
On the Validity Problem for Unimodular Transformations

�

Peter M.W. Knijnenburg

High Performance Computing Division,

Dept. of Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands.

peterk@cs.leidenuniv.nl

Abstract

In this paper a new approach to the validity problem of

unimodualr transformations is proposed. First, we de-

�ne a representation of data dependences by means of

convex polytopes. Second, it is shown how this repre-

sentation can be used to test the validity of unimodular

transformations. This method is strictly more power-

ful than methods based on dependence direction vec-

tors, as proposed by Wolfe, or interval vector, as pro-

posed by Wolf and Lam. We show how our method can

be extended to cover the situations where a�ne guards

are present in the loop body, where multiple transfor-

mations or displacements are used to transform the

loop, as well.

1 Introduction

The application of loop level transformations is one of

the major techniques for restructuring programs in or-

der to exploit their inherent parallelism and achieve

high performance on current vector and massively

parallel architectures [Ban93, PW86, Pol88, Wol91,

ZC90]. Recently signi�cant progress was made by

the recognition that many important transformations

can be described by means of unimodular matri-

ces [AI91, Ban93, Ban91, WL91]. The theory has also

been extended to cover general non-singular integer

matrices [LP92]. In this paper we focus on unimod-

ular transformations. In section 5 we show how the

techniques can conservatively be extended to the case

of non-singular integer matrices.

One of the main advantages of using matrices lies in

the ability to test for the legality of a transformation

in a very concise way. Suppose that there exists a de-

pendence from iteration

~

I to

~

I

0

. Then it holds that in

�

This research was partially supported by Esprit BRA AP-

PARC under grant no. 6634

the transformed iteration space there is a dependence

from iteration U

~

I to U

~

I

0

, where U is the matrix spec-

ifying the transformation. Hence the distance of the

dependence in the transformed iteration space equals

U

~

I

0

� U

~

I = U(

~

I

0

�

~

I). That is, dependence distances

are also transformed by the same transformation as

used for the iteration space. From this it follows that

a transformation U is valid, that is, respects the de-

pendence structure of a loop, i� for each dependence

distance

~

d it is the case that U

~

d is lexicographically

positive. This last assertion means that the sink of a

dependence is executed after the source.

So the validity problem of a unimodular transforma-

tion boils down to the ability to compute a (com-

pact representation of) the collection of dependence

distances in a loop. If the dependence is uniform,

this can easily be done. In this case, there exists a

�xed dependence distance vector

~

d such that for each

iteration

~

I, the iteration

~

I +

~

d is dependent on it.

Hence we can check for the validity of the transfor-

mation by checking whether U

~

d is lexicographically

positive. There exist a number of algorithms for com-

puting uniform dependences. The reader is referred to

[Ban93, Ban88, Pol88, Wol91, ZC90] for background

on the theory.

The situation is di�erent if the dependence is not uni-

form. In this case there exists a possibly large number

of di�erent dependence distances for the given non-

uniform dependence. It is di�cult for a compiler to

construct this collection explicitly. Hence it is im-

portant to be able to device a compact representa-

tion for this collection. Traditionally, there are two

such representations in wide use. The �rst is the ab-

straction of the dependence direction vector [Wol91].

In this approach, all possible signs of the distances

in each dimension are collected to form a vector over

f<;>;�;�;=; �g. The penalty we have to pay for

this abstraction is that we loose precision. On the

other hand, for a number of important transforma-

1



tions like loop interchange this precision is not neces-

sary and direction vectors are precise enough to decide

their applicability [YAI94]. The second abstraction

one encounters in the literature is proposed by Wolf

and Lam and consists of giving the intervals in which

the components of the distance vectors are contained

[WL91]. They have given a calculus for such intervals

thus enabling to conservatively check for the validity of

a transformation. But like in the previous case all dis-

tance vectors are lumped together which makes these

interval vectors imprecise. Hence using these inter-

vals, one may decide that a certain transformation is

not valid where in fact it is. In section 5 we give an

example in which both approaches conservatively but

wrongly conclude that a dependence is violated by a

transformation, where the representation we propose

decides it is not.

The representation we propose is the following. For a

dependence � we collect every source and sink of the

di�erent individual dependences in convex polytopes.

These polytopes can be described by a system of in-

equalities. Hence we only need to store 2n bounds,

where n is the dimension of the iteration space. These

bounds can be obtained by Fourier-Motzkin elimina-

tion [DE73, Ban93, BW94, LP92]. Next, to check the

validity of the application of a unimodular transforma-

tion U , we transform these polytopes by an associated

transformation U

�

. The resulting polytopes exactly

contain the sources and sinks of the transformed de-

pendence. We then show how to check whether all

these transformed dependences are lexicographically

positive. We again use Fourier-Motzkin elimination

for this.

The representation and the validity test discussed in

this paper are very exible. In section 4 we show how

to deal with so-called a�ne guards, multiple mappings,

and displacements in the framework. Once the basic

techniques have been developed, these extensions can

be incorporated almost without e�ort.

