
Implementation of Fourier-Motzkin Elimination

�

Aart J.C. Bik and Harry A.G. Wijsho�

High Performance Computing Division

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, the Netherlands

ajcbik@cs.leidenuniv.nl

Abstract

Every transformation of a perfectly nested loop

consisting of a combination of loop interchang-

ing, loop skewing and loop reversal can be mod-

eled by a linear transformation represented by a

unimodular matrix. This modeling o�ers more

exibility than the traditional step-wise applica-

tion of loop transformations because we can di-

rectly construct a unimodular matrix for a par-

ticular goal. In this paper, we present imple-

mentation issues arising when this framework is

incorporated in a compiler.

1 Introduction

Inherent to the application of program transfor-

mations in an optimizing or restructuring com-

piler is the so-called `phase ordering problem',

i.e. the problem of �nding an e�ective order in

which particular transformations must be ap-

plied. This problem is still an important re-

search topic [WS90]. An important step for-

wards in solving the phase ordering problem has

been accomplished by the observation that any

combination of the iteration-level loop transfor-

mations loop interchanging, loop skewing and

loop reversal (see e.g. [AK87, Ban93, PW86,

Pol88, Wol86, Wol88, Wol89, Zim90]) can be

represented by a unimodular matrix [Ban90,

Ban93, Dow90, WL91]. The advantage of this

approach is that the order and validity of indi-

vidual transformations becomes irrelevant, be-

cause a unimodular transformation can be con-

structed directly for a particular goal provided

that dependence constraints are accounted for.

The incorporation of this framework in a com-

piler requires the implementation of a math-

�

Support was provided by the Foundation for Com-

puter Science (SION) of the Dutch Organization for Sci-

enti�c Research (NWO) and the EC Esprit Agency DG

XIII under Grant No. APPARC 6634 BRA III.

ematical technique known as Fourier-Motzkin

elimination [AI89, DE73, LP92]. After applica-

tion of a loop transformation, new loop bounds

must be generated. However, derivation of these

bounds requires the conversion of a system of in-

equalities in an arbitrary form into a form from

which these loop bounds can be generated. In

this paper, we discuss the implementation of

Fourier-Motzkin elimination and present tech-

niques to simplify the resulting bounds.

First, some preliminaries are presented in sec-

tion 2. In section 3, we discuss code genera-

tion after application of a transformation rep-

resented by a unimodular matrix and present

Fourier-Motzkin elimination. In section 4, some

conclusions are drawn.

2 Loop Transformations

In this section we give an outline of the general

approach to iteration-level loop transformations

in terms of unimodular matrices.

2.1 Iteration Spaces

In FORTRAN, the DO-loop is an important

construct to de�ne iteration. If individual DO-

loops are used within other DO-loops, a so-

called nested loop results. Below, a nested loop

of depth d is illustrated:

DO I

1

= L

1

, U

1

: : :

DO I

d

= L

d

, U

d

B(I

1

,...,I

d

)

ENDDO

: : :

ENDDO

We will use the following terminology [Pol88,

Wol89, Zim90]. If no other statements appear

in between the individual DO-loops, then the

whole loop is called a perfectly nested loop.

A loop in which arbitrary statements, or

even complete other DO-loops appear in be-

tween the individual DO-loops is referred to as a

non-perfectly nested loop. The loop-body

B(I

1

; : : : ; I

d

) of the nested loop shown above

consists of a sequence of indexed statements

at nesting depth d. Each individual indexed

statement in this loop-body is denoted by S

i

(

~

I)

for the index vector

~

I = (I

1

; : : : ; I

d

).

If the loop-body is executed for the value

~

I = (i

1

; : : : ; i

d

), we call ~{ = (i

1

; : : : ; i

d

) an it-

eration (vector) of this loop. Substituting ~{

for

~

I in an indexed statement in this loop-body

yields the instance of this statement that is ex-

ecuted during this iteration. The set of all iter-

ations for which the loop-body of a nested loop

is executed is called the iteration space of this

loop. Because only integer variables can be used

as loop indices, this iteration space is a subset

of the discrete Cartesian space Z

d

.

Usually we assume that each DO-loop is

stride 1, so that the loop index I

i

iterates over

all integers in the closed interval [L

i

; U

i

]. The

value of a lower bound L

i

and upper bound U

i

may depend on the values of indices of more

outer DO-loops. A relatively simple kind of loop

bounds is formed by basic bounds, in which a

lower bound L

i

or an upper bound U

i

can be ex-

pressed as an a�ne mapping from Z

i�1

to Z as

shown below, where l

ij

; u

ij

2 Z:

L

i

= l

i0

+

i�1

P

j=1

l

ij

� I

j

U

i

= u

i0

+

i�1

P

j=1

u

ij

� I

j

Although most programmers use such ba-

sic bounds, it is possible that during program

restructuring other kinds of loops are gener-

ated. A slightly more di�cult class of bounds

is formed by the simple bounds, in which a

lower bound L

i

and an upper bound U

i

of a loop

index I

i

can be expressed as follows, where all

l

ij

; u

ij

2 Z and l

ii

> 0 and u

ii

> 0:

L

i

=

2

6

6

6

6

6

6

l

i0

+

i�1

P

j=1

l

ij

I

j

l

ii

3

7

7

7

7

7

7

U

i

=

6

6

6

6

6

6

4

u

i0

+

i�1

P

j=1

u

ij

I

j

u

ii

7

7

7

7

7

7

5

Obviously, a basic lower or upper bound is also a

simple bound for which either l

ii

= 1 or u

ii

= 1.

