
Observable or Invocable Behaviour -

You Have to Choose!

J�urgen Ebert Gregor Engels

Koblenz University Leiden University

Dept. of Computer Science Dept. of Computer Science

Rheinau 1 P.O. Box 9512

D-56075 Koblenz NL-2300 Leiden

phone: ++49-261-9119-412 phone: ++31-71-27-7096

fax: ++49-261-9119-499 fax: ++31-71-27-6985

ebert@informatik.uni-koblenz.de engels@wi.leidenuniv.nl

Abstract

Several object-oriented modeling approaches propose to describe

the dynamic behaviour of objects by state transition diagrams. None

of them provide precise rules or conditions for the interrelation be-

tween the behaviour description of classes and those of their sub-

classes.

In this paper, we discuss this interrelation in detail. It turns out

that one has to distinguish between the observable and the invoca-

ble behaviour of objects and that di�erent compatibility requirements

between the diagrams exist depending on the type of behaviour.

Keywords: object model, dynamic model, object life cycle, state

transition diagram, inheritance

1

1 Introduction

An often mentioned characteristics of object-oriented modeling is the inte-

grated description of structural as well as behavioural aspects of objects. In

order to achieve this, current object-oriented development methods propose

the usage of class diagrams for the description of the structural part and

(variants of) state transition diagrams for the description of the behavioural

part. Well known examples of such methods are OMT ([RuBlPr 91]) or OOA

([ShlMel 92]).

Due to long experiences with the use of variants of entity-relationship-dia-

grams (the predecessors of class diagrams) in the area of conceptual mod-

eling, concepts for the modeling of the structural part of an object are well

understood. On the other hand, much less clarity exists about the meaning

of the term behaviour of objects and how this can be modeled. Moreover

the integration of the behaviour description and the structure description of

objects is usually only rudimentarily explained in the literature. Especially

the interrelation between the behaviour descriptions of a superclass and its

subclasses is only super�cially described.

This observation caused several research groups to investigate this question in

more detail. First published results can be grouped into constructive and de-

scriptive approaches, respectively. They deal with a state transition diagram

(STD) description of behaviour. Constructive approaches like [SaHaJu 94],

[LopCos 93], and [McGDye 93] de�ne rules how to modify the STD of a su-

perclass to get a legal STD of a subclass. An analogous result has been

published by [KapSch 94] in the context of Petri net like descriptions of ob-

ject behaviour. Descriptive approaches like homomorphisms [EbeEng 94] or

check conditions [SaHaJu 94] de�ne restrictions which have to be ful�lled by

an STD of a subclass with respect to the STD of a corresponding superclass.

With the assumption that a subclass inherits all methods from the superclass

and may also have additional methods, all these approaches follow the same

intuition:

> An STD describes the life cycles of an object, i.e. all possible sequences

of method calls, which may be invoked on an object.

2

> The life cycle description of the subclass has to be compatible with the

life cycle description of the superclass. This means that if we restrict

a concrete life cycle of an object of a subclass to the methods de�ned

also for objects of the superclass, we get a life cycle that is allowed for

objects of the superclass.

This approach re
ects the idea that objects of a subclass should always also

behave like objects of the superclass if they are viewed only according to the

superclass description.

But, there are concrete examples in the literature (e.g. [McGDye 93] and

[ShlMel 92]) or some ad-hoc intuitively drawn state transition diagrams,

which do not ful�ll the above mentioned conditions. Especially in model-

ing the behaviour of reactive systems one often wants to describe object

behaviour following a slightly di�erent intuition:

> The STD describes in the sense of a user manual the executable se-

quences of method calls which may be invoked on an object.

> The life cycle description of the subclass has to be compatible with

the life cycle description of the superclass. This means that the life

cycle of a subclass may include additional method invocations, but all

invocable sequences of method calls of a superclass have to be invocable

on objects of a subclass.

