
Visual Speci�cation of Complex

Database Actions

Gregor Engels

Leiden University, Dept. of Computer Science

P.O. Box 9512, NL-2300 RA Leiden

The Netherlands

engels@wi.leidenuniv.nl

Perdita L�ohr

Quantum GmbH

Emil-Figge-Stra�e 83, D-44227 Dortmund

Germany

loehr@quantum.de

Abstract

The paper presents an approach to specify in an integrated way by vi-

sual, diagrammatic languages the structural and behavioural aspects of

database applications. Hereby, well-known extended Entity-Relationship

diagrams are employed to specify the structural aspects. The behavioural

aspects of a database application are speci�ed by using ViAL (Visual Ac-

tion Language). ViAL speci�cations are a special kind of data (or better

object) ow diagrams, where so-called elementary actions are used as ba-

sic building blocks. These elementary actions are automatically derived

from a given EER diagram. They guarantee that after �nishing their ex-

ecution all inherent integrity constraints are ful�lled. The paper explains

the features of the language ViAL and gives some illustrating examples.

1 Introduction

Nowadays, semantic data models are regarded as convenient means to specify

database applications [11]. Most of these approaches o�er corresponding vi-

sual speci�cation languages which eases both to develop and to comprehend

the speci�cation. The most well-known representatives of such languages are

languages based on the ER model and its extensions. They are widely used

in scienti�c as well as commercial software development. Meanwhile, the ER

approach can even be found in commercial products like ORACLE CASE, as

well as in fully extended software development methods like Modern SA [17].

Additionally, the ER concepts impacted the development of object oriented ap-

proaches which partially adopted them for their structural speci�cation parts,

e.g., OMT [14] or OOA [3].

Since database applications besides structural parts tend to more and more

encompass dynamic parts, suitable languages are needed to specify the appli-

cation's behaviour and functionality. Those languages can be termed suitable

if they ful�ll the following two requirements:

1

1. Developped behaviour speci�cations are highly integrated with the struc-

ture speci�cation, i.e., they obey the inherent integrity constraints im-

posed by the structure speci�cation.

2. They are on the same language level as the language to de�ne the struc-

tural part and are also visual, diagrammatic languages.

Usually, the classical approach to function speci�cation, i.e., data ow di-

agrams, is added to the structure speci�cation language. Unfortunately, this

approach do not ful�ll the �rst requirement. Thus, the well-known integration

gap between conventional data and function speci�cation arises.

An alternative approach to integrate data and function speci�cation can

be found in ACM/PCM [1]. There, the graphically speci�ed data structures

are also used to express data ow. For this purpose, the database schema

is extended by basic operations referring to the object types. Since it is not

possible to specify more elaborated control ow in these extended schemata,

most of the remaining functionality has to be speci�ed in a traditional, i.e.,

separate and textual, manner.

To our knowledge, such work on combining structural and behavioural mod-

elling has not been continued in the semantic data modelling community. But,

it has returned back as an interesting and important topic in the object-oriented

modelling world. While industrial object-oriented methods like OMT [14] still

lack a real integrated speci�cation of structure and behaviour, some research

results o�er appropriate solutions. As an example, Petri net based approaches

as for instance Object/Behaviour Diagrams [12] are mentioned here.

In this paper, we also propose an approach which o�ers a visual spec-

i�cation language to model actions tightly bound to the speci�cation of

a database schema, and thus ful�lls the above mentioned two requirements.

The language is called ViAL { Visual Action Language. It was developed dur-

ing a DFG

1

project called CADDY (Computer-Aided Design of non-traditional

Databases). In this context, ViAL is implemented as part of a prototype design

environment for information systems [6]. In contrast to the above mentioned,

non-integrated approaches ViAL focus on

� a speci�cation of actions highly integrated with the database schemata.

For this purpose, elementary actions are derived from the database schema

and are automatically o�ered as graphic speci�cation primitives in ViAL.

� inclusion of arbitrary structured data queried from the database. To sup-

port this facility, arbitrary queries can be separately de�ned and con-

nected to a graphic symbol. In turn, this query symbol is o�ered in ViAL

as a speci�cation primitive. Furthermore, special constructs are available

to handle the object sets delivered by the queries.