The way we obtain the collection of dependence dis-

tance vectors is closely related to some other ap-

proaches. The Omega test proposed by Pugh [Pug92]

is also based on Fourier-Motzkin elimination of a

system of inequalities like the system we consider

here. Wolfe and Tseng [WT90] propose an exten-

sion of Banerjee's Generalized GCD test [Ban88] us-

ing Fourier-Motzkin elimination. Feautrier has pro-

posed an integer programming technique for analyz-

ing the dependence structure of a loop [Fea91] which

has strong similarities with the method described in

this paper. However, these dependence tests decide

whether a dependence exists, possibly yielding a di-

rection vector. In contrast, our technique is tailored

towards the validity test for unimodular transforma-

tions. That is, we do not explicitly construct depen-

dence distance or direction vectors, but construct poly-

topes containing all dependence information. These

polytopes are then transformed using the unimodular

transformation in question and the resulting polytopes

are inspected for violation of the dependence struc-

ture of the loop. To our knowledge, this approach is

new. The test we propose has an intuitively clear for-

mulation. Moreover, the technical machinery we use

for both the computation of the depencence structure

and the validity test for the transformation is Fourier-

Motzkin elimination. Since this is a basic algorithm for

applying a unimodular transformation and hence will

be present in a state-of-the-art restructuring compiler,

our technique can be easily implemented.

The paper is organized as follows. In section 2 we dis-

cuss some preliminaries and give notation. In section 3

we formulate our compact representation of a depen-

dence and show how this representation can be used

to test the validity of a unimodular transformation. In

section 4 we show how the technique can be extended

to cover some other situations as well. Finally, in sec-

tion 5, we give a brief discussion.

Acknowledgement. The author wishes to thank Ar-

jan Bik for critically reading a draft version of this

paper.

2 Preliminaries

In this section we give some preliminaries we use in the

rest of this paper. First, we de�ne lower and upper-

bounds for the loops we will consider.

De�nition 2.1 Let I = fI

1

; : : : ; I

n

g be a �nite col-

lection of variables or loop indices. With respect to

this collection I we de�ne:

1. A basic (lower or upper) bound is an a�ne ex-

pression

a

0

+ a

1

I

1

+ � � �+ a

n

I

n

where, for all i, a

i

2 Z.

2. Let a 2 N

+

and let B be a basic bound. A sim-

ple lowerbound is an expression

�

1

a

B

�

. A simple

upperbound is an expression

�

1

a

B

�

.

3. A compound lowerbound is an expression

max(L

1

; : : : ; L

m

) where each L

i

is a simple lower-

bound. A compound upperbound is an expression

2



min(U

1

; : : : ; U

m

) where each U

i

is a simple upper-

bound.

Note that each basic bound can be considered a simple

lower or upperbound, and each simple bound can be

considered a compound bound. In the sequel of the

paper we will make this identi�cation when no confu-

sion can arise. Basic, simple and compound bounds

are also called admissible. All other expressions for

bounds, like I

1

�I

2

or an indirection IND(I), are called

inadmissible. The reason for this distinction is that ad-

missible bounds can be used and are obtained in the

process of Fourier-Motzkin elimination (see below).

Every perfectly nested loop L with basic bounds gives

rise to a system of inequalities S(L), given by

S(L) =

8

>

<

>

:

L

1

� I

1

� U

1

.

.

.

L

n

� I

n

� U

n

Such a system should be read as the conjunction of

the individual clauses. This system has the property

that every bound L

i

and U

i

only involves variables

I

1

; : : : ; I

i�1

. We call this the standard form of a sys-

tem of inequalities. Note that for loops with compound

lower and upperbounds we also can de�ne such a sys-

tem of inequalities. Since compound upperbounds may

contain oor and minimum fuction, we use the follow-

ing equivalences to obtain this standard form.

� I �

�

1

a

B

�

i� aI � B (since I is integer and a > 0).

� I � min(U

1

; : : : ; U

m

) i� I � U

1

& � � �& I � U

m

.

For compound lowerbounds a similar standard form

can be deduced.

Any system of inequalities involving the variables

I

1

; : : : ; I

n

can be brought in standard form using

Fourier-Motzkin elimination [DE73, Ban93]. We try to

give some intuition. Consider a set C = f'

1

; : : : ; '

k

g

of inequalities, where each inequality '

i

is of the form

e � e

0

for two a�ne expressions e and e

0

over the

variables I

1

; : : : ; I

n

. Then Fourier-Motzkin elimina-

tion consists of the following process. First, rewrite

all expressions involving the variable I

n

to the form

L � I

n

; : : : ; I

n

� U . Then each inequality obtained in

this way bounds I

n

by expressions only involving the

variables I

1

; : : : ; I

n�1

. Hence these expressions can be

used to generate loop bounds. Now consider the sys-

tem obtained by forming all inequalities L � U , for

lowerbounds L and upperbounds U from the previous

step, together with all inequalities from the original

system not involving I

n

. This is a system of inequal-

ities only involving the variables I

1

; : : : ; I

n�1

. Hence

we can recursively continue the process, �nally ending

with a system of inequalities which consist only of the

variable I

1

and contstants.

Let [[C]] = fx 2 R

n

: '

1

(x) ^ � � � ^ '

k

(x)g. We say

that C is inconsistent i� [[C]] = ;. We say that an

inequality ' is redundant for C i� [[C[f'g]] = [[C]]. The

Fourier-Motzkin elimination algoritm can be used to

decide whether C is inconsistent. We also have that '

is redundant for C if and only if C[f:'g is inconsistent.