In this paper we explain in detail these two di�erent intuitions for modeling

object behaviour and put them into a common framework. We describe

how these two di�erent intuitions are related to each other and how they

interrelate with inheritance. This paper is an extension and generalization

of the results presented in a previous paper [EbeEng 94]. While that paper

was restricted to the �rst kind of modeling behaviour, this paper discusses all

aspects of dynamic behaviour inheritance within a common framework. In

section 2 we give concrete examples of the two di�erent approaches to model

object behaviour. Both approaches are formalized in section 3 and section 4

concludes with a discussion.

3

2 Meaning of Life Cycles

2.1 Observable Behaviour

One way to look at these diagrams is to interpret them as a description of all

observable sequences of method calls, i.e. of sequences that might occur on

objects of this class, though it is not guaranteed that all of these are actually

executable or invocable with each instance of the class. The diagram is

intended to be only a coarse description - ignoring more detailed semantic

information - of the set of all method calls. E.g. an observable method call

may not be invocable at a given point of time though being allowed by the

diagram, since the actual value of the object does not ful�l the precondition

of the method. Thus, the diagram describes an upper bound (in the sense of

set inclusion) to the set of all possible call sequences. It is used to describe

the set of all observable call sequences.

Given the interpretation of life cycle diagrams as a description of all observ-

able sequences, we can immediately infer a condition on the compatibility of

diagrams of super- and subclasses:

> each sequence of calls which is observable with respect to a subclass

must result (under projection) in an observable sequence of its cor-

responding superclass, since a subclass object must also behave as if

it were an object of its superclass. Thus, if a subclass object reacts

to a method call m (where m is also known to the superclass). this

possibility of reaction must also be re
ected in the superclass diagram.

Thus, if OS (C) is the set of all observable sequences of method calls to class

C , we have for all superclasses C

0

of C

�(OS (C)) � OS (C

0

);

where �(OS (C)) is the projection of the sequences in OS (C) to the methods

of C

0

.

As an example, we discuss the de�nition of a class PERSON and of a corre-

sponding subclass EMPLOYEE. Figure 1 gives the class de�nition as well as

4

the dynamic behaviour description of these two classes. As we are only inter-

ested in object life cycles in this paper, we omit the de�nition of attributes.

Figure 1 shows that the behaviour description of the subclass EMPLOYEE is

constructed by a parallel extension of the superclass state transition diagram.

(We use Harel's statechart notation to yield a better readable representation

([Har 87]) than classical state transition diagrams.)

Person

birthday
getsMarried
getsDivorced

Employee

1stSalary
incSalary

getsMarried

getsDivorced
birthdaybirthday

getsMarried

getsDivorced

birthdaybirthday

incSalary

1stSalary

Figure 1: STD of a subclass constructed by parallel extension

An observable (partial) call sequence, as de�ned by the state transition dia-

gram of EMPLOYEE, is for instance:

... birthday 1stSalary getsMarried birthday incSalary birthday ...

A restriction of this life cycle to the methods which are already de�ned within

5

the superclass PERSON yields a life cycle which is allowed by the state tran-

sition diagram of PERSON.

As a second example, we give a subclass de�nition TRADITIONAL PER-

SON, where the corresponding state transition diagram is constructed by

re�ning a state of the state transition diagram of PERSON (cf. Figure 2).

Again, the restriction of any life cycle which is observable for an object of

TRADITIONAL PERSON yields a life cycle of a PERSON.

Person

birthday
getsMarried
getsDivorced

TraditionalPerson

getsEngaged

getsMarried

getsDivorced

birthdaybirthday

getsMarried

getsDivorced

birthdaybirthday

getsEngaged

birthday

Figure 2: STD of a subclass constructed by state re�nement

In this example, the life cycle of a TRADITIONAL PERSON is much more

\restricted" than that for a usual person. To be a TRADITIONAL PERSON

means that one has to ful�ll additional prerequisites (\to get engaged"),

before one is allowed to get married. Therefore, an (invocable) life cycle of a

PERSON is not possible for a TRADITIONAL PERSON. This leads to the

second kind of behaviour inheritance, the invocability approach.