� an intuitively comprehensible representation. This is provided by using

graphic symbols in ViAL which on the one hand, resemble the symbols

of the used semantic data model, and on the other hand, adopt the well-

known concepts of data ow diagrams.

1

DFG is the abbreviation for the German Research Council - Deutsche

Forschungsgemeinschaft

2 Speci�cation of Conceptual Database

Schemata

To show how to specify actions in terms of ViAL, we roughly introduce the

speci�cation of a database schema �rst, since ViAL's speci�cation primitives

base on it. For short: a speci�cation of a database schema consists of three parts

[5]: an extended Entity-Relationship (EER) diagram, de�nitions of application

oriented data types and and de�nitions of static integrity constraints.

2.1 EER diagram

An EER diagram describes the object types of the database application and

their relationships. It is an extension of the ER model by Chen [2] and enhances

it by the well-known concepts of generalization/specialization, association, and

aggregation. Figure 1 gives an EER diagram which models a simple aspect of

ight reservation. You can see in this example schema that the basic constructs

equal those of the classical ER model. Few concepts are denoted slightly dif-

ferent, for example, key attributes of an object type are marked by a black

dot on the connecting edge, while optional attributes are marked by an hollow

dot. A new construct, for example, is the type constructor which is denoted

as a triangle in the schema. It describes the specialization of persons into the

special object type PASSENGER. Attributes may be data-valued like Name

or object-valued like AdrSet. Object-valued attributes (or components) are

dependent on the existence of their owners. Futhermore, attributes may be

multivalued like set, list, or bag, as, for instance, AdrSet. Further details on

this data model can be found in [5].

C

PASSENGER

Charter?:bool

FLIGHT

Date of Booking:date

Deposit:real+

Price Reduction:real+

Flight#:string

Price:real+

Rate of Booking:real+

booked
for

Passport#:string

Nationality:string

Tel:int+

Name:string

ADDRESS

Street:string

City:string

AdrSet: list [1,3] of

PERSON

Birthday:date

Figure 1: Example EER digram refering to booking of ights

2.2 Application-oriented Data Types

Data types are speci�ed by using an algebraic approach. This allows to in-

troduce application-oriented data types like point, date, colour besides the

standard types like int, real into a speci�cation, together with type speci�c

operations.

2.3 Static Integrity Constraints and Queries

Static integrity constraints are expressed as formulas of an EER calculus. This

calculus was especially developed for and adapted to the needs of an EER lan-

guage. It allows to de�ne variables and predicates over EER speci�c constructs

[8].

On top of the EER calculus, an EER oriented query language is de�ned:

SQL/EER [10]. This language facilitates to query the database on the same

level as the de�ned EER diagram. An example of an SQL/EER query is:

SELECT pa.Name, (SELECT f.Flight#

FROM f IN FLIGHT

WHERE pa booked for f)

FROM pa in PASSENGER

WHERE pa.Nationality = "Dutch"

This query selects for all Dutch passengers their names and the ight num-

bers they are booked for.

3 ViAL - Concepts and Syntax

Having the speci�cation of the database schema on hand, we now introduce

the visual language ViAL [4, 7, 9, 16]. ViAL enables to graphically specify

complex (trans-)actions corresponding to the existing database schema. ViAL

speci�cations are interactively executable by an interpreter, and, thus, o�er

the possiblity to test the speci�cation of structure and behaviour of a database

application in a prototype manner. For this purpose, ViAL o�ers the following

concepts:

ViAL comprehends a set of graphic symbols to express functionality:

the processing symbols. This set may be distinguished into two main groups of

symbols: on the one hand, general symbols which include arbitrary actions or

queries (cf. �gure 3 and 4), and on the other hand, speci�c symbols which are

derived from the existing database schema. The latter are shown in �gure 2:

rectangular symbols denoting operations on objects, diamond-shaped symbols

for operations on relationships, and triangular symbols which represent the

dynamic specialization/generalization of objects in type hierarchies.

Specifying an action in ViAL means to construct it from the basic stock

of graphic symbols available. This basic stock encompasses the above stan-

dard operations for each object type, each relationship type and each special-

ization/generalization which are all automatically derived from the existing

database schema. They are called elementary actions and are o�ered in

ViAL like a construction kit with which to start the speci�cation (cf. �gure 2).