Finally, we will consider compound bounds,

in which each lower bound consists of the max-

imum of a number of simple bounds, and each

upper bound consists of the minimum of a num-

ber of simple bounds:

L

i

= MAX(L

1

i

, L

2

i

, ...) U

i

= MIN(U

1

i

, U

2

i

, ...)

Each simple bound L

k

i

in a compound lower

bound gives rise to an inequality of the follow-

ing form, where the ceiling function has been

eliminated using the fact index I

i

is an integer

variable and l

k

ii

> 0:

l

k

i0

+

i�1

X

j=1

l

k

ij

� I

j

� l

k

ii

� I

i

Because we can take l

k

ij

= 0 for j > i, this in-

equality can be expressed as a scalar product

with

~

I = (I

1

; : : : ; I

d

), e�ectively de�ning a half-

space in R

d

:

(l

k

i1

: : : l

k

i;i�1

� l

k

ii

0 : : : 0

| {z }

d�i

) �

~

I � �l

k

i0

Similarly, each simple bound U

k

i

in a compound

upper bound gives rise to the de�nition of a half-

space in R

d

:

(�u

k

i1

: : :� u

k

i;i�1

u

k

ii

0 : : : 0

| {z }

d�i

) �

~

I � u

k

i0

Because in a compound lower bound the

maximum of a number of simple bounds is

taken and, likewise, in each compound upper

bound the minimum of some simple bounds,

all the corresponding inequalities must be satis-

�ed simultaneously. Therefore, we can represent

the bounds of a nested loop having compound

bounds as a system of inequalities A

~

I �

~

b. This

system is obtained by adding one row to A and

one component to

~

b according to one of the

scalar products shown above for each inequal-

ity arising from one of the simple bounds.

Basic bounds can also be dealt with by simply

setting l

k

ii

= 1 and u

k

ii

= 1. A lower or upper

bound expressed without a maximum or mini-

mum function respectively gives rise to only one

inequality. In this manner, a system A

~

I �

~

b

is obtained, in which each inequality de�nes a

half-space in R

d

. Therefore, for a k � d matrix

A, the whole system represents the intersection

of k half-spaces, forming a so-called polyhedral

set PS � R

d

. Furthermore, because only �-

nite execution sets can be used in FORTRAN,

the polyhedral set PS is bounded and, hence,

forms a so-called convex polytope [Gr�u67]. Fi-

nally, because only integer variables are used as

loop indices, the iteration space of the loop is de-

�ned as IS = Z

d

\ PS, which means that only

all discrete points within the convex polytope

are taken.

In the following loop, for instance, a com-

pound upper bound is used for loop index I

2

:

DO I

1

= 0, 7

DO I

2

= I

1

, MIN(I

1

+3, 8)

DO I

3

= 0, 7-I

1

B(I

1

,I

2

,I

3

)

ENDDO

ENDDO

ENDDO

The system of inequalities representing the loop

bounds, obtained by considering bounds in in-

creasing order of nesting depth, is shown below:

0

B

B

B

B

B

B

B

B

@

�1 0 0

1 0 0

1 �1 0

�1 1 0

0 1 0

0 0 �1

1 0 1

1

C

C

C

C

C

C

C

C

A

0

@

I

1

I

2

I

3

1

A

�

0

B

B

B

B

B

B

B

B

@

0

7

0

3

8

0

7

1

C

C

C

C

C

C

C

C

A

2.2 Unimodular Matrices

Every iteration-level loop transformation of a

perfectly nested loop of depth d consisting of

a combination of loop interchanging, loop skew-

ing, and loop reversal can be modeled by a map-

ping between the original and target itera-

tion space, namely a linear transformation rep-

resented by a unimodular matrix. A unimodular

matrix U is an d�d integer matrix (i.e. u

ij

2 Z)

for which j det(U)j = 1 holds. The property of

transformations represented by such matrices is

that (1) integer points are mapped onto inte-

ger points, and that, (2) since the inverse of a

unimodular matrix is also a unimodular matrix,

every integer point in the target iteration space

corresponds to an integer point in the original

iteration space. Moreover, the transformations

are closed under composition.

Each iteration ~{ 2 IS in the original iteration

space is mapped onto an iteration ~{

0

= U~{ in

the target iteration space. Because iterations in

the target iteration space are also traversed in

lexicographic order, application of a transforma-

tion e�ectively results in a new execution order

on the instances. Each loop reversal, loop in-

terchanging, or loop skewing is represented by

an elementary d� d matrix. Elementary matri-

ces are unimodular matrices obtained from the

unit matrix by either multiplying a row by �1,

interchanging two rows, or adding an integral

multiple of a row to another row. Pre- or post-

multiplication of a matrix with an elementary

matrix performs an elementary row or column

operation respectively.

The results of application of some transforma-

tions represented by 2 � 2 elementary matrices

to a double loop are shown below:

Original Loop: DO I

1

= 1, M

DO I

2

= 1, N

L(I

1

,I

2

)

ENDDO

ENDDO

Reversal:

�

�1 0

0 1

�

DO I

0

1

= -M, -1

DO I

0

2

= 1, N

L(-I

0

1

,I

0

2

)

ENDDO

ENDDO

Interchanging:

�

0 1

1 0

�

DO I

0

1

= 1, N

DO I

0

2

= 1, M

L(I

0

2

,I

0

1

)

ENDDO

ENDDO

Skewing:

�

1 0

p 1

�

DO I

0

1

= 1, M

DO I

0

2

= 1+p*I

0

1

, N+p*I

0

1

L(I

0

1

,I

0

2

-p*I

0

1

)

ENDDO

ENDDO

In general, reversal of the ith loop is repre-

sented by the unit matrix in which u

ii

= �1

holds for exactly one element. Skewing the jth

loop by a factor of p with respect to the ith loop,

where i < j, is represented by the unit matrix

having u

ij

= p for one o�-diagonal element.

