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Abstract

In this paper we discuss a possibility to extend unimodular transformations to non-perfectly

nested loops. The main idea behind this extension is to convert a non-perfectly nested loop

into a perfectly nested one by moving code into to innermost loop and properly guarding it

to avoid multiple execution. This form of the loop can be viewed as an intermediate form for

the transformation. Having obtained a perfectly nested loop, unimodular transformations can

be applied in the usual way. The result of this transformation still contains guards. We show

how to eliminate these guards. We illustrate our technique by transforming the ijk-version of

LU-decomposition to the ikj-version.

1 Introduction

Automatic transformation of sequential programs into a parallel form is an important and chal-

lenging subject in High Performance Computing research [PW86, Wol91, ZC90]. Recently impor-

tant progress has been made by the realization that DO loops scan higher dimensinal polytopes

[AI91, WL91], that Fourier-Motzkin elimination or integer programming techniques can be used to

generate bounds for DO loops [WL91, CFR93, Ban91], and that unimodular [Ban93, Ban91, WL91]

or non-singular integer matrices [LP92] can be used for expressing and evaluating a host of trans-

formations. Also, these techniques can be used for �nding dependences and validating the use of a

particular transformation [Ban93, Ban91, Fea91, Kni94, Pug92]. Complementary to this direction,

Pugh has developed a framework based on Pressburger arithmetic to express transformations and

evaluate dependence analysis [KPR94, KP94, PW93].

In this paper we discuss a possibility to extend the theory developed for loop transformations based

on unimodular matrices to the case where the loop to be transformed is non-perfectly nested. The

original theory of unimodular loop transformations only deals with perfectly nested loops. This

is a mayor drawback for these kind of transformations to be used in practice. A large number of

codes, notably codes for LU-decomposition, consist of non-perfectly nested loops. Hence it seems

important that this restriction be removed.
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We propose the following strategy for applying unimodular transformations to non-perfectly nested

loops. This strategy amounts to reducing the problem of applying a unimodular transformation to

a non-perfectly nested loop to the problem of applying this transformation to a perfectly nested

one. First, we rewrite the non-perfectly nested loop into a pefectly nested one. This is achieved

by moving code from between the loops to the innerloop and guarding these code fragments in

order to garantee that these fragments are only executed in the right initial iteration. The resulting

loop can be considered as an intermediate structure for the transformation. We can then apply a

unimodular transformation to this structure. The theory needed for applying such a transformation

is well-known and is discussed in great detail by Banerjee [Ban93, Ban94]. After this phase, we have

obtained a perfectly nested loop again (which di�ers from the original loop in the way it traverses

its iteration space), which contains a number of guarded statements in its body. Obviously, this

situation is not acceptable. The overhead induced by evaluating these guards, which will evaluate

to `true' in only a small number of iterations, is in general much to high for the loop to be used in

an application code. Therefore we develop a theory of eliminating these guards. Using this theory,

we can remove every guard present in the loop. The resulting code fragment may still not be in the

preferred form. Hence other loop transformations, as developed in [Pol88, Wol91, ZC90], may have

to be applied.

A careful reader may have noticed that the �rst step in the transformation strategy (obtaining a

perfectly nested loop) is not always semantics preserving: If the innerloop is zero trip, then this

scheme fails. Hence we have to impose a restriction on the class of loops we consider. This restriction

precisely disallows loops with zero trip innerloops. We call these kind of loops non-zero-trip. We

show how to recognize non-zero-trip loops automatically.

Feautrier [Fea92a, Fea92b], and Darte and Robert [DR93] discuss how to use integer programming

techniques to �nd schedules for non-perfectly nested loops. They do not consider general trans-

formations. In [KP94, KPR94], Pugh et al. discuss how the Omega package they have developed

can be used for transforming non-perfectly nested loops. The techniques they propose are based

on Pressburger arithmetic, which is decidable, whereas the central technique used in this paper is

Fourier-Motzkin elimination [AI91, DE73, Ban93, BW94a]. In our opinion, a mayor advantage of

using Fourier-Motzkin elimination is that this technique is easily implemented and quite powerful.

