
A Complete Order-theoretic Model

for the Algebra of Communicating Processes

Peter M.W. Knijnenburg

Dept. of Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands. E-mail: peterk@cs.leidenuniv.nl

Abstract

In this paper an order-theoretic denotational semantics for a small

programming language is de�ned. The main result is that this denotational

semantics is a sound and complete model for the equational theory of the

language. As an immediate corollary we obtain that two process terms are

bisimular if and only if they are denotationally equal.

1 Introduction

Much research in the study of the semantics of concurrent programming lan-

guage focusses on so-called uniform languages. These languages are de�ned by

a collection of elementary programs or atomic actions, and a number of pro-

gram constructors like sequential composition `;' and choice `+'. The languages

are called `uniform' since these atomic actions are not further speci�ed. The

operational meaning of such programs is usually given by menas of a transition

system which formalizes the elementary steps the program can take. A transi-

tion system is usually speci�ed by means of a Structured Operational Semantics

(SOS) system, in the style of Plotkin [Plo81b]. A transition system immedi-

ately gives rise to the notion of a process graph: the tree obtained by pasting

transitions together. Obviously, two programs can be textually di�erent but

not distinguishable by any context, like a and a + a. Milner [Mil80] proposed

to identify bisimilar processes. Bisimilarity is a congruence for a large class

of transition systems [GV92]. In this way one obtains an equational theory

of programs. These equational theories are called process algebras. Examples

include Milner's CCS [Mil80, Mil89], Hoare's CSP [Hoa85] and Bergstra and

Klop's ACP [BW91, BK84, BK85].

A denotational semantics is an interpretation of the atomic actions and program

constructors of the language in some semantic domain. In order to deal with

recursion, the domains should allow the construction of (least) �xed points. One

therefore considers domains that are complete partial orders [Sco76, Plo81a],

or complete metric spaces [dBZ82]. If one wants to model uniform languages,

1

one typically uses a domain speci�ed by a recursive domain equation like

P

�

=

P

�

(f�g

?

+A

?

+A

?

�P)

Here A is the set of atomic actions and � 62 A is a special constant coding the

denotation of the deadlocked process. These kinds of domain equations can be

found in numerous places in the literature, for example [Abr91a, dBMOZ88,

dBR92, HP79]. The domain equation above is used in this paper. Intuitively,

the domain P codes �nitely branching, possibly in�nite trees labeled by atomic

actions.

Since both denotational and bisimulation semantics for a particular language are

based on trees labeled by elementary actions, we expect that they are closely

connected. In this paper we make this connection precise in one particular

case. We study a small and well-known concurrent programming language: de-

notational models for (subsets of) it, or closely related languages, have been

formulated in [Abr91a, dBMOZ88, HP79, MM79, Rut90]. We give a denota-

tional model based on the models given in those papers. The language is the

term-language of the process algebra ACP [BW91, BK84, BK85].

We present a denotational model for the language based on the models given in

the papers cited above. The main result of this paper is that the denotational

model is a sound and complete model for the process algebra ACP. As an

immediate corollary, we obtain that that two process terms are bisimular if and

only if they are denotationally equal. This follows from that well-known fact

that the equational theory of ACP precisely axiomatizes bisimularity. Hence

another contribution of this paper is an approach to relate denoatatinal models

with bisimulation via an equational theory.

Recently, a number of papers have appeared that study the connections be-

tween Labeled Transition Systems, Structured Operational Semantics and de-

notational semantics in a general framework. We give a brief overview of other

results in this area. Abramsky has studied the relationship between Labeled

Transition Systems and denotational semantics in a logical framework [Abr91a].