Each unimodular matrix can be decomposed

into a number of such elementary matrices,

and thus loop transformations. Conversely, any

combination of iteration level loop transforma-

tions is represented by a unimodular matrix.

Consequently, this approach o�ers more
exibil-

ity than the traditional step-wise application of

loop transformations, where the usefulness and

validity of each transformation has to be con-

sidered separately.

2.3 Validity of Application

Application of a unimodular transformation U

is valid, if each data dependence in the original

nesting is satis�ed in the resulting nesting.

Dependence distance vectors provide a con-

venient representation of data dependences. If

iteration~{

0

depends on iteration~{, then we have

~{ +

~

d = ~{

0

for some distance vector

~

d. Induced

by the sequential semantics of DO-loops, itera-

tions are executed in lexicographic order. Con-

sequently, each distance vector of a loop-carried

data dependence is lexicographically posi-

tive, denoted by

~

d �

~

0, i.e. its �rst nonzero

component is positive. Since U is a linear trans-

formation, U~{

0

� U~{ = U(~{

0

�~{) holds. Hence,

application of a unimodular transformation U

is valid if and only if U

~

d �

~

0 for each nonzero

dependence distance

~

d in the original nest, since

this implies that the dependences are satis�ed.

In [WL91], dependence direction vectors are in-

corporated in the validity test.

2.4 Code Generation

Because

~

I

0

= U

~

I can be rewritten into

~

I =

U

�1

~

I

0

, the new loop-body and loop bounds are

obtained by replacing each index I

j

in the orig-

inal body according to this equation. Consider,

for example, that application of U to the follow-

ing perfectly nested loop is valid:

DO I

1

= 0, 50

DO I

2

= 0, 50-I

1

DO I

3

= 0, 50

L(I

1

,I

2

,I

3

)

ENDDO

ENDDO

ENDDO

U =

1 1 1

1 0 0

0 1 0

!

U

�1

=

0 1 0

0 0 1

1 �1 �1

!

The resulting loop-body is obtained by replacing

~

I according to equation

~

I = U

�1

~

I

0

:

0

@

I

1

I

2

I

3

1

A

=

0

@

0 1 0

0 0 1

1 �1 �1

1

A

0

@

I

0

1

I

0

2

I

0

3

1

A

The resulting loop bounds are derived by rewrit-

ing the system of inequalities that is obtained

by substitution of U

�1

~

I

0

for

~

I in the system

representing the original loop bounds. After re-

dundant inequalities have been eliminated, the

following code is generated:

DO I

0

1

= 0, 100

DO I

0

2

= 0, MIN(50,I

0

1

)

DO I

0

3

= MAX(0,I

0

1

-I

0

2

-50), MIN(50-I

0

2

,I

0

1

-I

0

2

)

L(I

0

2

,I

0

3

,I

0

1

-I

0

2

-I

0

3

)

ENDDO

ENDDO

ENDDO

The conversion of the original iteration space

into the target iteration space is illustrated in

�gure 1. For example, as de�ned by the �rst row

of U , all iterations in the plane I

1

+I

2

+I

3

= 1

are mapped onto iterations in the plane I

0

1

= 1

in the target iteration space.

3 Generating Loop Bounds

The application of a transformation represented

by a unimodular matrix U to perfectly nested

loop is implemented by rewriting the loop-body

and generating new loops with indices

~

I

0

that in-

duce a lexicographic traversal of the target iter-

ation space. Since the equation

~

I = U

�1

~

I

0

holds

for the loop indices

~

I and

~

I

0

of the original and

target iteration space respectively, the new loop-

body can be obtained by replacing each index in

the original loop-body according to this equa-

tion. Unfortunately, generating the new loop

bounds is not so straightforward. Consider, for

instance, application of a simple interchange to

the following double loop:

I3

+I1 I3I2+ =100+I1 I3I2+ =1

I1

I2

Original Iteration Space

I2
’

I1
’

I3
’

Target Iteration Space

U

Figure 1: Application of a U

DO I

1

= 1, 3

DO I

2

= I

1

+1, 4

S(I

1

,I

2

)

ENDDO

ENDDO

!

DO I

0

1

= 2, 4

DO I

0

2

= 1, I

0

1

-1

S(I

0

2

,I

0

1

)

ENDDO

ENDDO

The new loop-body is obtained by replacing loop

indices according to equation

~

I = U

�1

~

I

0

(note

that U = U

�1

in this case):

�

I

1

I

2

�

=

�

0 1

1 0

��

I

0

1

I

0

2

�

(1)

A �rst step towards �nding the new loop

bounds is to apply the substitution arising

from (1) to the system of inequalities de�ned

by the original loop:

1 � I

1

� 3

1+ I

1

� I

2

� 4

!

1 � I

0

2

� 3

1+ I

0

2

� I

0

1

� 4

The inequality 1+ I

0

2

� I

0

1

cannot be used di-

rectly to determine the lower bound on index

I

0

1

of the outermost loop, because this bound is

given in terms of the innermost loop index I

0

2

.

In general, substituting U

�1

~

I

0

for

~

I in the sys-

tem of inequalities de�ned by the original loop

yields a new system that is unsuited for gener-

ating the bounds directly.

