on

Supercomputing, pages 416{424, 1993.

[5] Aart J.C. Bik and Harry A.G. Wijsho�. On automatic data structure

selection and code generation for sparse computations. In Utpal Banerjee,

David Gelernter, Alex Nicolau, and David Padua, editors, Lecture Notes in

Computer Science, No. 768, pages 57{75. Springer-Verlag, 1994.

[6] B. Codenotti, G. Lotti, and F. Romani. Area-time trade-o�s for matrix-

vector multiplication. Journal of Parallel and Distributed Computing, 8:52{

59, 1990.

[7] B. Codenotti and F. Romani. A compact and modular VLSI design for the

solution of general sparse linear systems. Integration: The VLSI journal,

5(1):77{86, March 1986.

[8] Timothy A. Davis and Edward S. Davidson. Pairwise reduction for the

direct, parallel solution of sparse, unsymmetric sets of linear equations.

IEEE Transactions on Computers, 37(12):1648{1654, December 1988.

[9] Iain S. Du�, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse

Matrices. Oxford Science Publications, 1990.

[10] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum.

Compiler-directed data prefetching in multiprocessors with memory hier-

archies. In Proceedings on International Supercomputing, pages 354{368,

1990.

[11] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Mateo,

California, 1990.

[12] R.N. Ibbett, T.M. Hopkins, and K.I.M. McKinnon. Architectural mech-

anisms to support sparse vector processing. In Proceedings on Computer

Architecture, pages 64{71, 1989.

35



[13] Alexander C. Klaiber and Henry M. Levy. An architecture for software-

controlled data prefetching. In Proceedings on Computer Architecture,

pages 43{53, 1991.

[14] John G. Lewis and Horst D. Simon. The impact of hardware gather/scatter

on sparse Gaussian elimination. SIAM J. Sci. Stat. Comput., Volume

9:304{311, 1988.

[15] Sergio Pissanetsky. Sparse Matrix Technology. Academic Press, London,

1984.

[16] A.L. Sangiovanni-Vincentelli. Circuit simulation. In Computer Design Aids

for VLSI Circuits, pages 19{112, 1981.

[17] Omar Wing. A content-addressable systolic array for sparse matrix compu-

tations. Journal of Parallel and Distributed Computing, 2:170{181, 1985.

[18] A. Wolfe, M. Breternitz Jr., C. Stephens, A.L. Ting, D.B. Kirk, R.P.

Bianchini Jr., and J.P. Shen. The White Dwarf: A high-performance

application-speci�c processor. In Proceedings on Computer Architecture,

pages 212{222, 1988.

[19] Zahari Zlatev. Computational Methods for General Sparse Matrices.

Kluwer Academic Publishers, 1991.

36