He has de�ned an order-theoretic domain of synchronization trees and a logic

for transition systems, and shows that one is the Stone dual of the other. In fact,

this paper is part of a much larger programme in which domains and certain

`domain logics' are related by Stone duality [Abr91b]. Using this duality result,

Abramsky is able to synthesize domain theory, the theory of concurrency and

systems behavior based on operational semantics, and logics of programs. The

domain of bisimulation proposed by Abramsky in [Abr91a] is closely related

to our domain P. The semantics proposed in this paper maps programs to an

inclusive subset P

�

of P. We can show [Kni93c, Kni93b] that P

�

is isomorphic

to the domain considered by Abramsky.

Groote and Vaandrager [GV92] have shown that for a wide class of SOS systems

(including the systems in the GSOS format) bisimulation equivalence is a con-

gruence. Closely related is the result by Aceto, Bloom and Vaandrager [ABV92]

which shows that SOS systems in the GSOS format induce an equational theory

which precisely characterizes bisimilarity. Hence this induced equational theory

2

can be used to relate denotational equality and bisimularity in the same way

as discussed in this paper.

Rutten has shown that SOS systems in the positive GSOS format (that is,

without negative premisses) induce denotational models such that two programs

are bisimilar if and only if they have the same denotation [Rut90]. This work

has been carried out in the metric framework. Horita has obtained similar

results [Hor89]. Recently, Rutten was able to strengthen his results to a larger

class of SOS systems in the framework of non-well-founded sets [Rut92]. He

is able to de�ne a denotational semantics for the original language and show

that this semantics characterizes bisimularity. Rutten and Turi have shown

that recursive domain equations give rise to �nal coalgebras (for the functor

corresponding to the domain equation) in the categories of complete partial

orders, complete metric spaces and non-well-founded sets [RT93]. They show

how the functor appearing in the domain equation gives rise to a notion of

observation. They describe Labeled Transition Systems in this setting and

show how a denotational semantics can be obtained that has the property that

two programs are bisimilar if and only if they have the same denotation.

The main tool we employ in de�ning the semantic operators in the interpreta-

tion of L is a typed lambda calculus. The category Cpo of complete partially

ordered sets with continuous maps is cartesian closed [LS86]. Hence it has a

typed lambda calculus as its internal language. Any continuous function occurs

as a constant in this language. Furthermore, any typed lambda term in the lan-

guage has an interpretation as a continuous function (arrow) in the category.

This implies that we only need to identify a small set of primitive continuous

functions in order to be able to de�ne complex functions by typed lambda terms.

These complex functions are then by de�nition continuous and we can prove

properties of them using the well-understood language of the typed lambda

calculus.

This paper is organized as follows. In section 2 the syntax of the language

and the bisimulation semantics is given. In section 3 we develop the necessary

domain theory. In section 4 we give the de�nition of the domain P and list

some of its properties. The latter two sections are self-contained and give a

small overview of the domain theory needed in this paper. In section 5 we

present our model and show that it provides a sound interpretation for the

equational theory of ACP. In section 6 we show that it is sound and complete.

Finally, in section 7 we discuss the results obtained in this paper.

Acknowledgement I would like to thank the Amsterdam Concurrency Group,

headed by Jaco de Bakker, and the Utrecht Formal Models Group for stimu-

lating discussions. In particular, I like to thank Joost Kok for critically reading

draft versions of the paper. I also like to thank Wim Hesselink for valuable

comments.

3

2 Syntax and equational theory of the language

In this section we introduce the language that we study in this paper and

review the relevant equational theory of this language. For a fuller account of

this equational theory, consult [BK84, BK85, BW91].

First we de�ne the collection of �nite, recursion-free terms T

f

. Formally, T

f

is

given by the following grammar:

s ::= a j � j (s; s) j (s+ s) j (s k

�

s) j (sjs) j (s k s) j @

H

(s) j x

where x 2 V ar, a 2 A and H � A. Here A is a (countable) set of constants

or atomic actions, with typical element a, and V ar is a (countable) set of

variables, with typical element x. The collection of closed terms (that is, with

no occurrence of a variable x 2 V ar) is denoted by L

f

. Terms in L

f

are also

called programs. In the sequel we are primarily interested in programs. The

collection of all terms is only introduced in order formulate an equational theory

(the axioms below use terms that are not closed).