Each bound can only be a function of outer

loop indices and the resulting system is not

necessarily of this form. Only the bounds of

the innermost loop can be determined directly.

For instance, in the previous example we have

1 � I

0

2

, I

0

2

� 3 and I

0

2

� I

0

1

� 1. Hence, the

lower and upper bound of the I

0

2

-loop are 1 and

MIN(3; I

0

1

� 1) respectively. The bounds of I

0

1

can be obtained by eliminating I

0

2

from the sys-

tem. This is performed by replacing all inequal-

ities involving the loop index I

0

2

by inequalities

in which each lower bound of I

0

2

is less than or

equal to each upper bound of this index. In the

example, we obtain:

1 � I

0

2

I

0

2

� 3

I

0

2

� I

0

1

� 1

I

0

1

� 4

!

1 � 3

1 � I

0

1

� 1

I

0

1

� 4

Consequently, the lower and upper bound of

I

0

1

can be expressed in terms of the constants 2

and 4 respectively, which is the appropriate form

for the bounds of an outermost loop. At this

point the valid range for index I

0

1

is known, and

the upper bound of index I

0

2

can be simpli�ed

into I

0

1

� 1.

This example illustrates the problems that oc-

cur during the generation of new loop bounds.

In the next sections, we present an automatic

method which deals with these problems by suc-

cessively eliminating loop indices in decreasing

order of nesting depth. At each step of this

method, the bounds for the last index in the

system can be determined.

3.1 Fourier-Motzkin Elimination

After applying a transformation represented by

a unimodular matrix U to a perfectly nested

loop of which the bounds can be described as

A

0

~

I �

~

b, we have to derive the new loop

bounds from the system of inequalities A

~

I

0

�

~

b,

where A = A

0

U

�1

. Since in this system the

bounds of an index I

0

i

may depend on indices

I

0

j

for j > i, we use Fourier-Motzkin elimina-

tion [AI89, AT93, Ban93, DE73, LP92] to derive

a system in an appropriate form.

We successively eliminate index I

0

k

for de-

creasing value of k. Starting with k = d, an

m � k matrix A and a vector

~

b with m com-

ponents, the system A

~

I

0

�

~

b gives rise to the

following inequalities, for 1 � i � m:

k

X

j=1

a

ij

� I

0

j

� b

i

(2)

We can reorder this system according to the

value of each coe�cient a

ik

, so that for partic-

ular p; q 2 N we have a

ik

> 0 for 1 � i � p,

a

ik

< 0 for p < i � q and a

ik

= 0 for q < i � m,

where p � q � m. This reordering gives rise to

the following three sets of inequalities, in which

only positive coe�cients occur for index I

0

k

:

a

ik

� I

0

k

� b

i

�

k�1

P

j=1

a

ij

� I

0

j

�b

i

+

k�1

P

j=1

a

ij

� I

0

j

� (�a

ik

) � I

0

k

k�1

P

j=1

a

ij

� I

0

j

� b

i

(3)

The �rst p inequalities in this system de�ne

the upper bounds on index I

0

k

. The next q � p

inequalities de�ne the lower bounds on this in-

dex. Consequently, a minimum and a maximum

function of these two sets of bounds are gener-

ated for the upper and lower bound respectively.

Moreover, because these bounds may evaluate

to rational constants and only integer values are

allowed for loop indices, we use ceiling func-

tions for lower bounds and
oor functions for

upper bounds. In case only one upper bound

results (p = 1), the maximum function is omit-

ted. Likewise, the minimum function is omitted

if only one lower bound results (q = p+1). Ceil-

ing and
oor functions are omitted for all lower

or upper bounds having a

ik

= 1 in the corre-

sponding inequality.

After generation of these bounds, index I

0

k

is eliminated from the system in order to en-

able the generation of bounds for more outer

loop indices. In the original formulation of

Fourier-Motzkin elimination [DE73], index I

0

k

is

eliminated by replacing each pair of inequali-

ties L � c

1

� I

0

k

and c

2

� I

0

k

� U , where c

1

> 0

and c

2

> 0, by the inequality L=c

1

� U=c

2

.

However, we will replace the previous pair of in-

equalities by c

2

� L � c

1

� U . In this manner,

a formulation is obtained in which only integer

arithmetic is involved. Moreover, the resulting

inequality is divided by gcd(c

1

; c

2

) to avoid over-

ow as much as possible.

This implies that the innermost loop index

in the system of inequalities is eliminated by

replacing the �rst q inequalities by the following

p � (q � p) inequalities for all 1 � i � p and

p < i

0

� q, where g = gcd(a

i

0

k

; a

ik

), c

i

= a

ik

=g,

and c

i

0

= �a

i

0

k

=g:

k�1

X

j=1

(c

i

0

� a

ij

+ c

i

� a

i

0

j

) � I

0

j

� c

i

0

� b

i

+ c

i

� b

i

0

Together with the last m � q inequalities

from (3), a new system of the form (2) has been

obtained for a di�erent m and a lower value of

k. Repetitive application of the elimination of

loop indices in decreasing order of nesting depth

eventually yields all bounds in the loop nest re-

sulting after application of a unimodular trans-

formation. If during this process, an inequality

of the form `0 � c' with c < 0 is encountered, or

if the maximum of all lower bounds of index I

1

is greater than the minimum of all upper bounds

of this index,

1

we are dealing with an inconsis-

tent system. In this context, this implies that

the target iteration space and, hence, the orig-

inal iteration space are empty. In general, it is

also possible that some variables in the system

are unbounded, although this will not occur for

systems that are derived from the loop bounds

in a program. Therefore, we exclude this latter

possibility from our discussion.

