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Abstract

Blum [1] states that the error surface of a one layer network with two hidden units
for the XOR function where the weights are restricted to be symmetrical (so 5 inde-
pendent weights remain) has a manifold of local minima with error unequal to zero.
Blum’s proof, however, is not correct. In this comment we will show that all points of
the given manifold are saddle points and not local minima.

Introduction

The error of a neural network can be expressed as the sum of the errors of the pat-
terns to be represented. Given an input, the output of the network is determined by
its weights. Thus for a fixed training set, the error is a function of the weights. This
function is called theerror surface. The goal of training the neural network is find-
ing a weight combination with minimal error. The existence of local minima, i.e.
minima with a value above the value of the absolute minimum, on error surfaces of
neural networks for certain problems is essential for the probability to learn solu-
tions or to be trapped in a local minimum.
We recently investigated the error surfaces for the simplest networks that have the
ability to learn the XOR function [4, 5, 6]. Our results are that the error surface of
the simplest network, see figure 1, has no local minima.The error surface of the
network with two hidden units, see figure 2, only has local minima for values of
some of the weightswij , from the inputs to the hidden units, equal to plus or minus
infinity. So the latter network has no local minima when all weights are
finite.Investigations of the literature lead us via the work of Gori and Tesi [3] to a
paper of Blum [1] that gives local minima for one of the XOR networks. Blum [1]
states that the error surface of a one layer network with two hidden units for the
XOR function where the weights are restricted to be symmetrical (so 5 independ-
ent weights remain) has a manifold of local minima with error unequal to zero.
Checking Blum’s proof, we found that it could not be correct. Moreover, also
Blum’s result that a certain manifold of points is a local minimum, does not hold:
we were able to proof that all points on the given manifold are saddle points. In [2]
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Frasconi et al. generalize, as one of their examples of local minima, Blum’s result

to the network with 9 independent weights and they give two figures showing that

these points are local minima. One of their conclusions is that the point with all

weights equal to zero is a local minimum for this network and the XOR function,

while it is a saddle point for a linearly separable problem. In contrast, from our

results [6], it follows that also the XOR function results in a saddle point.

What is wrong with Blum’s proof?

Blum’s proof is based on two incorrect assumptions. Firstly, Blum assumes that the

outputszi for different patterns, which are equal in the stationary points, are also

equal in the neighbourhood of these stationary points. Secondly, Blum assumes

that the gradient of the error depends linearly on the distance to a stationary point.

This second assumption is true only for those points, lying in a direction where the

second order derivative is unequal to zero.

The proof that all points are saddle points

We will use the same notation as Blum, who considers the following network:

and the standard sigmoid function: .
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Figure 1.  The simplest XOR network
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Figure 2.  The network and its weights
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So the 5 weightsw, w1, w2, L andL1 determine the output of the network, as func-
tion of the inputsx1 andx2, as:

The XOR problem resulting in local minima after Blum is specified in table 1,
whereσ(w-L) > t1 > 0. Thus a special case is thatw–L = 0 andt2 = 1–t1, e.g.t1 =
0.1 andt2 = 0.9. Sincez0,1 = z1,0 because of the symmetry of the weights, the mean
square error corresponding to these values is:

With these desired values for the patterns of the XOR problem, Blum finds station-
ary points withL1 = w1 = w2 = 0 and remarks about these stationary points: “They
correspond to w and L satisfying the equationσ(w–L) = (t1+t2)/ 2. Hence, they lie
on a line w = L + const. in the(w,L) plane. Actually, these points are local minima
of E, the value of E being(t1–t2)

2/ 2.” Here we will show that all stationary points
with L1 = w1 = w2 = 0 laying on a linew = L + constant in the (w,L) plane, such
thatσ(w–L) ≠ t1 are saddle points, so they arenot local minima. The proof is split-
ted into two parts: first we will show that all stationary points withw = 0 are saddle
points, next, that the stationary points with w≠ 0 on the given line are saddle
points. (Remark thatσ(w–L) = t1 for stationary points withL1 = w1 = w2 = 0
implies thatt1 = t2 andE = 0. These points are absolute minima.)

Points with w = 0

The proof that these points are saddle points, is similar to the proof for the simplest
XOR network, where points with the weight from the hidden unit to the output unit
equal to zero, are saddle points [5]. It is based on the observation that all partial
derivatives of the error with respect to the weightsw1 andw2 have at least one fac-
tor w and so:

 if i+j > 0

Let us introduce the following abbreviations:

Table 1: Patterns for the XOR problem

Pattern x1 x2 desired output

ξ1 0 0 t1

ξ2 0 1 t2 = 2σ(w–L)–t1

ξ3 1 0 t3 = t2

ξ4 1 1 t4 = t1

zx1 x2, σ L– wσ L1– w1x1 w2x2++( ) wσ L1– w2x1 w1x2++( )+ +( )=

E
1
2
--- z0 0, t1–( ) 2 z0 1, t2–( ) 2 1

2
--- z1 1, t1–( ) 2+ +=

w1
i w2

j∂

i j+

∂
∂ E

w 0=

0=
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thusz0,0 = σ(A00), z0,1 = σ(A01) andz1,1 = σ(A11). Then we find:

Thus in stationary points withL1 = w1 = w2 = 0 we obtain

which is equal to zero in the considered stationary points, sinceσ(w–L) = (t1+t2)/2.
Further differentiation leads to:

Sinceσ"(0) = 0, also

but

and thus

A00 L– 2wσ L1–( )+=

A01 L– w σ L1– w2+( ) σ L1– w1+( )+( )+=

A11 L– 2wσ L1– w1 w2+ +( )+=

w1∂
∂E 2 z0 1, t2–( ) σ′ A01( ) wσ′ L1– w1+( ) +=

2 z1 1, t1–( ) σ′ A11( ) wσ′ L1– w1 w2+ +( )

w1 w∂

2

∂
∂ E 2 σ′ A01( ){ }

2
wσ′ L1– w1+( ) σ L1– w2+( ) σ L1– w1+( )+( ) +=

2 z0 1, t2–( ) σ″ A01( ) wσ′ L1– w1+( ) σ L1– w2+( ) σ L1– w1+( )+( ) +

2 z0 1, t2–( ) σ′ A01( ) σ′ L1– w1+( ) +

4 σ′ A11( ){ }
2
wσ′ L1– w1 w2+ +( ) σ L1– w1 w2+ +( ) +

4 z1 1, t1–( ) σ″ A11( ) wσ′ L1– w1 w2+ +( ) σ L1– w1 w2+ +( ) +

2 z1 1, t1–( ) σ′ A11( ) σ′ L1– w1 w2+ +( )

2 z0 1, t2–( ) σ′ A01( ) σ′ L1– w1+( ) +=

2 z1 1, t1–( ) σ′ A11( ) σ′ L1– w1 w2+ +( ) O w( )+

w1 w∂

2

∂
∂ E

L1 w1 w2 w 0= = = =

2σ′ w L–( ) σ 0( ) 2σ w L–( ) t1– t2–( )=

w1 w∂ 2 w∂

3

∂
∂ E 2 z1 1, t1–( ) σ′ A11( ) σ″ L1– w1 w2+ +( ) O w( )+=

w1 w∂ 2 w∂

3

∂
∂ E

L1 w1 w2 w 0= = = =

0=

w1
2 w∂ 2 w∂

4

∂
∂ E 2 z1 1, t1–( ) σ′ A11( ) σ′′′ L1– w1 w2+ +( ) O w( )+=

w1
2 w∂ 2 w∂

4

∂
∂ E

L1 w1 w2 w 0= = = =

2 σ w L–( ) t1–( ) σ′ w L–( ) σ′′′ 0( )=
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is unequal to zero ift1 ≠ σ(w–L). Using theorem A.4 from [5] proofs that a station-
ary point with∂i+jE/∂w1

i∂w2
j = 0 for 0 <i+j < 8 and∂4E/∂w1

2∂w2∂w≠ 0 is a saddle
point. This saddle point witht1 = 0.1 andt2 = 0.9 is visualized in figure 4.

Points with w ≠ 0

In order to prove that these stationary points are saddle points we use similar tech-
niques as in [6], where the more general case with all 9 weights independent is
treated.

First we calculate the second order part of the Taylor series expansion around these
points, resulting in:

The second order part of the Taylor series expansion is zero if we are considering
directions such that 2∆L–2∆w+w∆L1 = 0 and∆w1+∆w2 = 0. So we will investigate
points in the neighbourhood of the stationary points with∆w = x, ∆L1 = y, ∆w1 = z,
∆L =  and∆w2 = –z. The variation in thex-direction results in other points
on the lineL–w = constant. So we will investigate the results of variations ofy and
z. We obtain the errorE as function ofy andz:
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Figure 3.  The error surface around the point withL = w = L1 = w1 = w2 = 0,t1 = 0.1
andt2 = 0.9. The values of weights are varied such that∆w1 = ∆w2 varies from -0.5
to 0.5, while∆w varies from -0.005 to 0.005.
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with

Considering the partial derivatives of E with respect toy andz, it is clear that all
first and second order partial derivatives are equal to zero ify = z = 0. Calculation
of third order partial derivatives yields:

which is unequal to zero, and thus also these stationary points are saddle points.
One of these saddle points is visualized in figure 5.

Conclusion

All stationary points of the network of figure 3 for the XOR function as specified in
table 1  with L1  = w1  = w2  = 0,  satisfying the equationσ(w–L)  =  (t1+ t2)/2,
0 < t1, t2 < 1, t1 ≠ t2, are saddle points.
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Figure 4.  The error surface around the point withL = w = 1,L1 = w1 = w2 = 0,t1 =
0.1 andt2 = 0.9. The values of weights are varied such that∆L1 = –2∆L varies
from –0.5 to 0.5, while∆w1 = –∆w2 varies from -0.6 to 0.6.
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