In [Kni94, KB95, BW94b] we discuss other applications of Fourier-Motzkin elimination in a restruc-

turing compiler. Moreover, Fourier-Motzkin elimination comprises a central step in the application

of a unimodular or non-singular matrix transformation and hence will already be present in modern

restructuring compilation environments. Hence the theory we discuss in this paper can presumably

be embedded in an existing compiler easily.

The paper is organized as follows. In section 2 we give some background theory and introduce

notation. In section 3 we de�ne the class of non-perfectly nested loops we consider in this paper.

We de�ne the notion of non-zero-trip loops and show to recognize these loops. We also discuss

brie
y the validity problem for unimodular transformations in the present framework. In section 4

we show how to eliminate certain kinds of guards from loop structures. This section is stand

alone and the techniques discussed can be applied in other contexts as well. In section 5 we give

an extended example of the use of the techniques. We show how to transform the ijk-version of

LU-decomposition to the ikj-version. Finally, in section 6 we give a brief discussion.

Acknowledgement. The author wishes to thank Arjan Bik for carefully reading a draft version of

this paper.
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2 Preliminaries

In this section we give some preliminaries we use in the rest of this paper. First, we de�ne lower

and upperbounds for the loops we will consider.

De�nition 2.1 Let I = fI

1

; : : : ; I

n

g be a �nite collection of variables or loop indices. With respect

to this collection I we de�ne:

1. A basic (lower or upper) bound is an a�ne expression

a

0

+ a

1

I

1

+ � � �+ a

n

I

n

where, for all i, a

i

2 Z.

2. Let a 2 Z and let B be a basic bound. A simple lowerbound is an expression

l

1

a

B

m

. A simple

upperbound is an expression

j

1

a

B

k

.

3. A compound lowerbound is an expression max(L

1

; : : : ; L

m

) where each L

i

is a simple lower-

bound. A compound upperbound is an expression min(U

1

; : : : ; U

m

) where each U

i

is a simple

upperbound.

Note that each basic bound can be considered a simple lower or upperbound, and each simple bound

can be considered a compound bound. In the sequel of the paper we will make this identi�cation

when no confusion can arise. Basic, simple and compound bounds are also called admissible. All

other expressions for bounds, like I

1

� I

2

or an indirection IND(I), are called inadmissible. The

reason for this distinction is that admissible bounds can be used and are obtained in the process of

Fourier-Motzkin elimination, see below.

Every perfectly nested loop L with basic bounds gives rise to a system of inequalities S(L), given

by

S(L) =

8

>

<

>

:

L

1

� I

1

� U

1

.

.

.

L

n

� I

n

� U

n

(1)

Such a system should be read as the conjunction of the individual clauses. This system has the

property that every bound L

i

and U

i

only involves variables I

1

; : : : ; I

i�1

. We call this the standard

form of a system of inequalities. Note that for loops with compound lower and upperbounds we

also can de�ne such a system of inequalities. Since compound upperbounds may contain 
oor and

minimum fuction, we use the following equivalences to obtain a standard form.

� I �

j

1

a

B

k

i� aI � B (since I is integer).

� I � min(U

1

; : : : ; U

m

) i� I � U

1

& � � �& I � U

m

.

For compound lowerbounds a similar standard form can be deduced.

Any system of inequalities involving the variables I

1

; : : : ; I

n

can be brought in standard form using

Fourier-Motzkin elimination [DE73, Ban93]. We try to give some intuition. Consider a set C =

f'

1

; : : : ; '

k

g of inequalities, where each inequality '

i

is of the form e � e

0

for two a�ne expressions
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e and e

0

over the variables I

1

; : : : ; I

n

. Then Fourier-Motzkin elimination consists of the following

process. First, rewrite all expressions involving the variable I

n

to the form L � I

n

; : : : ; I

n

� U .

Then each inequality obtained in this way bounds I

n

by expressions only involving the variables

I

1

; : : : ; I

n�1

. Hence these expressions can be used to generate loop bounds. Now consider the

system obtained by forming all inequalities L � U , for lowerbounds L and upperbounds U from

the previous step, together with all inequalities from the original system not involving I

n

. This is a

system of inequalities only involving the variables I

1

; : : : ; I

n�1

. Hence we can recursively continue

the process, �nally ending with a system of inequalities which consist only of the variable I

1

and

contstants.