In our implementation of Fourier-Motzkin

elimination, at each step k = d; : : : ; 1, a system

of inequalities A

~

I

0

�

~

b, for some m � k matrix

A and

~

I

0

= (I

0

1

; : : : ; I

0

k

)

T

, is represented by the

column augmented matrix (A j

~

b). The rows in

this matrix are reordered according to the value

of the elements in the kth column. For all pair-

wise combinations 1 � i � p and p < i

0

� q,

the rows i and i

0

are added after multiplica-

tion with a

i

0

k

=g and a

ik

=g respectively, where

g = gcd(a

i

0

k

; a

ik

). The resulting rows together

with the last m � q rows of the previous ma-

trix, excluding all elements in the kth column,

constitute the rows of the new matrix.

This process is applied recursively to the re-

sulting matrix until all loop indices have been

eliminated. Consequently, a sequence of col-

umn augmented matrices terminated by a col-

umn vector is obtained, as is illustrated below:

(A

(d)

j

~

b

(d)

)! : : :! (A

(1)

j

~

b

(1)

)!

~

b

(0)

(4)

Each column augmented matrix (A

(k)

j

~

b

(k)

) for

1 � k � d in this sequence has its own local

parameters p

(k)

, q

(k)

and m

(k)

. However, as was

done in this section, we will omit superscripts if

it is clear from the context which matrix in the

sequence is considered. The �rst matrix in a

sequence consists of a reordered representation

of the original system A

0

U

�1

~

I

0

�

~

b.

1

This additional test is required because I

1

is the only

loop index that is not eliminated. In our implementa-

tion, one additional elimination step is applied to enable

a uniform test for consistency the last column vector.

If one of the components in the terminating

column vector

~

b

(0)

is negative, the resulting sys-

tem of inequalities is inconsistent. Furthermore,

each column augmented matrix (A

(k)

j

~

b

(k)

) rep-

resents the bounds of index I

0

k

according to the

following system of inequalities:

A

(k)

0

B

@

I

0

1

.

.

.

I

0

k

1

C

A

�

~

b

(k)

3.2 Example

Consider, for instance, application of a transfor-

mation represented by the following unimodular

matrix U to the loop nest shown below:

DO I

1

= 10, 15

DO I

2

= 1, 3

DO I

3

= 1, 50

S(I

1

, I

2

, I

3

)

ENDDO

ENDDO

ENDDO

U =

0 6 1

1 �3 0

0 1 0

!

The new loop body is obtained by replacing the

original loop indices according to the equation

~

I = U

�1

�

~

I

0

. The new loop bounds are de�ned

by a system of inequalities represented by the

column augmented matrix (A j

~

b), where A =

A

0

U

�1

and the system A

0

�

~

I �

~

b represents the

original loop bounds:

A =

0

B

B

B

B

B

B

@

0 �1 �3

0 0 �1

�1 0 6

0 1 3

0 0 1

1 0 �6

1

C

C

C

C

C

C

A

~

b =

0

B

B

B

B

B

B

@

�10

�1

�1

15

3

50

1

C

C

C

C

C

C

A

Application of Fourier-Motzkin elimination to

the column augmented matrix (A j

~

b) results

in the following sequence of column augmented

matrices and a terminating column vector:

0

B

B

B

@

�1 0 6 �1

0 1 3 15

0 0 1 3

0 0 �1 �1

0 �1 �3 �10

1 0 �6 50

1

C

C

C

A

!

0

B

B

B

B

B

B

B

B

@

0 1 12

1 2 80

�1 �2 �21

0 �1 �1

0 0 5

0 0 49

0 0 2

�1 0 �7

1 0 68

1

C

C

C

C

C

C

C

C

A

!

0

B

B

B

B

B

B

B

B

@

1 78

1 68

�1 3

�1 �7

0 5

0 49

0 2

0 59

0 11

1

C

C

C

C

C

C

C

C

A

!

0

B

B

B

B

B

B

B

B

@

81

71

71

61

5

49

2

59

11

1

C

C

C

C

C

C

C

C

A

Because all components of

~

b

(0)

are positive, the

resulting system of inequalities is consistent.

The column augmented matrices in the sequence

de�ne the following loop bounds:

DO I

0

1

= MAX(-3,7), MIN(78,68)

DO I

0

2

= MAX(1,d(21-I

0

1

)/2e), MIN(12,b80-I

0

1

)/2c)

DO I

0

3

= MAX(1,d(10-I

0

2

)/3e,d(I

0

1

-50)/6e),

+ MIN(3,b(15-I

0

2

)/3c,b(I

0

1

-1)/6c)

S(I

0

2

+3*I

0

3

,I

0

3

,I

0

1

-6*I

0

3

)

ENDDO

ENDDO

ENDDO

Because the lower bound of the outermost

loop always evaluates to the value 7, we can

simplify this lower bound. Likewise, the upper

bound can be replaced by 68. However, in gen-

eral less obvious simpli�cations are also possible,

which is the topic of the following sections.

3.3 Ad-Hoc Simpli�cation

The matrices arising from Fourier-Motzkin elim-

ination may de�ne bounds on a particular index

that are not really necessary because other in-

equalities also de�ne these bounds. The elimi-

nation of these so-called redundant bounds may

result in the generation of more e�cient code

because less expressions need to be evaluated at

run-time. Moreover, the evaluation of minimum

or maximum functions is not required if a sin-

gle bound remains. In this section we present a

computationally inexpensive method to detect

and eliminate some redundant bounds.