Fourier-Motzkin elimination deals with systems of in-

equalities of the form e � e

0

for a�ne expressions e

and e

0

. Note that we can express other comparison

operations on integers by the following identi�cations.

� n < m i� n+ 1 � m

� n = m i� n � m and m � n

� n � m i� m � n

In the sequel we will freely use these identi�cations.

Next, we give a de�nition of dependence that we use

in this paper. Given two statements S

1

and S

2

such

that both reference a variable and at least one of the

references is a write, then we say that there exists a de-

pendence between S

1

and S

2

. If S

1

is executed prior to

S

2

, then S

1

is the source, and S

2

is the sink of the de-

pendence. If S

1

and S

2

are statements in a loop, then

there may be a dependence between them for several

iteration vectors. For instance, in a single loop with

index I, S

1

may de�ne A(I) and S

2

may use A(I-1).

In this case we still say that there exists a dependence

between S

1

and S

2

, thus lumping all individual depen-

dences for the di�erent iterations together. Note that

in some de�nitions of dependence it is required that

there does not exist a statement S

3

which is executed

between S

1

and S

2

and which writes to the same vari-

ablei [ZC90]. Dependences with this extra condition

are called value based dependences [PW92]. We do not

require this extra condition. The resulting notion of

dependence is called memory based depedence [PW92].

Finally, given an expression e containing a variable x,

the expression e[e

0

=x] denotes the substitution of e

0

for x in e. Likewise, given a collection of variables

x

1

; : : : ; x

n

and a collection of expressions e

1

; : : : ; e

n

,

the expression e[~e=~x] denotes the simultaneous substi-

tution of e

1

; : : : ; e

n

for x

1

; : : : ; x

n

, respectively, in e.

3 The validity test

In this section we describe a method for checking the

validity of the application of a unimodular transfor-

3



mation U on a perfectly nested loop L. Such an ap-

plication is valid if for each dependence distance vec-

tor

~

d it is the case that U

~

d is lexicographically posi-

tive [Ban93, Wol91]. The method we propose is the fol-

lowing. For a dependence � we collect every source and

sink of the di�erent distances in a number of convex

polytopes. We construct one polytope for each loop

that may carry the dependence. These polytopes can

be described by a system of inequalities. The bounds

of these polytopes can be obtained by Fourier-Motzkin

elimination. Next, to check the validity of the appli-

cation of a unimodular transformation U , we trans-

form these polytopes by an associated transformation

U

�

. The resulting polytopes exactly contain the trans-

formed sources and sinks of the dependence. We then

show how to check whether all these transformed dis-

tances are lexicographically positive. We again use

Fourier-Motzkin elimination for this.

3.1 Dependence polytopes

Suppose we have a perfectly nested multiple loop L

with loop indices I

1

; : : : ; I

n

, respectively. The system

of inequalities generated by the bounds of the loop

indices is denoted as

L

1

� I

1

� U

1

: : : L

n

� I

n

� U

n

Each bound L

k

and U

k

is an admissible bound over the

collection of variables fI

1

; : : : ; I

k�1

g. These inequali-

ties de�ne a convex polytope P which is the iteration

space of the loop. Consider two statements in the loop

body, S

1

and S

2

. We assume that S

1

de�nes an in-

dexed variable A(e

1

; : : : ; e

d

), and S

2

uses an indexed

variable A(e

0

1

; : : : ; e

0

d

). The index expressions e

i

and

e

0

i

are assumed to be a�ne expressions over the loop

indices. We denote the index functions by ~e and ~e

0

, re-

spectively. In order to determine whether there exists

a dependence between S

1

and S

2

, we have to decide

whether ~e and ~e

0

can obtain the same value during

execution of the loop.

Our aim is to de�ne a collection of polytopes P =

fP

m

: 1 � m � ng. These polytopes are called depen-

dence polytopes and they will contain all dependence

information. In this paper, we consider memory based

dependences [PW92].

To explain the intuition behind the construction of

the collection of dependence polytopes, observe that

a dependence can be carried by each loop in the nest.

Therefore, for each 1 � m � n, we de�ne a polytope

P

m

which encodes the dependences carried by the mth

loop. Consider a dependence from iteration

~

I to itera-

tion

~

I

0

that is carried by the mth loop. First of all, this

means that e

i

(

~

I) = e

0

i

(

~

I

0

) for all 1 � i � d. We can

collect all these points in a convex polytope E � P�P ,

which we call the equality polytope for the dependence.

First, we de�ne the polytope P�P by introducing new

variables

~

I

0

with the same bounds as

~

I. The system of

inequalities that de�nes P � P is given by

8

>

>

<

>

>

:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

L

1

[

~

I

0

=

~

I] � I

0

1

� U

1

[

~

I

0

=

~

I]; : : : ;

L

n

[

~

I

0

=

~

I] � I

0

n

� U

n

[

~

I

0

=

~

I]

(1)

Then we add equalities derived from the index func-

tions to isolate E inside P � P .

e

1

= e

0

1

[

~

I

0

=

~

I]; : : : ; e

d

= e

0

d

[

~

I

0

=

~

I] (2)

where we have substituted the variables

~

I

0

for

~

I in the

(formal) expressions e

0

i

.