Let [[C]] = fx 2 <

n

: '

1

(x) ^ � � � ^ '

k

(x)g. We say that C is inconsistent i� [[C]] = ;. We say that an

inequality ' is redundant for C i� [[C [ f'g]] = [[C]]. The Fourier-Motzkin elimination algoritm can

be used to decide whether C is inconsistent. We also have the following lemma, the proof of which

is elementary.

Lemma 2.2 ' is redundant for C if and only if C [ f:'g is inconsistent.

Next we de�ne a class of loop structures which will be delivered by the transformations we propose

in this paper. This class has been introduced by Chamski [Cha94].

De�nition 2.3 The class of nested loop sequences is inductively de�ned as the smallest class of

loop structures closed under

1. Any block of statements is a (trivial) nested loop sequence.

2. If L and L

0

are two nested loop sequences, then so is L;L

0

(L followed by L

0

).

3. If L is a nested loop sequences, then so is the following loop, where I is a new loop variable.

DO I = L; U

L

ENDDO

Note that any perfectly nested loop can be considered as a nested loop sequence. Note also that

two di�erent NLSs N and N

0

can scan the same iteration space in the same order. For instance,

N

0

may be obtained from N by iteration set partitioning. We call such loop structures N and N

0

(semantically) equivalent.

Finally, we need the following notion. Consider a block of statements in a nested loop sequence.

Then we can construct a perfectly nested loop with bounds the bounds of the enclosing loops of the

block. We call this loop nest the local nest of the block.

3 Transforming non-perfectly nested loops

In this section we de�ne the class of loop structures we consider in this paper. This family of loops

is called non-perfectly nested loops, and these loops form the input of the transformation technique

we discuss. Then we show how to convert these loops into perfectly nested ones under some mild

assumptions, namely, that the loop is non-zero-trip (see below). We show how these assumptions

can be validated for a given loop automatically. Finally we discuss brie
y how the validity of a

transformation can be decided after the conversion.
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3.1 Non-perfectly nested loops

In this section we discuss a simple way of transforming a non-perfectly nested loop obeying some

additional constraints into a perfectly nested loop. This perfectly nested loop can be used as input

for a unimodular transformation. The class of non-perfectly nested loops we consider in this paper

consists of loops of the following form.

DO I

1

= L

1

; U

1

S

1

DO I

2

= L

2

; U

2

S

2

� � �

DO I

n

= L

n

; U

n

S

n

ENDDO

� � �

S

0

2

ENDDO

S

0

1

ENDDO

We assume that all bounds L

k

and U

k

are basic bounds with respect to the collection of variables

fI

1

; : : : ; I

k�1

g. The reason why the bounds need to be basic is explained by Proposition 3.1 below.

This condition is not Note that this implies that L

1

and U

1

are integer constants. For each i, S

i

and

S

0

i

are assumed to be blocks of statements, not containing goto statements which jump out of this

block. We furthermore assume that every block S

k

and S

0

k

only references loop indices I

1

; : : : ; I

k

.

The basic idea behind converting an imperfectly nested loop into a perfectly nested one is the

following. A statement appearing before a loop can also be executed in the �rst iteration of the loop

before the body of the loop. Similarly, a statement appearing after the loop can also be executed

in the last iteration of the loop. At this point we assume that none of the loops are empty. Hence,

the following two program fragments are equivalent.

S

1

DO I = L; U

S

2

ENDDO

S

3

DO I = L; U

IF (I = L) S

1

S

2

IF (I = U) S

3

ENDDO

This generalizes easily to loops which are more deeply nested. To be precise, the following two

program fragments are equivalent.

5



S

1

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

S

2

ENDDO

� � �

ENDDO

S

3

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

IF (I

1

= L

1

& � � �& I

n

= L

n

) S

1

S

2

IF (I

1

= U

1

& � � �& I

n

= U

n

) S

3

ENDDO

� � �

ENDDO

The above two observations immediately lead to a procedure for converting a non-perfectly nested

loop into a perfectly nested one. This perfectly nested loop can be transformed using unimodular

transformations. The result will be a perfectly nested loop of (more or less) the same shape, namely,

a loop in which a great number of statements are guarded by conditions on the loop variables. These

guards are conjunctions of inequalities between a�ne expressions in the loop variables, and are called

a�ne guards. For a formal de�nition, see section 4. The loop as it stands is far too ine�cient to

be used in practice: for each iteration a number of guards has to be evaluated, which most of the

time will evaluate to false. In the sequel of the paper we show how to remove a�ne guards. The

resulting loop structure will be a nested loop sequence (see section 2).