The intuitive reading of the function symbols is the following: � is a special

constant that always deadlocks, ; denotes sequential composition, + denotes

choice, k denotes merge, and k

�

and j are left-merge and communication-merge,

respectively. The left-merge operator is an auxillary operator needed to give

a �nite axiomatization of the merge operator, see [Mol90]. It acts like the

merge-operator, but always performs an action from its left-hand side argument

�rst. @

H

is a unary function symbol for each �nite subset H � A. It is the

encapsulation operator that prevents actions in H to be visible outside its scope

and blocks synchronization (using actions in H) with the environment. We

assume a function : (A [f�g) � (A [f�g) ! (A [f�g) that is commutative,

associative and has � as zero, that is, (a; �) = (�; a) = (�; �) = � for all

a 2 A. This function encodes the basic communication between any actions

a; b 2 A: if (a; b) = c 6= � then we say that a and b can synchronize. The

synchronous execution of a and b is then regarded as the execution of c. If

(a; b) = � then a and b cannot synchronize and any attempt to synchronize

them results in deadlock.

The axioms of the equational theory ofACP are given in Table 1 (see also [BK84,

Vaa89]). In Table 1, axioms A1�7 are the axioms of Basic Process Algebra with

Deadlock. Axiom CF relates the communication between elementary actions

a and b to the given function . Axioms CM1� 9 are the axioms dealing with

parallel composition. In particular, they state that the parallel composition of

two processes s

1

k s

2

performs an action by either choosing one of its arguments

and performing an action of that argument, or by synchronizing. AxiomsD1�4

deal with the Encapsulation operator. Axioms SC1 � 6 are called `Standard

Concurrency Axioms'. These last axioms are not always included in the theory

of ACP, since one can prove that they hold for all terms in L

f

[BW91, BK85].

Since they do not hold for arbitrary terms, we have included them in the present

axiom system We have omitted the usual axioms for equality, like reexivity

and substitution (consult [vD83]).

4

x+ y = y + x A1 @

H

(a) = a if a 62 H D1

x+ (y + z) = (x+ y) + z A2 @

H

(a) = � if a 2 H D2

x+ x = x A3 @

H

(x+ y) = @

H

(x) + @

H

(y) D3

(x+ y); z = x; z + y; z A4 @

H

(x; y) = @

H

(x); @

H

(y) D4

(x; y); z = x; (y; z) A5

x+ � = x A6

�;x = � A7

ajb = (a; b) CF

x k y = x k

�

y + y k

�

x+ xjy CM1 (x k

�

y) k

�

z = x k

�

(y k z) SC1

a k

�

x = a;x CM2 (xjy) k

�

z = xj(y k

�

z) SC2

(a;x) k

�

y = a; (x k y) CM3 xjy = yjx SC3

(x+ y) k

�

z = x k

�

z + y k

�

z CM4 x k y = y k x SC4

(a;x)jb = (ajb);x CM5 xj(yjz) = (xjy)jz SC5

aj(b;x) = (ajb);x CM6 x k (y k z) = (x k y) k z SC6

(a;x)j(b; y) = (ajb); (x k y) CM7

(x+ y)jz = xjz + yjz CM8

xj(y + z) = xjy + xjz CM9

Table 1: Axioms for ACP

Another important result of the equational theory is that every program s has

a normal form. The collection N � L

f

(modulo axioms A1 and A2) of normal

forms is the smallest set closed under

� � 2 N and A � N

� for all a 2 A and s 2 N , a; s 2 N

� for distinct s

1

2 N ; : : : ; s

n

2 N , where n > 1 and every s

i

is distinct from

�, s

1

+ � � �+ s

n

2 N .

For any s 2 L

f

there exists a s

0

2 N such that ` s = s

0

. Moreover, s

0

is unique

up to the ordering and bracketing of the summands. Hence we can choose a

function NF : L

f

! N assigning to each term (one of) its normal form. We

have the following proposition [BW91].