Second, the direction vector corresponding to the de-

pendence distance vector

~

I

0

�

~

I is given by

h =; : : : ;=

| {z }

m�1�

; <; �; : : : ; � i

Hence, the corresponding point h

~

I;

~

I

0

i in E has the

property that its �rst m� 1 coordiantes of

~

I are equal

to the �rst m � 1 coordinates of

~

I

0

, and the mth co-

ordinate of

~

I is smaller than the mth coordinate of

~

I

0

. We can �lter these points out by adding an extra

constraint, one for each m. These polytopes are called

dependence polytopes and are denoted by P

m

. For each

1 � m � n, the constraint for de�ning P

m

is given by

I

1

= I

0

1

; : : : ; I

m�1

= I

0

m�1

; I

m

< I

0

m

(3)

Observe how this constraint �lters out the dependences

with the proper direction vector.

Summing up, we arrive at the following de�nition for

P

m

.

De�nition 3.1 Let L be a loop with bounds as above.

Let S

1

and S

2

be two statements in the body of

L. Suppose that S

1

de�nes a subscripted variable

A(e

1

; : : : ; e

d

), and that S

2

uses a subscripted variable

A(e

0

1

; : : : ; e

0

d

). Then, for each 1 � m � n, the depen-

dence polytope P

m

associated with this de�nition and

use of A is given by the following system of inequali-

ties.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

L

1

[

~

I

0

=

~

I] � I

0

1

� U

1

[

~

I

0

=

~

I]; : : : ;

L

n

[

~

I

0

=

~

I] � I

0

n

� U

n

[

~

I

0

=

~

I]

e

1

= e

0

1

[

~

I

0

=

~

I]; : : : ; e

d

= e

0

d

[

~

I

0

=

~

I]

I

1

= I

0

1

; : : : ; I

m�1

= I

0

m�1

; I

m

< I

0

m

4



We can obtain a dependence polytope P

1

for the

loop independent dependences by using the equalities

I

1

= I

0

1

; : : : ; I

n

= I

0

n

. In this case, S

1

should textually

preceed S

2

in the loop. But, since the loop transforma-

tions considered in this paper act on the whole body

of a loop, these dependence will always be satis�ed in

the transformed loop. Hence we need not consider P

1

in this paper.

Lemma 3.2 There does not exists a dependence from

S

1

to S

2

if and only if for each 1 � m � n the polytope

P

m

does not contain integer points.

Corollary 3.3 There does not exists a dependence

from S

1

to S

2

if for each 1 � m � n the polytope

P

m

is empty.

Example 1. Consider the following loop.

DO I

1

= 1; 10

DO I

2

= 1; 10

S

1

: A(I

1

; I

2

) = � � �

S

2

: � � � = � � �A(I

1

� 1; I

2

� 1) � � �

ENDDO

ENDDO

The dependence polytope for the ow dependence from

S

1

to S

2

P

1

is given by the following system of inequal-

ities.

8

>

>

<

>

>

:

1 � I

1

� 9

1 � I

2

� 9

I

1

+ 1 � I

0

1

� I

1

+ 1

I

2

+ 1 � I

0

2

� I

2

+ 1

Its is easy to see that every point in this polytope con-

stitutes the source and the sink of a dependence. The

dependence polytope P

2

is empty, which reects the

fact that there does not exist a ow dependence be-

tween iterations hI

1

; I

2

i and hI

0

1

; I

0

2

i with I

1

= I

0

1

.

2

Example 2. Consider the following loop.

DO I

1

= 1; 10

DO I

2

= 1; I

1

S

1

: A(I

1

) = � � �

S

2

: � � � = � � �A(I

1

� I

2

) � � �

ENDDO

ENDDO

The dependence polytope for the ow dependence from

S

1

to S

2

P

1

is given by the following system of inequal-

ities.

8

>

>

<

>

>

:

1 � I

1

� 9

1 � I

2

� I

1

I

1

+ 1 � I

0

1

� 10

I

0

1

� I

1

� I

0

2

� I

0

1

� I

1

For instance, there exists a dependence from iteration

h3; 2i to h5; 2i. The dependence polytope P

2

is empty.

2

3.2 Transforming the dependence

polytopes

Suppose we want to transform the loop using a uni-

modular matrix U . Consider the matrix U

�

given by

U

�

=

�

U 0

0 U

�

Lemma 3.4 If U is unimodular, then so is U

�

.

Now consider the application of U

�

to a polytope P

m

,

with 1 � m < n. Given a point h

~

I;

~

I

0

i 2 P

m

,

U

�

�

~

I

~

I

0

�

=

�

U

~

I

U

~

I

0

�

Hence applying U

�

to P

m

produces a polytope P

�

m

which contains exactly the source and sink of each de-

pendence after application of U . The application of U

�

is done in the standard way [Ban93, LP92]. Briey,

suppose a convex polytope (iteration space) P is de-

�ned using a system of inequalities involving indices

~

I and suppose we want to transform P using a uni-

modular matrix U . For the iteration space of a loop L

this system is S(L) as given in section 2. The result-

ing transformed polytope P

�

will be given by a system

of inequalities involving the indices

~

J. We then have

that

~

J = U

~

I, or that

~

I = U

�1

~

J. We substitute U

�1

~

J

for

~

I in the original system of inequalities, thereby ob-

taining a system of inequalities involving the indices

~

J.