6

2.2 Invocable Behaviour

Another way to interpret life cycle diagrams is to view them as a kind of

usage contracts with their clients. Here, the diagram is intended to serve as

a description of all invocable services that a client is able to use and where

it is guaranteed that they are executable. Since a sequence of method calls

uniquely determines a state in the diagram, the client now may arbitrarily

choose between any of the methods that are given by the state's outgoing

arcs. Then, it is guaranteed that the precondition of the method is ful�lled.

In this context the diagram describes a lower bound (in the sense of set

inclusion) of the set of all possible sequences and is used to describe the set

of all invocable call sequences.

Given the interpretation of life cycle diagrams as descriptions of invocable

sequences of method calls we get an inverse relation with respect to inheri-

tance:

> each sequence which is invocable (or executable) with respect to a given

class must also be invocable in all of its subclasses. Since each object

which belongs to a subclass can be seen as belonging to the superclass,

it must also have all the guaranteed methods as well as all invocable

method sequences of the superclass.

Thus, if IS (C) is the set of all invocable sequences of method calls to a class

C and if, again, C is a subclass of C

0

we have

IS (C

0

) � IS (C)

As an example, we discuss the de�nition of a class TV (television) and of

a corresponding subclass TV RC (television with remote control). Figure 3

gives the class de�nition as well as the dynamic behaviour description of

these two classes. The class TV provides only two primitive methods \up"

and \down", which allow to switch between 4 existing channels up-wards or

downwards, respectively, and a method \time" which shows the current time

for some seconds on the screen. This method \time" may only be invoced

at channel 3. The class TV RC has in addition a remote control with four

buttons \ch-i", which enables to choose one of the four channels directly. The

7

up
down

TV_RC

ch-1

TV

ch-2
ch-3
ch-4

up

up

down

down

down

up

downup

up

up

down

down

down

up

downup

ch-1 ch-2

ch-3ch-4

time

time

time

Figure 3: STD of a subclass constructed by adding transitions

8

statechart of TV RC describes this situation. It is a short-hand notation for a

state transition diagram, where a state representing a channel i has incoming

edges labelled by ch-i from all states.

As the state transition diagram of TV RC is an extension of the state tran-

sition diagram of TV, all method sequences invocable on an object of class

TV are invocable on an object of class TV RC. But, in contrast to the above

illustrated observable behaviour, the restriction of the following invocable

method sequence on an object of class TV RC

up ch-3 time up

to the methods already de�ned in class TV yields the method sequence

up time up

which is not invocable on an object of class TV.

3 Formalization

To make the concepts described up to now more explicit, we shall give a

formal model of the di�erent kinds of integration of the dynamic model in

the context of object-oriented modeling.

The formalization goes along the lines of [EbeEng 94] and includes only as

few concepts as necessary in order to describe the results of this paper. It is

not intended to serve as a complete formalization of object oriented modeling.

Thus, only method identi�ers and state transition diagrams are included into

the description.

3.1 Structure

In the following we use a Z-like formalization ([Spiv 92]) assuming some

universes of identi�ers, object identi�ers and states.

[ID ;OID ;STATE ;VALUE]

9

State transition diagrams (STDs) are formalized as �nite automata in the

style of ([HopUll 79]). A state transition diagram consists of a �nite set Q of

states together with a start state q

0

, an alphabet � of identi�ers that it is able

to process, and a relation � which describes possible state changes together

with there possible inputs. Here, the transition relation is non-deterministic

and allows spontaneous �-transitions.