For each loop index I

0

k

in the resulting loop

nest of depth d, we maintain four variables

l

min

k

; l

max

k

and u

min

k

; u

max

k

that can have values in

Z[f�1;1g. Variables l

min

k

and l

max

k

are used

to record the minimum and maximum value for

the lower bounds of this loop index respectively.

Likewise, variables u

min

k

and u

max

k

are used to

record the minimum and maximum value of the

upper bounds of index I

0

k

respectively. This

implies that index I

0

k

can have integer values

in the interval [l

min

k

; u

max

k

]. Initially, we set

l

min

k

= l

max

k

= �1 and u

min

k

= u

max

k

= 1

for all 1 � k � d. Subsequently, more accu-

rate values are determined during a backward

scan over all column augmented matrices in the

sequence. Hence, the new loop bounds are con-

sidered in increasing order of nesting depth. For

each (k + 1) � m column augmented matrix

(A j

~

b) in this sequence, we can �nd p and q

such that the �rst p rows represent the upper

bounds of an index I

k

in terms of indices I

0

j

for

j < k and the next q � p rows represent the

lower bounds of this index.

Lower and upper bounds can be expressed in

the following form where a

ik

> 0 for 1 � i � p,

and a

ik

< 0 for p < i � q:

b

i

+

k�1

P

j=1

(�a

ij

) � I

0

j

a

ik

(5)

The remaining bounds for q < i � m do not

de�ne bounds on index I

0

k

and are eliminated

(bounds arising from these inequalities are ac-

counted for in other matrices in the sequence).

Because I

0

j

2 [l

min

j

; u

max

j

] holds for j < k, the

minimum value l and maximum value u of the

numerator in expression (5) can be determined

as follows, where we de�ne a

+

= max(a; 0) and

a

�

= max(�a; 0) as done in [Ban88]:

l = b

i

+

k�1

P

j=1

(�a

ij

)

+

� l

min

j

� (�a

ij

)

�

� u

max

j

u = b

i

+

k�1

P

j=1

(�a

ij

)

+

� u

max

j

� (�a

ij

)

�

� l

min

j

Consequently, an upper bound (a

ik

> 0) can

only have values in [l

0

; u

0

], where l

0

= bl=a

ik

c

and u

0

= bu=a

ik

c. Therefore, if u

max

k

� l

0

holds,

then this upper bound is redundant with respect

to previously considered upper bounds and is

eliminated. Similarly, if u

0

� u

min

k

, this bound

replaces all previously considered upper bounds

of this index. After an upper bound has been

considered, the following assignments are exe-

cuted:

u

min

k

:= min(u

min

k

; l

0

);

u

max

k

:= min(u

max

k

; u

0

);

Likewise, a lower bound (a

ik

< 0) can only

have values in [l

0

; u

0

], where l

0

= du=a

ik

e and

u

0

= dl=a

ik

e. Therefore, if l

max

k

� l

0

, this

bound replaces all previously considered lower

bounds of this index. The bound is eliminated if

u

0

� l

min

k

. After consideration of a lower bound,

we perform the next statements:

l

min

k

:= max(l

min

k

; l

0

);

l

max

k

:= max(l

max

k

; u

0

);

Continuing in this fashion eventually results

in a new sequence of matrices in which some

redundant bounds (viz. rows) are eliminated.

Consider, for instance, the double loop exam-

ple presented at the beginning of section 3 again.

Below, we show A

~

I

0

�

~

b, where A = A

0

U

�1

, in

column augmented representation:

0

B

B

@

0 �1 �1

�1 1 �1

0 1 3

1 0 4

1

C

C

A

Application of Fourier-Motzkin elimination

yields the following sequence of matrices:

0

@

�1 1 �1

0 1 3

0 �1 �1

1 0 4

1

A

!

1 4

�1 �2

0 2

!

!

�

2

2

�

Since all components of the terminating column

vector are positive, the target iteration space

is non-empty. Subsequently, the ad-hoc sim-

pli�cation method is performed during a back-

ward scan of the column augmented matrices in

this sequence. After consideration of the ma-

trix de�ning the bounds of I

0

1

, we know that

I

0

1

2 [2; 4]. We have u

min

2

= 1 and u

max

2

= 3,

after the �rst upper bound of index I

0

2

has been

considered. Since l

0

= u

0

= 3 for the other up-

per bound of this index, we have u

max

2

� l

0

and

this upper bound can be eliminated:

�

�1 1 �1

0 �1 �1

�

!

�

1 4

�1 �2

�

3.4 Exact Simpli�cation

The ad-hoc method discussed in the previous

section can be used as inexpensive method to

eliminate some redundant bounds. However,

the e�ciency of the generated code can be fur-

ther improved at the expense of a potential in-

crease in compile-time by the incorporation of

a more advanced method, which eliminates all

redundant bounds including those not detected

by the ad-hoc method.

The following exact simpli�cation method is

based on the observation that a particular in-

equality is already enforced by other inequali-

ties in a system of inequalities, if the system

obtained by negating this inequality is inconsis-

tent [AI89]. For instance, negation of inequal-

ity i � 11 in the following system of inequalities

yields i > 11, which can be rewritten into 12 � i

for integer variables:

1 � i � 10

i � 11

Negation

�!

1 � i � 10

12 � i

Application of Fourier-Motzkin elimination to

the resulting system yields 1 � 10 and 12 �

10, revealing the inconsistency of this system.

Therefore, the third inequality is not required

and can be eliminated from the system.