Each elementary action is (internally) composed of basic actions. Basic

actions modify exactly one database object. There are basic actions

I D U

DI U

S
P
E
C

T
O

G
E
N
E
R

F
R
O
M

UpdateDeleteInsert
Specialization Generalization

Object type Object type
Object type

Relationship type

Figure 2: Graphical representation of elementary actions

� to insert or delete an instance of an object or relationship type

� to add or remove a component of an object

� to add or delete the membership of an object in a certain type construc-

tion

� to update attribute values of an existing object.

All these basic actions can automatically be derived from a given EER

diagram. An important feature of elementary actions is that after the execution

of an elementary action the database results in a consistent database state.

Here consistency means that all EER diagram inherent integrity constraints

are ful�lled.

Let us illustrate an elementary action by the example of the insertion of a

new passenger. The automatically generated realization, here given in pseudo-

code, is as follows:

elem insert PASSENGER (Name : string, Birthday : date) : PASSENGER

BEGIN

/* check whether PASSENGER already exists */

SELECT p

FROM p IN PASSENGER

WHERE p.Name = Name AND p.Birthday = Birthday

IF p EXISTS

THEN error

ELSE /* check whether PERSON already exists */

SELECT p

FROM p IN PERSON

WHERE p.Name = Name AND p.Birthday = Birthday

IF p NOT EXISTS

THEN /* insert new PERSON */

p := basic insert PERSON(Name, Birthday)

basic add comp AdrSet(p)

END IF;

/* specialize PERSON to PASSENGER */

basic specialize PASSENGER(p)

END IF;

END elem insert PASSENGER;

The example shows that several basic actions, known as update propa-

gations [15], are needed to yield a new consistent database state. Elementary

actions describe minimal sequences of basic actions starting and resulting in

a consistent database state [4]. All concrete data values have to be provided

by the user during the interative execution of an elementary action. These

are, for instance, the key values mentioned in the parameter list of this el-

ementary action, as well as, for instance, concrete values for Passport# and

Nationality, which have to be given by the user during the execution of ba-

sic specialize PASSENGER.

Besides the elementary actions, the basic stock includes so-called existen-

tial queries. Likewise, these queries are automatically generated for each

object type (cf. �gure 3). The issues of such a query is to check whether a

particular object, determined by its key values, exists or not. If it exists, the

query delivers, depending on the kind of edge (see below), either the object

itself or a positive signal (along the edge marked by a black dot), otherwise a

negative signal is sent (along the edge marked by a hollow dot).

These elements of the basic stock are provided for a ViAL speci�cation from

the beginning. This proceeding guarantees that all composed actions are highly

integrated with the according database schema and obey all inherent integrity

constraints.

? ?
query identifier

existential query

object type

key of object type

arbitrary query

SQL/EER text

query identifier

Figure 3: Graphical representation of queries

Furthermore, ViAL allows to include arbitrary queries separately de-

�ned in SQL/EER into an action speci�cation. For this purpose, a particular

symbol is o�ered which hides the textual representation of the query and may

be used in a ViAL speci�cation (cf. �gure 3). The symbol for each such query

is included in the basic stock of graphic ViAL symbols and, thus, available

for each speci�cation of an action. Such queries enable to process arbitrary

combinations of data from the database and to incorporate them into a ViAL

action. This proceeding supports one of the typical tasks of a database centered

information system: processing of arbitrary data collections.

ViAL o�ers an easy to handle abstraction concept. Actions under

development are identi�ed by a name introduced by a declaration symbol (cf.

�gure 4). Such already speci�ed (or even incompletely speci�ed) actions can

be (re)used in a currently developed action like calling a procedure in a con-

ventional programming language (cf. �gure 4). Like arbitrary queries, these

procedure declaration and invocation symbols are included in the basic stock

of graphic elements.

declaration symbol

action identifier action identifier

output parameter

input parameter

invocation symbol

Figure 4: Graphical representation of procedures

To specify data ow and to connect the processing symbols, ViAL o�ers

data ow edges. Three di�erent types of such edges are available (cf. �gure

5).

Via object ow edges (single or double arrow) objects or sets of objects

ow through the speci�ed processes. Signal edges handle boolean values, for

example, the information whether an existential query has found an object or

not. Edges for error handling connect an action with a standard error handling

procedure in order to save a developer from tedious error handling details at

the speci�cation level.