STDiagram

Q : F STATE [states]

� : F ID [input alphabet]

� : F ((Q � (� [f�g))�Q) [transition relation]

q

0

: Q [start state]

In order, to describe the integration of the class model and the dynamic

model, a rudimentary de�nition of classes su�ces:

Class

M : F ID [method identi�ers]

STD : STDiagram [behaviour]

STD :� =M

Thus, classes are only described by their method identi�ers and their be-

haviour given by a state transition diagram.

On the set of classes there is a subclass relationship, which gives rise to the

existence of inheritance. This relationship is usually expressed graphically

in the class diagram. In most object-oriented methods it is assumed to be

acyclic, and generally subclasses may have more methods than superclasses.

isSubClassOf : Class $ Class

isAcyclic(isSubClassOf)

8C ;C

0

: Class j C isSubClassOf C

0

� C

0

:M � C :M

At a given point in time there may exist a set of corresponding objects for

each class description C . Objects are represented by their respective object

10

identi�ers which stem from the common universe OID . Each existing object

oid belongs to exactly one class. It is said to be an instance of that class,

i.e. there is a partial function isInstanceOf assigning class descriptions to

object identi�ers.

isInstanceOf : OID 7! Class

The domain of isInstanceOf is the set of all existing objects. An object oid

which is an instance of a class C is said to be a member of (or is belonging

to the extension of) C and all direct or indirect superclasses of C .

isMemberOf : OID $ Class

isMemberOf= isInstanceOf; isSubClassOf

�

Thus, objects belong to exactly one class as instances and to several classes

as members. The situation of an object with respect to a class that it belongs

to is described by a state of the corresponding STD.

3.2 Behaviour

The behaviour of an object oid is described by the sequence of states that it

assumes during its existence. This behaviour has (of course) to be described

with respect to a class C of which oid is a member. The set of possible steps

from one state to another is described by the following leadsTo-relation

(noted as `)

`: Class ! (STATE $ STATE)

8C : Class; q;

b

q : STATE �

q `

C

b

q

,

fq;

b

qg � C :STD :Q ^

(q =

b

q _

9m : C :M [f�g � ((q;m);

b

q) 2 C :STD :�)

11

The situations that an object oid may be in and the temporal steps (given

by `) that an oid might perform must of course ful�ll some compatibility

restrictions with respect to all classes that oid is a member of. The kind of

restrictions, that one may pose on them, depends on the understanding of

the meaning of the STD, as described in section 2.

3.3 Observable Behaviour

Let oid be a member of class C and assume that C is a subclass of class C

0

.

The observability approach described above implies that each situation with

respect to C must be mapped onto a situation with repect to C

0

in such a

way that every behaviour with respect to C is re
ected by a legal behaviour

with respect to C

0

.

To achieve this we require a homomorphism h from the state transition dia-

gram of C to that of C

0

. If STD and STD' are state transition diagrams, a

function h : STD :Q ! STD

0

:Q is a homomorphism if the following condition

is ful�lled:

isHomomorphism : (STATE ! STATE) $ STDiagram $ STDiagram

8h : STATE ! STATE ; STD ;STD

0

: STDiagram �

isHomomorphism(h;STD ;STD

0

)

,

h 2 STD :Q ! STD

0

:Q

8 q;

b

q : STD :Q ; m : STD :� [f�g �

((q;m);

b

q) 2 STD :�

)

((h(q);m); h(

b

q)) 2 STD

0

:� _

((h(q); �); h(

b

q)) 2 STD

0

:� _

h(q) = h(

b

q)

h(STD :q

0

) = STD

0

:q

0

Using this de�nition, we can show that each legal behaviour at the level of a

subclass C is also observable as a legal behaviour at the level of its superclass

C

0

:

12

Theorem

8C ;C

0

: Class; h : STATE ! STATE �

C isSubClassOf C

0

^

isHomomorphism(h;C :STD ;C

0

:STD)

)

8 q;

b

q : C :STD :Q �

q `

C

b

q) h(q) `

C

0

h(

b

q)

3.4 Invocable Behaviour

On the other hand, using the identi�ers from above, the invocability approach

implies that each situation with respect to C

0

must be mapped onto a situ-

ation with respect to C in such a way that every behaviour with respect to

C

0

is also executable with respect to C .