3.2 Non-zero-trip loops

In this section discuss the possibility that subloops in a non-perfectly nested loop may be empty.

First note that the transformation of a non-perfectly nested loop into a perfectly nested one is not

semantically valid if this loop would contain empty subloops. The condition we have to impose on

loops in order to avoid this situation is the following. Consider a loop with loop indices I

1

; : : : ; I

n

as

de�ned above. If, for all 1 � k < n, it is the case that for all values of the loop indices I

1

; : : : ; I

k

, the

lowerbound L

k+1

is smaller than or equal to the upperbound U

k+1

, then each loop in the nest will

always have at least one iteration. Hence loops having this property can be turned into perfectly

nested loops using the transformation described above. Loops having this property are called non-

zero-trip (NZT) loops.

We now show how to recognize NZT loops using Fourier-Motzkin elimination. First we observe that

the condition for a loop with loop indices I

1

; : : : ; I

n

and basic bounds to be NZT is equivalent to the

condition that there does not exist 1 � k < n such that for some value of the loop indices I

1

; : : : ; I

k

(within their bounds) the lowerbound L

k+1

is larger than the upperbound U

k+1

.

Next we can state the following proposition concerning the testing of this new condition.

Proposition 3.1 A loop with loop indices I

1

; : : : ; I

n

and basic bounds is NZT if and only if for all

1 � k < n, the following system of inequalities

L

1

� I

1

� U

1

; : : : ; L

k

� I

k

� U

k

; U

k+1

< L

k+1

is inconsistent.

Using the above lemma we can check whether a given loop is NZT by applying the Fourier-Motzkin

elimination algorithm n� 1 times, where n is the nesting depth of the loop.
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The statement of the above proposition does not hold if the loop bounds are not basic. Consider

the following loop.

DO I = 1; 2

DO J = dI=3e ; bI=3c

� � �

ENDDO

ENDDO

Then this loop would be NZT according to the proposition but it is empty. The reason for this is

that from the viewpoint of Fourier-Motzkin elimination, the iteration space is a (non-empty) line

segment. However, this line segment does not contain integer points, which are the iteration points

of the loop.

3.3 Validity of a unimodular transformation

In general, a unimodular transformation U is valid i� for each non-trivial dependence distance

vector d it is the case that Ud is lexicographically positive. In [Kni94] we have shown how to

use Fourier-Motzkin elimination to obtain a polytope representing all dependence distance vectors

present in a loop. We have also shown in that paper how to deal with a�ne guards when constructing

this polytope. Brie
y, we restrict the polytope to those values for which the guard holds. Space

considerations prvent us from going into details. The reader is referred to [Kni94] for a proof of the

next propostion.

Proposition 3.2 Given a loop L containing a�ne guards and a unimodular transformation U .

Then we can construct a polytope P and a matrix U

�

such that U is valid if and only if U

�

P is

lexicographicallly positive. This last assertion can be checked e�ectively.

4 Removing a�ne guards

In this section we show how to remove certain kinds of IF-statements from nested loop sequences.

We call these IF-statements a�ne guards.

De�nition 4.1 Let L be a perfectly nested loop.

1. A condition of the form e � e

0

where e and e

0

are a�ne expressions in the loop variables, is

called a simple a�ne condition for L.

2. The conjunction of one or more simple a�ne conditions for L is called an a�ne condition for

L.

3. An IF-statement of which the condition is an a�ne condition is called an a�ne guard for L.

Note that we can express most other comparison operations on integers by the following identi�ca-

tions.

� n < m i� n+ 1 � m
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� n = m i� n � m and m � n

� n � m i� m � n

Suppose we have a (local) loop nest containing an a�ne guard.