Proposition 2.1 For all s; t 2 L

f

, ` s = t if and only if ` NF(s) = NF(t).

We now discuss how to add recursion to the language. First of all, we assume

a (countable) collection PVar of procedure variables or names, with typical ele-

ment X. The collection of terms obtained by adding these procedure variables

as constants is denoted by T . The collection of all closed terms, or programs, is

denoted by L. Procedure variables are identi�ed with their body. For technical

5

reasons we introduce the following sublanguage consisting of guarded statements

L

g

� L for these procedure bodies:

g (2 L

g

) ::= a j � j (g; s) j (g

1

+ g

2

) j (g

1

k g

2

) j (g k

�

s) j (g

1

jg

2

) j @

H

(g)

Intuitively, a statement is guarded if every occurrence of a procedure variable is

preceded by at least one elementary action. A function d : PVar! L

g

is called

a declaration. Hence the body of a procedure is always a guarded statement.

We sometimes emphasis this by saying that the recursion is guarded.

Since procedures may be recursive, they need not be �nite. For instance, if

we assume d(X) = a;X, then X is the program that executes in�nitely many

atomic actions a. This means that programs s 2 L do not always possess a

normal form in N which consists of �nite terms. Moreover, assuming d(Y) =

a;Y , we have no way of proving that X = Y using only the equations given

above.

To overcome these problems, one introduces the following projection operators

�

n

, for n � 1, which allow n actions to be executed. We de�ne �

n

inductively

on the set of normal forms as

�

n

(a) = a

�

n

(�) = �

�

1

(a; s) = a

�

n+1

(a; s) = a;�

n

(s)

�

n

(s

1

+ � � �+ s

m

) = �

n

(s

1

) + � � � + �

n

(s

m

)

Note that the projection of a normal form is again a normal form. These

projections extend to functions �

n

: L ! N by the following procedure. Let s

be an arbitrary term in L.

1. De�ne inductively the term s

(n)

as follows. s

(0)

� s, and given s

(n)

, de�ne

s

(n+1)

to be the term obtained by replacing every procedure variable X

by its body d(X).

2. Obtain the normal form NF(s

(n)

) by considering each procedure variable

X occurring in s

(n)

as a (new) constant action.

3. Put �

n

(s) = �

n

(NF(s

(n)

)).

By guardedness of the recursion this is well-de�ned.

Using these projection operators we can now formulate an in�nitary rule to

deal with in�nite programs. This rule is called the Approximation Induction

Principle (AIP). Consult [BW91] for a more comprehensive discussion of this

rule.

f�

n

(x) = �

n

(y) : n < !g

x = y

Note that this rule can only be used if we substitute closed terms for x and y

(otherwise, the projections �

n

(x) are not de�ned). In section 5 we show that

6

the syntactic `�nite approximations' �

n

(s) to a program s are closely related to

the �nite approximations to the denotation of s in the order-theoretic sense.

3 Domain Theory

In this section we give the mathematical preliminaries on which this work is

based. This section introduces the various constructions and notations we use in

the sequel. For a more complete treatment of the theory, consult [GS90, Plo81a].

Partial orders. A tuple (D;v) where D is a set and v � D�D is a relation

on D, is called a partial order if v is reexive, transitive and anti-symmetric.

We assume that each partial order has a distinguished element ? that is least

with respect to the ordering relation, that is, ? v d for all d 2 D. Given a

partial order (D;v), we call a subset fx

i

: i < !g a chain if x

i

v x

i+1

for all

i < !. In this case we write (x

i

)

i

for the subset. An element d 2 D is an

upperbound for a chain (x

i

)

i

if x

i

v d for all i. It is a least upperbound (lub) if

d v d

0

for any upperbound d

0

. We write

F

i

x

i

for the unique least upperbound

of a chain (x

i

)

i

, if it exists. A partial order (D;v) is called complete (or a cpo)

if it has least upperbounds for all chains.