To achieve this we require an embedding k of the state transition diagram

of C

0

into that of C . If STD' and STD are state transition diagrams an

embedding of STD' into STD is a function k : STD

0

:Q ! STD :Q which

ful�lls the following condition:

isEmbedding : (STATE ! STATE)$ STDiagram $ STDiagram

8 k : STATE ! STATE ; STD

0

;STD : STDiagram �

isEmbedding(k ;STD

0

;STD)

,

k 2 STD

0

:Q ! STD :Q

8 q

0

;

b

q

0

: STD

0

:Q ; m : STD

0

:� [f�g �

((q

0

;m);

b

q

0

) 2 STD

0

:�

)

((k(q

0

);m); k(

b

q

0

)) 2 STD :�

k(STD

0

:q

0

) = STD :q

0

Using this de�nition, we can show that each invocable behaviour at the level

of a superclass C

0

is also an invocable behaviour for its subclass C :

13

Theorem

8C ;C

0

: Class; k : STATE ! STATE �

C isSubClassOf C

0

^

isEmbedding(k ;C

0

:STD ;C :STD)

)

8 q

0

;

b

q

0

: C

0

:STD :Q �

q

0

`

C

0

b

q

0

) k(q

0

) `

C

k(

b

q

0

)

4 Conclusion

Putting both results together we come to the following alternative:

> if STDs are viewed as a means to describe the observable behaviour,

the following condition should be ful�lled:

8C ;C

0

: Class j C isSubClassOf C

0

�

9 h : C :STD :Q ! C

0

:STD :Q �

isHomomorphism(h;C :STD ;C

0

:STD)

> if STDs are used as prescriptions of the invocable behaviour, a su�cient

condition is:

8C ;C

0

: Class j C isSubClassOf C

0

�

9 k : C

0

:STD :Q ! C :STD :Q �

isEmbedding(k ;C

0

:STD ;C :STD)

Section 2 gave concrete examples for these two approaches. Abstracting from

them, one may derive guidelines how an STD of a class may be modi�ed in

order to get an STD of a subclass. Figure 4 shows two possibilities how

an STD may be modi�ed according to the observability approach, namely

a modi�cation by parallel extension or by state re�nement

1

. All labels of

newly introduced transitions have to be method identi�ers added within the

1

These examples correspond directly to cases C and D of the examples given in

[McGDye 93].

14

subclass. Note that it is not necessary that all re�ned substates are connected

with the old environment. For instance, there is no transition between state

d and state b via transition f , while there is one between state e and state

b in the right subclass STD of �gure 4.

a b

c

f

g k

a b

c

d e

f

g k

i

d e b

c

i f

g k

Figure 4: Modi�cations within the observability approach

In the left case, an appropriate homomorphism h is a projection of each

composed state of the lower STD to its upper component. In the right case,

a homomorphism h maps all re�ning states of the lower STD to the re�ned

state of the upper STD leaving all other states unchanged.

Figure 5 shows two possibilities how an STD may be modi�ed according to

the invocability approach. In the left case, the old STD is extended by an

additional transition

2

. In the right case, the old STD is even extended by a

2

This corresponds to case B in [McGDye 93].

15

subdiagram, which is connected to some of the old states. In both cases, the

identity function can be chosen as the embedding function k .

a b

c

f

g k

a b

c

f

g k

i

a b

c

f

g k d

i

j

Figure 5: Modi�cations within the invocability approach

Let, again, OS (C) and IS (C) be the set of all observable respectively invo-

cable sequences of method calls to a class C . Since we have IS (C) � OS (C)

we get for the method sequences of a a subclass C and a superclass C

0

the

following inclusions:

IS (C

0

) � �(OS (C)) � OS (C

0

)

and

IS (C

0

) � IS (C) � OS (C):

There is a strong connection between the di�erent uses of state transition di-

agrams in the context of object-oriented modeling. Thus, there has a de�nite

conceptual choice to be done about which approach is to be used when build-

ing integrating tools for the support of object-oriented analysis and design

methods.