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

IF (e

1

� e

0

1

& � � �& e

m

� e

0

m

) S

1

S

2

ENDDO

� � �

ENDDO

Then the a�ne condition (e

1

� e

0

1

& � � �& e

m

� e

0

m

) determines a subspace of the iteration space

of this loop. The basic idea is to extract this subspace from the iteration space. In this subspace,

both statements S

1

and S

2

have to be executed. In the rest of the iteration space only statement

S

2

needs to be executed. We proceed as follows.

Consider the system of inequalities given by the loop bounds and the a�ne conditions:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

; e

1

� e

0

1

; : : : ; e

m

� e

0

m

We have three possibilities.

1. The system is inconsistent. This means that for no value of the loop variables within the loop

bounds, the condition holds. Hence we may remove the IF-statement from the nest without

a�ecting its semantics.

2. The a�ne condition is redundant with respect to the system of inequalities de�ned by the

loop bounds. This means that for every value of the loop variables within the loop bounds

the condition holds. Hence we can replace the IF-statement with its body without a�ecting

the semantics of the nest.

3. The system is neither inconsistent, nor is the condition redundant. This is the most interesting

and probably most frequent case. In this case, the body of the IF-statement has to be executed

in part of the iteration space of the loop, and not in the remainder. The rest of this section is

devoted to dealing with this case.

Using Fourier-Motzkin elimination we can rewrite the system of inequalities given by the loop bounds

and the a�ne conditions to the form

L

0

1

� I

1

� U

0

1

; : : : ; L

0

n

� I

n

� U

0

n

This system de�nes a convex polytope within the original iteration space. In this subspace the

condition holds. Hence it de�nes that part of the iteration space in which both S

1

and S

2

have to

be executed. Note that, by construction, we have for every 1 � k � n,

L

k

� L

0

k

� U

0

k

� U

k
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Hence we can use the old bounds of the loop to determine the parts of the iteration space in which

only S

2

has to be executed.

Intuitively, we would like to generate the following code.

DO I

1

= L

1

; L

0

1

� 1

S

2

ENDDO

DO I

1

= L

0

1

; U

0

1

S

1

S

2

ENDDO

DO I

1

= U

0

1

+ 1; U

1

S

2

ENDDO

However, the lower and upperbounds for the subspace may be general bounds. That is, L

0

may be

of the form max(e

1

; e

2

; : : :). Hence the �rst loop above is inadmissible and we cannot recursively

continue this process and remove guards from S

2

.

Fortunately, we can remedy this situation as follows. Consider a polytope given by L � I � U,

and a half-space given by L

0

� I, where L

0

is simple. Then the following code scans �rst the part

of the polytope which lies outside the half-space, and then the intersection of the polytope and

the half-space. In the �rst part, we execute a block of statements S

1

and in the second part (the

intersection) a block S

2

. We call the �rst part the preloop, and the second part the intersection loop.

DO I = L;min(L

0

� 1; U)

S

1

ENDDO

DO I = max(L; L

0

); U

S

2

ENDDO

Likewise, for a half-space given by I � U

0

with U

0

simple, we generate the following code. The

�rst loop scans the intersection of the polytope and the half-space, and the second loop scans the

remainder of the polytope. In the instersection we execute a block S

2

and in the remainder of the

polytope a block S

1

. We call the �rst loop the intersection loop, and the second loop the postloop.

DO I = L;min(U; U

0

)

S

2

ENDDO

DO I = max(L; U

0

+ 1); U

S

1

ENDDO

Since both L

0

and U

0

are assumed to be simple, the resulting loop structures are admissible. Please

note that irrespective of the position of the half-space and the polytope, the loops as de�ned above

precisely scan the correct portion of the entire space. Note also that some of the loops may be

empty. Using these observations we arrive at the following algorithm for isolating a polytope inside

another polytope, resulting in a nested loop sequence scanning this space. This algorithm is based

on a technique described in [BW95].

Algorithm Let L and L

0

be perfectly nested loops, scanning polytopes P and P

0

, respectively. Let

L be given by the system of inequalities

L

1

� I

1

� U

1

: : : L

n

� I

n

� U

n

where all bounds may be compound. Let L

0

be given by a collection of half-spaces

l

1

� I

1

; : : : ; l

k

� I

1

; I

1

� u

1

; : : : ; I

1

� u

m

; : : : ; l

0

1

� I

n

; : : : ; I

n

� u

0

m

0

where each bound is simple. Suppose that we want to execute a block of statements S

1

in the

intersection of P and P

0

, and a block S

2

in P � P

0

. We construct a loop structure that performs

this task as follows.