This system de�nes P

�

. We can use Fourier-Motzkin

elimination to obtain a standard form for this system.

We denote P

�

m

by a system of inequalities

�

L

0

1

� J

1

� U

0

1

; : : : L

n

� J

n

� U`

n

;

L

00

1

� J

0

1

� U

00

1

; : : : ; L

00

n

� J

0

n

� U

00

n

Example 2. (Continued) Suppose we want to trans-

form the loop from Example 2 by the unimodular

transformation

U =

�

1 0

1 �1

�

The dependence polytope P

1

from Example 2 is trans-

formed to the polytope P

�

1

given by

8

>

>

<

>

>

:

1 � J

1

� 9

0 � J

2

� J

1

� 1

J

1

+ 1 � J

0

1

� 10

I

1

� J

0

2

� I

1

2

5



3.3 Checking for validity

In this section we show how to check whether the

transformed dependences are lexicographically posi-

tive. This means that we have to check that for all

1 � k � n, a direction vector of the form

h =; : : : ;=

| {z }

k�1�

; >; �; : : : ; � i

does not exist in the transformed polytopes P

�

m

.

First we de�ne constraints on the indices of the trans-

formed dependence polytopes P

�

m

that check whether

there exists a point hJ

1

; : : : ; J

n

; J

0

1

; : : : ; J

0

n

i in P

�

m

such

that for some 1 � k � n it is the case that J

0

k

< J

k

and for all 1 � i < k that J

i

= J

0

i

. If this is so, then

the transformed dependence distance

hJ

0

1

; : : : ; J

0

n

i � hJ

1

; : : : ; J

n

i

is lexicographically negative, and hence the depen-

dence is violated.

De�nition 3.5 For each 1 � k � n, the constraint

C

k

is de�ned as

J

0

1

= J

1

& � � � & J

0

k�1

= J

k�1

& J

0

k

< J

k

For each 1 � m � n, and each 1 � k � n, let Q

k

m

denote the polytope obtained from P

�

m

by adding the

constraint C

k

. We have the following proposition.

Proposition 3.6 The application of a unimodular

matrix U is valid if and only if for each 1 � m � n,

and each 1 � k � n, the polytope Q

k

m

does not contain

integer points.

Corollary 3.7 The application of a unimodular ma-

trix U is valid if for each 1 � m � n, and each

1 � k � n, the polytope Q

k

m

is empty.

The di�erence between Proposition 3.6 and Corollary

3.7 is that the condition given in the corollary can

be checked using Fourier-Motzkin elimination. This

yields a conservative approximation to the solution of

the validity problem. We obtain an exact solution if

we can check whether or not a non-empty polytope

does not contain integer points. The omega-test pro-

posed by Pugh [Pug92] is a well-known test based on

Fourier-Motzkin elimination that can test for precisely

this condition.

Example 2. (Continued) Given the transformed de-

pendence polytope P

�

1

, it is easy to see that both the

conditions

J

0

1

< J

1

and J

0

1

= J

1

& J

0

2

< J

2

deliver empty polytopes. Hence the transformation U

does not violate the ow dependence from S

1

to S

2

in

the program of Example 2. 2

4 Extensions

In this section we show how to extend the theory de-

veloped in the previous sections to the cases where

the body of the loop contains a�ne guards, where the

two statements involved in the dependence are to be

transformed by di�erent unimodular transformations,

and where displacements are used. This shows that

the techniques presented in the previous sections are

very exible. Once the basic techniques have been de-

veloped, these extensions can be incorporated almost

without e�ort.

4.1 A�ne guards

In this section we show how to deal with a certain kind

of IF-statements guarding the statements involved in a

dependence. We call these IF-statements a�ne guards.

These a�ne guards are, for instance, generated when

converting a non-perfectly nested loop into a perfectly

nested one, as described in [Kni94]. If one wants to

transform the resulting perfectly nested loop by a uni-

modular transfornmation, it is important to be able to

deal with a�ne guards.

De�nition 4.1 Let L be a loop nest.

1. A condition of the form e � e

0

where e and e

0

are

a�ne expressions in the loop variables, is called a

simple a�ne condition for L.

2. The conjunction of one or more simple a�ne con-

ditions for L is called an a�ne condition for L.

3. An IF-statement of which the condition is an

a�ne condition is called an a�ne guard for L.

Suppose we have a loop nest containing a�ne guards.