A matrix of the following form, where each

~

0 denotes a zero column vector of appropriate

size, is constructed incrementally for successive

steps k = 1; : : : ; d:

0

B

B

B

@

A

(1)

~

0

~

0 : : :

~

0

~

b

(1)

A

(2)

~

0 : : :

~

0

~

b

(2)

.

.

.

.

.

.

A

(d)

~

b

(k)

1

C

C

C

A

(6)

At each step k, this matrix represents the

bounds of the �rst k loop indices. The number

of positive elements in column k of the column

augmented matrix (A

(k)

j

~

b

(k)

) is equal to the

number of upper bounds of index I

0

k

. Similarly,

the number of negative elements in column k

of this matrix is equal to the number of lower

bounds of this index. If there are several up-

per bounds, the �rst upper bound is negated

and Fourier-Motzkin elimination is applied to

the resulting system to test consistency. If the

resulting system is consistent, the bound is re-

covered and the next upper bound is considered.

Otherwise, the upper bound is eliminated. This

process is repeated until all upper bounds have

been considered or only one upper bound re-

mains. Similar steps are performed while there

are several lower bounds. Thereafter, the value

of k is incremented and the next matrix of the

form (6) is constructed until k = d.

In the matrix representation, negation of ei-

ther a lower or an upper bound represented by

the ith row, is performed as follows:

0

B

@

.

.

.

.

.

.

a

i1

: : : a

ik

b

i

.

.

.

.

.

.

1

C

A

!

0

B

@

.

.

.

.

.

.

�a

i1

: : :� a

ik

�b

i

� 1

.

.

.

.

.

.

1

C

A

Consider, for example, a simple interchange of

the I

2

- and I

3

-loop in the following fragment:

DO I

1

= 1, 100

DO I

2

= I

1

, 100

DO I

3

= I

1

, I

2

S(I

1

,I

2

,I

3

)

ENDDO

ENDDO

ENDDO

!

DO I

0

1

= 1, 100

DO I

0

2

= I

0

1

, 100

DO I

0

3

= MAX(I

0

1

,I

0

2

), 100

S(I

0

1

,I

0

3

,I

0

2

)

ENDDO

ENDDO

ENDDO

Ad-hoc simpli�cation of the sequence arising

from Fourier-Motzkin elimination yields the fol-

lowing sequence:

0 0 1 100

1 0 �1 0

0 1 �1 0

!

!

�

0 1 100

1 �1 0

�

!

�

1 100

�1 �1

�

The ad-hoc method is not able to detect the

fact that, because I

0

1

� I

0

2

is enforced by the

lower bound of the second loop index, the lower

bound of the third index can be simpli�ed into

the single expression I

0

2

.

During exact simpli�cation, the following se-

quence is constructed incrementally:

�

1 100

�1 �1

�

!

0

@

1 0 100

�1 0 �1

0 1 100

1 �1 0

1

A

!

0

B

B

B

B

B

@

1 0 0 100

�1 0 0 �1

0 1 0 100

1 �1 0 0

0 0 1 100

1 0 �1 0

0 1 �1 0

1

C

C

C

C

C

A

No actions are performed for the �rst two ma-

trices, because they de�ne only one lower and

upper bound for the �rst two indices. However,

two lower bounds are de�ned on index I

0

3

in the

last matrix. The �rst lower bound is negated,

followed by application of Fourier-Motzkin elim-

ination to the resulting matrix. The following

sequence of matrices results, where the negated

inequality is marked in the �rst matrix:

0

B

B

B

B

B

@

0 0 1 100

�1 0 1 �1

0 1 �1 0

1 �1 0 0

1 0 0 100

�1 0 0 �1

0 1 0 100

1

C

C

C

C

C

A

!

0

B

B

B

@

0 1 100

�1 1 �1

0 1 100

1 �1 0

�1 0 �1

1 0 100

1

C

C

C

A

!

0

B

B

@

1 100

1 100

1 100

�1 �1

0 �1

1

C

C

A

!

0

@

99

99

99

�1

1

A

Because this system is inconsistent, the lower

bound can be eliminated. Since only one lower

bound remains for the third index, no further

actions are performed and the following se-

quence of matrices results, in which all redun-

dant bounds have been eliminated:

�

0 0 1 100

0 1 �1 0

�

!

�

0 1 100

1 �1 0

�

!

�

1 100

�1 �1

�

We have deliberately chosen to consider all

matrices of the form (6) separately for increas-

ing values of k, so that only bounds that are

redundant with respect to the possible values of

more outer loop indices are eliminated. If only

the �nal matrix (i.e. matrix (6) for which k = d)

would be used to test the redundancy of bounds,

some bounds could be redundant because addi-

tional iterations introduced by the removal of

these bounds induce zero trip loops for more

inner loops. So, evaluation overhead would be

reduced at the expense of an increase of over-

head caused by the execution of empty itera-

tions. If the redundancy of single bounds would

be tested, this approach could result in loops in

which some indices become unbounded.

For example, the upper bound of the outer-

most index is redundant in the following frag-

ment, because the inequality I

0

1

� 100 is also

enforced by the bounds of the second loop in-

dex. Any upper bound greater than 100 could

be used for I

0

1

without introducing additional

iterations:

DO I

0

1

= 1, 100

DO I

0

2

= I

0

1

, 100

: : :

ENDDO

ENDDO

vs.

DO I

0

1

= 1, 1

DO I

0

2

= I

0

1

, 100

: : :

ENDDO

ENDDO

3.5 Comparisons

In this section, we compare the performance of

the two simpli�cation methods on some matri-

ces of size 2� 5 having the property that some

(but not all) redundant bounds are eliminated

by the ad-hoc method.