For each i from 1 to n do the following.
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I
1

I2

1 2 5 8 9

Figure 1: Two intersecting iteration spaces

� Let the active loop be L

i

� I

i

� U

i

.

� For each half-space l � I

i

; : : : ; I

i

� u from P

0

do

{ If the half-space is a lowerbound, then partition the active loop accordingly. Set the

current active loop to the intersection loop of this partitioning.

{ If the half-space is an upperbound, then partition the active loop accordingly. Set the

current active loop to the intersection loop of this partioning.

� After this phase we have an ordered list of pre- and postloops, and an active loop. For each

pre- and postloop, generate a loop with body the loop de�ned by the bounds from L

L

i+1

� I

i+1

� U

i+1

; : : : ; L

n

� I

n

� U

n

and body S

2

.

� The body of the active loop is given the loop structure obtained in the next iterations over i.

If i = n, then the body is given by S

1

.

End Algorithm

Example Consider the following loops L and L

0

. L is given by 1 � I

1

� 9; 1 � I

2

� 9, and L

0

is

given by 2 � I

1

� 8; max(7� I

1

; I

1

� 3) � I

2

� min(3 + I

1

; 13� I

1

). See �gure 1. Then the above

algorithm yields the following pre-, intersection and postloop, respectively, for I

1

:

1 � I

1

� 1 2 � I

1

� 8 9 � I

1

� 9

The body of the pre- and postloop consists of the innerloop of L, with body S

2

. Continuing with

the active loop, we obtain the following two pre-, one intersection and two postloops, respectively,

10



for I

2

:

1 � I

2

� min(6� I

1

; 9)

max(7� I

1

; 1) � I

2

� min(I

1

� 4; 9)

max(7� I

1

; 1; I

1

� 3) � I

2

� min(3 + I

1

; 9; 13 � I

1

)

max(7� I

1

; 1; I

1

� 3; 14 � I

1

) � I

2

� min(3 + I

1

; 9)

max(4 + I

1

; 7� I

1

; 1; I

1

� 3) � I

2

� 9

The body of the pre- and postloops consists of the block S

2

; the body of the active loop consists of

S

1

.

Please observe that for some values of I

1

, some of the above loops over I

2

are empty. For example,

for I

1

= 2, the second and the fourth loop are empty. Moreover, a number of bounds are redundant,

that is, are always satis�ed given the other bounds. For example, since 1 � I

1

� 10, min(6 �

I

1

; 10) = 6 � I

1

. In [KB95] we discuss a number of techniques to remove these empty loops and

redundant bounds. Using these techniques, we can generate the following loop structure to scan the

iteration space depicted in �gure 1. Alternatively, we could have used the techniques described by

Chamski [Cha94] which are based on the Parametric Integer Programming tool by Feautrier [Fea88].

DO I

1

= 1; 1

DO I

2

= 1; 9

S

2

ENDDO

ENDDO

DO I

1

= 2; 5

DO I

2

= 1; 6 � I

1

S

2

ENDDO

DO I

2

= 7� I

1

; 3 + I

1

S

1

ENDDO

DO I

2

= 4 + I

1

; 9

S

2

ENDDO

ENDDO

DO I

1

= 6; 8

DO I

2

= 1; I

1

� 4

S

2

ENDDO

DO I

2

= I

1

� 3; 13 � I

1

S

1

ENDDO

DO I

2

= 14� I

1

; 9

S

2

ENDDO

ENDDO

DO I

1

= 9; 9

DO I

2

= 1; 9

S

2

ENDDO

ENDDO

End Example

Until now we have discussed how to eliminate a�ne guards in perfectly nested loops. However, the

result of this elimination is a nested loop sequence. Hence, if we want to continue the process of

eliminating a�ne guards, we have to extend the theory to the case of nested loop sequences. Brie
y,

we can apply the following strategy.

� Given an a�ne guard in a nested loop sequence N , �rst construct its local nest. This is a

perfectly nested loop L.

� Eliminate the a�ne guard from L using the above procedure, yielding a nested loop sequence

N

0

.