ViAL supports multivalue oriented data processing. For this purpose,

the double arrowed object edges are o�ered (cf. �gure 5). Multivalued data

are usually delivered by queries. From these, the data sets ow via the double

arrowed object edges to the processing symbols. To handle these data sets

conveniently, the processing symbols may be marked with an \asterisk" which

means that they iteratively execute the data sets. The iteration need not be

explicitly de�ned since the processing symbols are provided with an implicit

cursor concept similar to those known from the combination of programming

and database languages. Every element of �gures 2 and 3 can be used in this

context.

ViAL o�ers basic constructs to control the data ow (cf. �gure 5).

V

...

V

...

... ...

signal flow error handlingobject flow

distributor join switch

Figure 5: Data ow and control

The distributor takes one ingoing object or signal ow and distributes it to

each of the outgoing edges. This allows to distribute data to parallel branches

within one action.

The join operator joins di�erent branches of information ow. Only one of

the ingoing edges is allowed to carry information (exclusive or) which is then

delivered to the outgoing edge.

Switch represents an operator to constrain data ow. The ingoing informa-

tion (from the top of the operator) is delivered to the outgoing edge only if a

constraint is satis�ed represented by the left hand signal edge.

4 Example

Let us illustrate how a (more or less) complex action like booking of a flight

can be speci�ed using the ViAL construction kit (cf. �gure 6). The action given

in the �gure refers to the introduced EER diagram in �gure 1.

The complex action booking of a flight is constructed from two existen-

tial queries EQ

1

and EQ

2

, another complex action check data, and the elemen-

tary action elem insert booked for. Its input parameters are the key:PERSON

and key:FLIGHT. At the beginning of the action, the two existential queries EQ

1

and EQ

2

ask interactively for the values of the key attributes of a PERSON

and a FLIGHT. If the speci�ed objects exist, the action continues, otherwise

it stops, switching to the standard error handling. In case of continuation, one

object for PERSON and one object for FLIGHT is delivered by the correspond-

ing existential queries to the complex action check data. This action itself has

to be speci�ed as a ViAL action which is shown in the lower part of the ViAL

diagram.

V

?
Q2

?
Q1

Q1 :=

from pa in PASSENGER
where PERSON(pa) = inobjectPERSON

Select pa

SPEC_TO

inobjectPERSON
check data

outobjectFLIGHT

GER

outobjectPASSENGER

 and

Select fQ2:=
from f in FLIGHT
where f = inobjectFLIGHT

 f.Rate of Booking< 100

abort
flight booked up

inobjectFLIGHT

PASSEN-

??
EQ1 EQ2

I

book flight

PERSON FLIGHT

abort

flight doesn’t exist

check data

booked for

person doesn’t exist

abort

signal: successful booking

key: FLIGHTkey: PERSON

Figure 6: Example action book flight

Check data only starts to execute if every ingoing edge carries values. In

such case, it checks whether the incoming object values are valid for the fol-

lowing action parts. This can be done in parallel. On the left hand side,

the query Q

1

checks whether the delivered PERSON object already exists as a

PASSENGER object. If not (outgoing negative signal edge of Q

1

), the PERSON ob-

ject is specialized to the required PASSENGER object, otherwise the PASSENGER

object found by the former query Q

1

will be delivered. In parallel, the query

Q

2

checks whether the ight corresponding to the speci�ed FLIGHT object still

has free seats. If not, is the ight booked up and the booking of a flight is

aborted. Otherwise the FLIGHT object is delivered. The textual representation

of the SQL/EER queries are only entered to support the comprehensibility of

the diagram. In general, the text of a query is hidden and only shown to the

user on request.

Then, check data delivers its outgoing objects to the elementary action

elem insert booked for which belongs to the relationship type booked for

of the EER diagram. To start its execution, the elementary action need both

a PASSENGER object and a FLIGHT object in order to enter the corresponding

relationship properly. If the booking action �nished successfully, booking of

a flight delivers a signal.

Even from this small example, it can be seen how the construction prin-

ciple of ViAL works: elements of the basic stock like existential queries, user

de�ned queries, and elementary actions may be chosen and combined to build

a complex action. Other not yet de�ned actions like check data can be used

as procedures. Since the primitive speci�cation elements of the basic stock are

automatically derived from the database schema, the integration and consis-

tency between data and function speci�cation is guaranteed. The graphic style

of the language supports the understanding of the entire speci�cation.