DO I

1

= L

1

; U

1

� � �

DO I

n

= L

n

; U

n

IF (f

1

� f

0

1

& � � �& f

k

� f

0

k

) S

1

IF (g

1

� g

0

1

& � � �& g

l

� g

0

l

) S

2

ENDDO

� � �

ENDDO

6



Then the a�ne condition (f

1

� f

0

1

& � � �& f

k

� f

0

k

)

determines a subspace Q

1

of the iteration space of this

loop. Likewise, the other a�ne condition determines

a subspace Q

2

. Since the conditions are a�ne, these

subspaces are convex subspaces. When we construct

the dependence polytopes P

1

; : : : ;P

n

as described in

section 3.1, we want to restrict these to those points

in Q

1

�Q

2

. That is, the dependence polytopes P

0

m

for

1 � m � n are given by

P

0

m

= P

m

\ (Q

1

�Q

2

)

where P

m

is the dependence polytope de�ned in sec-

tion 3.1. We can obtain these polytopes by solving the

following system of inequalities using Fourier-Motzkin

elimination.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

L

1

� I

1

� U

1

; : : : ; L

n

� I

n

� U

n

L

1

[

~

I

0

=

~

I] � I

0

1

� U

1

[

~

I

0

=

~

I]; : : : ;

L

n

[

~

I

0

=

~

I] � I

0

n

� U

n

[

~

I

0

=

~

I]

f

1

� f

0

1

; : : : ; f

k

� f

0

k

g

1

[

~

I

0

=

~

I] � g

0

1

[

~

I

0

=

~

I]; : : : ; g

l

[

~

I

0

=

~

I] � g

0

l

[

~

I

0

=

~

I]

e

1

= e

0

1

[

~

I

0

=

~

I]; : : : ; e

d

= e

0

d

[

~

I

0

=

~

I]

I

1

= I

0

1

; : : : ; I

m�1

= I

0

m�1

; I

0

m

< I

m

Analogously to section 3.3 we de�ne the polytopes Q

k

m

using the matrix U

�

and the constraints C

k

. We arrive

at the following proposition.

Proposition 4.2 Given a perfectly nested loop L con-

taining a�ne guards and a unimodular transformation

U . Then the application of U is valid if and only if

for each dependence present in the loop, the associated

polytopes Q

k

m

do not conatain integer points.

4.2 Multiple transformations

Recently it has proposed to allow di�erent transforma-

tions for di�erent statements in the loop body [KTA94,

KPR94, KP94, KS94]. In this section we show how the

theory developed in section 3 can be extended to cover

multiple unimodular transformations as well.

Suppose we have a loop nest containing statements

S

1

and S

2

and that we want to transform S

1

using a

unimodular transformation U

1

, and S

2

using U

2

. The

reader is referred to [KTA94] for a discussion about

how to interpret such transformations. The main

point is that each iteration hI

1

; : : : ; I

n

i, is mapped to

U

1

hI

1

; : : : ; I

n

i for S

1

, and to U

2

hI

1

; : : : ; I

n

i for S

2

.

Now suppose there exists a dependence between S

1

and

S

2

, from iteration hI

1

; : : : ; I

n

i to hI

0

1

; : : : ; I

0

n

i. Obvi-

ously the transformation is valid if for each such de-

pendence it is the case that

U

2

hI

0

1

; : : : ; I

0

n

i � U

1

hI

1

; : : : ; I

n

i

is lexicographically positive.

We can test for this last condition as follows. Recall

that in section 3 the transformed dependence poly-

topes were computed using U

�

. Now de�ne the fol-

lowing operation on matrices.

U

1


 U

2

=

�

U

1

0

0 U

2

�

Lemma 4.3 If U

1

and U

2

are unimodular, then so is

U

1


 U

2

.

We can again compute the polytopes Q

k

m

, completely

analogous to section 3.3. We arrive at the following

proposition.

Proposition 4.4 Let L be a loop nest containing N

statements S

1

; : : : ; S

N

. Let U

1

; : : : ;U

N

be unimodular.

Then the transformation which transforms statement

S

i

using U

i

is valid if and only if for each dependence

from S

i

to S

j

it is the case that the polytopes Q

k

m

ob-

tained as described above from U

i


 U

j

do not contain

integer points.

4.3 Displacements

In this section we show how to add displacements to

the techniques discussed in the previous sections. Dis-

placements were introduced in [AT93, TALV93]. The

idea behind displacements is to add a vector to the

iterations in the transformed iteration space

1

. We al-

low di�erent displacements for di�erent statements in

a loop. This means that for statement S

i

iteration

~

I

is mapped as

~

I 7! U

~

I+

~

d

i

We now show how to deal with displacements in the

present framework.

Suppose we are examining a dependence � from S

i

to S

j

. First, we compute the dependence polytopes

P

m

as in section 3.1. Second, we have to transform

these polytopes by the unimodular transformation U

and the dispacements

~

d

i

and

~

d

j

. This means that the

transformed dependence polytopes P

�

m

are obtained by

1

In [AT93, TALV93] a di�erent but equivalent formulation is

used.

7



transforming P

m

using the unimodular transformation

U

�

and displacement

~

d =

�

~

d

1

~

d

2

�

in the way described in [AT93, TALV93].

We briey review how to transform a polytope P using

a unimodular transformation U and a displacement

~

d

yielding a transformed polytope P

�

. For more back-

ground and examples, consult [AT93, TALV93]. Sup-

pose that P is de�ned using a system of inequalities

involving the indices

~

I. Like in section 3 we denote

the indices for the system of inequalities de�ning the

polytope P

�

by

~

J. Then we have that

~

J = U

~

I+

~

d, or

that

~

I = U

�1

�

~

J�

~

d

�

= U

�1

~

J� U

�1

~

d

Hence we have to substitute U

�1

~

J�U

�1

~

d for

~

I in the

system of inequalities de�ning P to obtain P

�

. We

use Fourier-Motzkin elimination to obtain a standard

form for the resulting system of inequalities. Observe

that a point h

~

I;

~

I

0

i in P

m

(which thus consists of the

source and sink of a dependence) is mapped to the

point hU

~

I+

~

d

i

;U

~

I

0

+

~

d

j

i in P

�

m

, as desired.