� Replace the local nest L in N by the nested loop sequence N

0

. Since N

0

scans exactly the

same iteration space as L does, this is straightforward and details are left as an exercise for

the reader.

We arrive at the following proposition.

Proposition 4.2 Given a perfectly nested loop L containing a�ne guards, we can construct a

semantically equivalent nested loop sequence N without a�ne guards.
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5 Example: LU-decomposition

In this section we give an extended example of the use of the transformations de�ned in the previous

sections. In particular, we show how to transform the ijk-version of LU-decomposition to the

ikj-version using only standard transformations. In fact, we can show that every version of LU-

decomposition can be obtained this way. We have chosen for this particular version because it is

easy and serves well as an illustration of the proposed techniques. This example shows both the

power of the proposed transformation strategy, and also the way it could be used in an interactive

restructuring environment.

Consider the following kernel for LU-decomposition for a 1000 � 1000 matrix A.

DO I = 1; 999

DO J = I+ 1; 1000

A(J; I) = A(J; I)=A(I; I)

DO K = I+ 1; 1000

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

The following loop structure is the result of transforming this non-perfectly nested loop into a

perfectly nested one.

DO I = 1; 999

DO J = I+ 1; 1000

DO K = I+ 1; 1000

IF(K = I+ 1) A(J; I) = A(J; I)=A(I; I)

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

In order to obtain the ikj-version of the loop, we �rst apply the unimodular transformation speci�ed

by the matrix

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

This is simply the interchange of the J and K loop. We obtain the following loop.

DO I = 1; 999

DO K = I+ 1; 1000

DO J = I+ 1; 1000

IF(K = I+ 1) A(J; I) = A(J; I)=A(I; I)

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

12



Now we eliminate the IF-statement and obtain the following loop.

DO I = 1; 999

DO K = I+ 1; I+ 1

DO J = I+ 1; 1000

A(J; I) = A(J; I)=A(I; I)

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

DO K = I+ 2; 1000

DO J = I+ 1; 1000

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

Next we apply loop distribution to the �rst loop on K. Moreover, since the �rst loop in the resulting

structure is a single trip loop, in which the body does not depend on the loop index K, this loop can

be removed. This yields the following code.

DO I = 1; 999

DO J = I+ 1; 1000

A(J; I) = A(J; I)=A(I; I)

ENDDO

DO K = I+ 1; I+ 1

DO J = I+ 1; 1000

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

DO K = I+ 2; 1000

DO J = I+ 1; 1000

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

Finally, a restructuring compiler can recognize that the two loops on K can be merged to yield the

ikj-version of LU-decomposition.

DO I = 1; 999

DO J = I+ 1; 1000

A(J; I) = A(J; I)=A(I; I)

ENDDO

DO K = I+ 1; 1000

DO J = I+ 1; 1000

A(J; K) = A(J; K)� A(J; I) � A(I; K)

ENDDO

ENDDO

ENDDO

13



6 Conclusion

In this paper we have discussed a way of using unimodular transformations for non-perfectly nested

loops. We had to impose the condition that the loops be non-zero-trip in order for our approach

to be semantically valid. We have given an algorithm to decide whether a given loop is NZT. The

result of the transformation is a perfectly nested loop containing a�ne guards. We have given an

algorithm to eliminate these guards. This algorithm can be used in other situations as well.

There are a number of extensions to the theory of this paper. First, we would like to remove the NZT

assumption. The problem now arises how to enforce a single trip of an innerloop, which was empty

in the original code. A possibility is to rewrite the loop bounds as L � I � max(L; U). However,

now we have introduced an inadmissible bound. Nevertheless, this bound has a very special form

which might be exploited. Second, we would like to use non-singular integer instead of unimodular

matrices. The problem that arises is that the resulting iteration space contains holes, and the

transformed loop has non-unit stride. The IF-elimination algorithm does not trivially extend to this

case.

We have a �nal remark concerning IF-elimination. Although this algorithm obviously can be used

to remove all a�ne guards in a loop, there exists the possibility of code explosion. This problem is

worsened if one tries to simplify the bounds obtained in the elimination process. Nevertheless, as

the example in section 5 shows, we feel that in practice this will not cause serious problems.
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