To gain experience, we began to use ViAL in small student projects at the

university. In [13], ViAL was successfully employed to specify a complexer and

larger application. By this practice, we learned that it is di�cult to specify

highly interactive applications with ViAL because no temporary variables exist

which allow to hold information beside the data stored in the database. Positive

experience was made with the concepts of procedural abstraction, the easy

inclusion of database queries into the actions, and the convenient processing of

multivalued data which in the whole lead to an easier speci�cation of actions

within a database application.

References

[1] M.L. Brodie and E. Silva. Active and Passive Component Modelling:

ACM/PCM. In T. Olle, H.G. Sol, and A. Verrijn-Stuart, editors, In-

formation Systems Design Methodologies: A Comparative Review, Proc.

IFIP WG8.1 Working Conference, Nordwijkerhout, pages 41{92. North-

Holland, 1982.

[2] P.P. Chen. The Entity-Relationship Model - Towards a Uni�ed View of

Data. ACM Transactions on Database Systems, 1(1):9{36, 1976.

[3] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press Com-

puting Series, Prentice Hall, Englewood Cli�s, New Jersey, 1990.

[4] G. Engels. Elementary Actions on an Extended Entity-Relationship

Database. In Proc. 4th Int. Workshop on Graph Grammars and Their

Application to Computer Science, LNCS 532, pages 344{362. Springer,

Berlin, 1991.

[5] G. Engels, M. Gogolla, U. Hohenstein, K. H�ulsmann, P. L�ohr-Richter,

G. Saake, and H.-D. Ehrich. Conceptual Modelling of Database Appli-

cations Using an Extended ER Model. Data & Knowledge Engineering,

9(2):157{204, 1992.

[6] G. Engels and P. L�ohr-Richter. CADDY: A Highly Integrated Environ-

ment to Support Conceptual Database Design. In G. Forte, N. Madhavji,

and H. M�uller, editors, Proc. 5th Int. Workshop on Computer-Aided Soft-

ware Engineering, Montreal, Kanada, pages 19{22. IEEE Computer Soci-

ety Press, 1992.

[7] K. Gerlach. Ein Interpreter f�ur visuell spezi�zierte komplexe Aktionen auf

EER-Datenbanken. Technical University of Braunschweig, Master Thesis,

1992.

[8] M. Gogolla and U. Hohenstein. Towards a semantic view of an ex-

tended Entity-Relationship model. ACM Transactions on Database Sys-

tems, 16:369{416, 1991.

[9] C. Hennemann and J. Schacht. Entwurf und Implementierung einer

Sprache zur visuellen Spezi�kation von Aktionen auf erweiterten Entity-

Relationship Databanken. Technical University of Braunschweig, Master

Theses, 1991.

[10] U. Hohenstein and G. Engels. Formal semantics of Entity-Relationship-

based query language. Information Systems, 17(3):209{242, 1992.

[11] R. Hull and R. King. Semantic Database Modeling: Survey, Applications,

Research Issues. ACM Computing Surveys, 19(3):201{260, 1989.

[12] G. Kappel and M. Schre. Object/Behaviour Diagrams. Proc. 7th IEEE

International Conference on Data Engineering, Kobe, Japan, April 1991.

[13] P. L�ohr-Richter. Generische Methoden f�ur die fr�uhen Entwurfsphasen von

Informationssystemen. PhD thesis, Technical University of Braunschweig,

1993.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Prentice Hall, Englewood Cli�s,

New Jersey, 1991.

[15] P. Scheuermann, G. Schi�ner, H. Weber Abstraction Capabilities and

Invariant Properties Modelling within the Entity-Relationship Approach.

In P.P. Chen (ed.): Proc. of the 1st Int. Conference on Entity-Relationship

Approach, Los Angeles (California), 121{140, 1980.

[16] M. Wol�. Eine Sprache zur Beschreibung Schema-abh�angiger Aktionen

in einem erweiterten Entity-Relationship-Modell. Technical University of

Braunschweig, Master Thesis, 1989.

[17] E. Yourdon. Modern Structured Analysis. Prentice Hall, 1989.