We can again compute the polytopes Q

k

m

, completely

analogous to section 3.3. We arrive at the following

proposition.

Proposition 4.5 Let L be a loop nest containing N

statements S

1

; : : : ; S

N

. Let U be unimodular and let

~

d

1

; : : : ;

~

d

N

be displacement vectors. Then the trans-

formation which transforms statement S

i

using U and

displacement

~

d

i

is valid if and only if for each depen-

dence from S

i

to S

j

it is the case that the polytopes Q

k

m

obtained as described above using displacements

~

d

i

and

~

d

j

do not contain integer points.

Please observe that we can merge the theory described

above to the case where we want to use di�erent trans-

formations to di�erent statements which may be a�ne

guards, together with displacements.

5 Discussion

In this paper we have proposed a new method for ob-

taining a compact representation of dependences. In

this approach, the bounds of the loop to be analysed

should be admissible, and the index functions of arrays

should be a�ne expressions. The main advantage of

this representation is that it can be used to test the

validity of a unimodular transformation exactly. We

have shown how the theory can be extended to cover

situations, where a�ne guards are present in the loop

or when more than one transformation will be applied

to the loop, as well.

First, we have some comments on the space needed to

store the proposed representaion of the dependences

in a loop. For each dependence we need to store a

number of dependence polytopes. Each such polytope

can be represented by 4n bounds where n is the di-

mension of the iteration space. There are n such poly-

topes, so the total of space needed for the proposed

representation is O(n

2

) where n is the nesting depth

of the loop. Since this nesting depth tends to be small

in practical situations, this seems to be an acceptable

amount of space. Next, we need O(n

2

) applications of

the Fourier-Motzkin elimination algorithm. Although

this algorithm is exponential, it has been observed be-

fore [Pug92] that it is e�cient for practical purposes.

Our own experience [BW94] con�rms this and shows

that the test can be executed in a few seonds in prac-

tical situations.

A well-known extension to unimodular transforma-

tions are transformations speci�ed by non-singular in-

teger matrices [LP92]. The theory of this paper can

immediately be extended to this case. The only point

is that the iteration space of the transformed loop may

contain holes: the resulting loop has non-unit strides.

Hence the statement of Proposition 3.6 does not hold

if we would allow these kind of matrices. In case the

polytopes Q

k

m

only contain integer points that do not

correspond to actual iteration points, then the trans-

formation is valid as well. But we can formulate the

following conservative test.

Corollary 5.1 The application of a non-singular in-

teger matrix U is valid if for each 1 � m � n, and each

1 � k � n, the polytope Q

k

m

does not contain integer

points (or, is empty, respectively).

In order to make a comparison with other methods for

representing dependences and validating a transforma-

tion, consider the following loop.

DO I

1

= 1; 10

DO I

2

= 1; 10

S

1

: A(I

1

+ I

2

) = � � �

S

2

: � � � = � � � A(I

1

+ I

2

� 1) � � �

ENDDO

ENDDO

Consider the ow dependence from S

1

to S

2

. The de-

pendence distances of this dependence are given by

h�;��+1i as inspection of the iteration space shows.

8



The direction vector of this dependence is h�; �i. The

interval vector is h[0;1]; [�1; 1]i. The dependence

polytope P

1

is given by

8

>

>

<

>

>

:

1 � I

1

� 9

1 � I

2

� 10

I

1

+ 1 � I

0

1

� min(I

1

+ I

2

; 10)

1 + I

1

+ I

2

� I

0

1

� I

0

2

� 1 + I

1

+ I

2

� I

0

1

and the dependence polytope P

2

is given by

8

>

>

<

>

>

:

1 � I

1

� 10

1 � I

2

� 9

I

1

� I

0

1

� I

1

I

2

+ 1 � I

0

2

� I

2

+ 1

Now we want to apply the unimodular transformation

U =

�

1 1

0 1

�

If we test whether this transformation violates the ow

dependence, we compute:

U

�

�

�

�

=

�

�

�

�

U

�

[0;1]

[�1; 1]

�

=

�

[�1;1]

[�1; 1]

�

Hence both direction and interval representation de-

cide that this ow dependence is violated by U .

However, computing P

�

1

and P

�

2

yield that P

�

1

is given

by

8

>

>

<

>

>

:

2 � J

1

� 19

max(J

1

� 9; 1) � J

2

� min(J

1

� 1; 10)

J

1

+ 1 � J

0

1

� J

1

+ 1

max(J

0

1

� J

1

; J

0

1

� 10) � J

0

2

� J

0

1

+ J

2

� J

1

� 1

and that P

�

2

is given by

8

>

>

<

>

>

:

1 � J

1

� 19

max(J

1

� 10; 1) � J

2

� min(J

1

� 1; 9)

J

1

+ 1 � J

0

1

� J

1

+ 1

J

2

+ 1 � J

0

2

� J

2

+ 1

It is easy to see that the conditions C

1

and C

2

both

make both polytopes empty. Hence we conclude that

the dependence is not violated by U . This shows that

our method is strictly more powerful than the two

methods based on direction and interval vectors.