16

References

[EbeEng 93] J�urgen Ebert, Gregor Engels, Design Representation, in: J.

Marciniak (Ed.), Encyclopedia of Software Engineering, Wi-

ley, New York, 1993, pp.382-394

[EbeEng 94] J�urgen Ebert, Gregor Engels, Structural and Behavioural

Views on OMT-Classes, in: Elisa Bertino, Susan Urban

(Eds.), Object Oriented Methodologies and Systems, Springer,

Berlin, 1994, LNCS 858, pp.142-157.

[EmKuWo 92] David W. Embley, Barry D. Kurtz, Scott N. Wood�eld,

Object-Oriented System Analysis - A Model-Driven Ap-

proach, Yourdon Press, Prentice Hall, Englewood Cli�s, 1992.

[Har 87] David Harel, Statecharts: a Visual Formalism for Complex

Systems, Science of Computer Programming 8 (1987,3), 231-

274.

[HopUll 79] John E. Hopcroft, Je�rey D. Ullman, Introduction to Au-

tomata Theory, Languages, and Computation, Addison-

Wesley, Reading MA, 1979.

[Jaco 92] Ivar Jacobson, Object-Oriented Software Engineering, Addi-

son-Wesley, Wokingham, 1992.

[JuSaHa 91] Ralf Jungclaus, Gunter Saake, Thorsten Hartmann, Cristina

Sernadas, Object-Oriented Speci�cation of Information Sys-

tems: The TROLL Language, TU Braunschweig, Technical

Report 91-04.

[KapSch 94] Gerti Kappel, Michael Schre
, Inheritance of Object Behav-

ior - Consistent Extensions of Object Life Cycles, in: J. Eder,

L. Kalinichenko (eds.), Extending Information Systems Tech-

nology, Proceedings of the Second International East/West

Database Workshop, Springer WSCS, 1994.

[KhoAbn 90] Setrag Khosha�an, Razmik Abnous, Object Orientation -

Concepts, Languages, Databases, User Interfaces, John Wi-

ley, New York, 1990.

[LopCos 93] A.Lopes, J.F.Costa, Rewriting for Reuse, in: Proceedings

ERCIM Workshop on Development and Transformation of

Programs, INRIA, Nancy, Nov. 1993, pp.43-55.

[Meye 88] Bertrand Meyer, Object-Oriented Software Construction,

17

Prentice Hall, Englewood Cli�s, 1988.

[McGDye 93] J.D.McGregor, D.M. Dyer, A Note on Inheritance and State

Machines, ACM Software Engineering Notes, Vol. 18, No. 4,

Oct. 1993, pp. 61-69.

[RuBlPr 91] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W.Lorensen,

Object-Oriented Modeling and Design, Prentice Hall, Engle-

wood Cli�s NJ, 1991.

[SaHaJu 94] Gunter Saake, Peter Hartel, Ralf Jungclaus, Roel Wieringa,

Remco Feenstra, Inheritance Conditions for Object Life Cy-

cle, in: Udo W. Lipeck, Gottfried Vossen (Hrsg.), Formale

Grundlagen f�ur den Entwurf von Informationssystemen, Uni-

versit�at Hannover, Informatik-Bericht 03/94, pp.79-88.

[ShlMel 92] S. Shlaer, St.J. Mellor, Object Lifecycles: Modeling the world

in state, Yourdon Press, Englewood Cli�s NJ, 1992.

[Spiv 92] J.M. Spivey, The Z Notation (2nd Edition), Prentice Hall,

New York, 1992.

18