In table 1, we show the number of re-

maining bounds after application of Fourier-

Motzkin elimination, ad-hoc simpli�cation and

exact simpli�cation. In table 2, we present

the CPU-time in milli-seconds on an HP-UX

9000/720 for Fourier-Motzkin elimination, the

ad-hoc method followed by the exact method,

and the exact method without preceding appli-

cation of the ad-hoc method to the examples.

All versions are compiled with optimizations en-

abled (but have not been fully hand-optimized

with respect to e.g. memory allocation).

Some conclusions can be drawn from this

experiment. Because application of the exact

method can be far more expensive than the

actual Fourier-Motzkin elimination, it must be

possible to disable the application of this simpli-

�cation method. Furthermore, if advanced sim-

pli�cation is required, the total computational

time can be reduced substantially by preced-

ing application of the ad-hoc method, acting

as a �lter for the exact simpli�cation. There-

fore, the bounds that result after application of

a unimodular transformation are always simpli-

�ed according to the ad-hoc method, followed

by the exact method if desired.

F.M. Ad-Hoc Exact

2 6 4 4

3 14 8 6

4 34 16 8

5 138 36 10

Table 1: Number of Remaining Bounds

F.M. Ad- Exact Total Exact

Hoc Only

2 0.1 0.1 0.1 0.2 1.4

3 0.4 0.2 1.2 1.4 7.4

4 1.3 0.4 7.4 7.8 46.0

5 24.6 2.3 47.8 50.1 1539.0

Table 2: CPU-time in msecs

4 Conclusions

In this paper we have discussed an implemen-

tation of Fourier-Motzkin elimination. This

method has been incorporated in a prototype

restructuring compiler MT1 [Bik92] to support

unimodular transformations. An ad-hoc simpli-

�cation method is used in case compilation-time

is at a premium. However, the ad-hoc method

can also act as a �lter for computationally more

expensive exact simpli�cation methods.

Acknowledgments The authors would like to

thank Peter Knijnenburg, Arnold Niessen and

Remco de Vreugd for proofreading this article.

References

[AI89] Corinne Ancourt and Francois Irigoin.

Scanning polyhedra with do loops. In Pro-

ceedings of Third ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel

Programming, pages 39{50, 1989.

[AK87] Randy Allen and Ken Kennedy. Auto-

matic translation of FORTRAN programs

to vector form. ACM Transactions on Pro-

gramming Languages and Systems, Vol-

ume 9:491{542, 1987.

[AT93] Eduard Ayguad�e and Jordi Torres. Parti-

tioning the statement per iteration space

using non-singular matrices. In Proceed-

ings of the International Conference on

Supercomputing, pages 407{415, 1993.

[Ban88] U. Banerjee. Dependence Analysis for Su-

percomputing. Kluwer Academic Publish-

ers, Boston, 1988.

[Ban90] U. Banerjee. Unimodular transformations

of double loops. In Proceedings of Third

Workshop on Languages and Compilers

for Parallel Computing, 1990.

[Ban93] U. Banerjee. Loop Transformations for

Restructuring Compilers: The Founda-

tions. Kluwer Academic Publishers,

Boston, 1993.

[Ban94] U. Banerjee. Loop Parallelization. Kluwer

Academic Publishers, Boston, 1994.

[Bik92] Aart J.C. Bik. A prototype restructuring

compiler. Master's thesis, Utrecht Univer-

sity, 1992. INF/SCR-92-11.

[DE73] George B. Dantzig and B. Curtis Eaves.

Fourier-Motzkin elimination and its dual.

Journal of Combinatorial Theory, Vol-

ume 14:288{297, 1973.

[Dow90] Michael L. Dowling. Optimal code par-

allelization using unimodular transforma-

tions. Parallel Computing, Volume 16:157{

171, 1990.

[Gr�u67] Branko Gr�unbaum. Convex Polytopes. In-

terscience Publishers, London, 1967.

[Lam74] Leslie Lamport. The parallel execution of

do loops. Communications of the ACM,

pages 83{93, 1974.

[LP92] Wei Li and Keshav Pingali. A singu-

lar loop transformation framework based

on non-singular matrices. In Proceedings

of the Fifth Workshop on Languages and

Compilers for Parallel Computing, 1992.

[Pol88] C.D. Polychronoupolos. Parallel Program-

ming and Compilers. Kluwer Academic

Publishers, Boston, 1988.

[PW86] David A. Padua and Michael J. Wolfe. Ad-

vanced compiler optimizations for super-

computers. Communications of the ACM,

pages 1184{1201, 1986.

[WL91] Michael E. Wolf and Monica S. Lam. A

loop transformation theory and an algo-

rithm to maximize parallelism. IEEE

Transactions on Parallel and Distributed

Algorithms, pages 452{471, 1991.

[Wol86] Michael J. Wolfe. Loop skewing: The

wavefront method revisited. International

Journal of Parallel Programming, Vol-

ume 15:279{293, 1986.

[Wol88] Michael J. Wolfe. Vector optimization vs.

vectorization. Journal of Parallel and Dis-

tributed Computing, Volume 5:551{567,

1988.

[Wol89] Michael J. Wolfe. Optimizing Supercompil-

ers for Supercomputers. Pitman, London,

1989.

[WS90] Debbie Whit�eld and Mary Lou So�a. An

approach to ordering optimizing transfor-

mations. In Proceedings of the second

ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming,

pages 137{146, 1990.

[Zim90] H. Zima. Supercompilers for Parallel and

Vector Computers. ACM Press, New York,

1990.