References

[AI91] C. Ancourt and F. Irigoin. Scanning poly-

hedra with DO loops. In Proc. 3rd ACM

SIGPLAN Symp. on Principles and Prac-

tice of Parallel Programming, pages 39{50,

1991.

[AT93] E. Ayguad�e and J. Torres. Partioning the

statement per iteration space using non-

singular matrices. In Proc. 7th ACM Int.

Conf. Supercomputing, 1993.

[Ban88] U. Banerjee. Dependence Analysis for Su-

percomputing. Kluwer Academic Publish-

ers, Norwell, 1988.

[Ban91] U. Banerjee. Unimodular transformations

of double loops. In Advances in Lan-

guages and Compilers for Parallel Process-

ing, chapter 10. The MIT Press, 1991.

[Ban93] U. Banerjee. Loop Transformations for Re-

structuring Compilers. Kluwer Academic

Publishers, Norwell, 1993.

[BW94] A.J.C. Bik and H.A.G. Wijsho�. Imple-

mentation of Fourier-Motzkin elimination.

Technical Report 94-42, Dept. of Computer

Science, Leiden University, 1994.

[DE73] G.B. Dantzig and B.C. Eaves. Fourier-

Motzkin elimination and its dual. J. of

Combinatorial Theory, 14:288{297, 1973.

[Fea91] P. Feautrier. Dataow analysis of array and

scalar references. Int. J. of Parallel Pro-

gramming, 20(1):23{53, 1991.

[Kni94] P.M.W. Knijnenburg. Towards unimodu-

lar transformations of non-perfectly nested

loops. Technical Report 94-41, Dept. of

Computer Science, Leiden University, 1994.

[KP94] W. Kelly and W. Pugh. Finding le-

gal reordering transformations using map-

pings. In Proc. 7th Ann. Workshop on Lan-

guages and Compilers for Parallel Comput-

ing, 1994.

[KPR94] W. Kelly, W. Pugh, and E. Rosser. Code

generation for multiple mappings. Technical

Report UMIACS-TR-94-87, Dept. of Com-

puter Science, Univ. of Maryland, 1994.

[KS94] D. Kulkarni and M. Stumm. Computational

alignment: A new, uni�ed program trans-

formation for local and global optimization.

9



Technical Report CSRI-292, CSRI, Univer-

sity of Toronto, 1994.

[KTA94] P.M.W. Knijnenburg, J. Torres, and

E. Ayguad�e. Multi-transformations for dou-

bly nested loops. Technical Report 94/13,

DAC/UPC, 1994.

[LP92] W. Li and K. Pingali. A singular loop trans-

formation framework based on non-singular

matrices. In Proc. 5th Workshop on Lan-

guage and Compilers for Parallel Comput-

ers, 1992.

[Pol88] C. Polychronolpoulos. Parallel Program-

ming and Compilers. Kluwer Academic

Publishers, Boston, 1988.

[Pug92] W. Pugh. The Omega test: A fast and prac-

tical integer programming algorithm for de-

pendence analysis. Comm. of the ACM,

8:102{114, 1992.

[PW86] D.A. Padua and M.J. Wolfe. Advanced

compiler optimizations for supercomput-

ers. Comm. of the ACM, 29(12):1184{1201,

1986.

[PW92] W. Pugh and D. Wonnacott. Going beyond

integer programming with the Omega test

to eliminate false data dependences. Techni-

cal Report CS-TR-2993, Dept. of Computer

Science, Univ. of Maryland, 1992.

[TALV93] J. Torres, E. Ayguad�e, J. Labarta, and

M. Valero. Align and distribute-based lin-

ear loop transformations. In U. Banerjee,

D. Gelernter, A. Nicolau, and D. Padua, ed-

itors, Proc. 6th Int. Workshop on Languages

and Compilers for Parallel Computing, vol-

ume 768 of Lecture Notes in Computer Sci-

ence, pages 321{339, Berlin, 1993. Springer

Verlag.

[WL91] M.E. Wolf and M.S. Lam. A loop trans-

formation theory and an algorithm to max-

imize parallelism. IEEE Transactions on

Parallel and Distributed Systems, 2(4):430{

439, 1991.

[Wol91] M. Wolfe. Optimizing Supercompilers for

Supercomputers. The MIT Press, 1991.

[WT90] M. Wolfe and C.-W. Tseng. The Pow-

ertest for data dependence. Technical Re-

port CS/E 90-015, Oregon Graduate Insti-

tute of Science and Technology, 1990.

[YAI94] Y.-Q. Yang, C. Ancourt, and F. Irigoin.

Minimal data dependence abstractions for

loop transformations. In Proc. 7th Ann.

Workshop on Languages and Compilers for

Parallel Computing, 1994.

[ZC90] H. Zima and B. Chapman. Supercompilers

for Parallel and Vector Computers. ACM

Press, New York, 1990.

10