The notion of chain is fundamental in the study of semantics of programming

languages. Essentially, the meaning of a (recursive) program is viewed as the

lub of (inductively de�ned) approximations to it. The approximations are all

in some sense \�nite". We formalize this as follows. An element d 2 D for

some cpo D is called �nite if d v

F

i

x

i

implies d v x

k

for some k. We denote

the collection of all �nite elements of some cpo D by K(D). Given our goal

of de�ning a semantics, it is natural to restrict attention to cpo's that are

completely determined by their �nite elements. That is, for all x 2 D we wish

there to exist a chain (x

i

)

i

� K(D) such that x =

F

i

x

i

. These cpo's are

called algebraic. They are called !-algebraic if moreover this collection of �nite

elements is a countable set. We will use the term `domain' for an !-algebraic

cpo.

Functions. The natural notion of function between sets with some structure

is of course a function that preserves the structure. In our case, the function

should at least preserve the ordering. That is, if f : D ! E and x v y 2 D then

f(x) v f(y) 2 E. We call these functions monotonic. Functions f such that

f(?) = ? are called strict. The next restriction that we impose on functions is

that f (

F

i

x

i

) =

F

i

f(x

i

). These functions are called continuous.

Since we are working with domains in which all elements arise as lub's of chains

of �nite elements, the continuous functions f : D ! E stand in a one-to-one

correspondence with monotonic functions f

0

: K(D)! E (c.f. [Plo81a]). This

means that every continuous function is completely determined by its action

on the �nite elements. This fact enables us to de�ne a continuous function

f : D ! E by specifying a monotonic function f

0

: K(D)! E.

7

Proposition 3.1 Let D and E be domains. Let f : K(D) ! E be monotonic

and let g : D ! E be monotonic and continuous. De�ne " f : D ! E by

" f(x) =

G

f(x

i

)

where (x

i

)

i

� K(D) is some chain such that x =

F

i

x

i

. Then

1. " f is well-de�ned and continuous.

2. f = (" f) � K(D).

3. g =" (g � K(D)).

Given a function f : D ! D, a �xed point of f is a value d 2 D such that

f(d) = d. All continuous functions have �xed points. The least �xed point of a

continuous f is given by

F

n

f

n

(?). For allD, the function fix

D

: [D ! D]! D

that yields this least �xed point is a continuous function.

Domain constructions. First of all, observe that we can turn each countable

set X into a domain X

?

by adjoining a new least element ? and stipulating

that ? v x and x v x for all x 2 X. Cpo's of this form are called at. Every

set theoretic function f : X ! Y can be extended to a continuous function

f

?

: X

?

! Y

?

by de�ning f

?

(?) = ? and f

?

(x) = f(x) for x 2 X.

Let D and E be domains. We de�ne the following constructs yielding new

domains:

� D �E is the cartesian product of D and E. The underlying set is

fhx; yi : x 2 D; y 2 Eg

The order is given by hx

1

; y

1

i v hx

2

; y

2

i i� x

1

v x

2

and y

1

v y

2

. Its

bottom element is h?;?i.

� D +E is the sum of D and E. The underlying set is

fh0; xi : x 2 D n f?gg [fh1; yi : y 2 E n f?gg [f?g

This is just the counterpart of the disjoint union of ordinary sets. For

x; y 2 D+E, the order is given by x v y i� x � ? or x � hi; x

0

i; y � hi; y

0

i

and x

0

v y

0

(i = 0; 1). Note that D+E is the coproduct of D and E with

respect to strict functions.

� One can generalize + to arbitrary �nite sums. We denote this by D

0

+

� � � +D

n�1

.

If D and E are domains, then so are D � E etc. All constructions come with

special functions to and from them. We de�ne

� projections � : D�E ! D and �

0

: D�E ! E given by �hx; yi = x and

�

0

hx; yi = y, respectively.

8

� if f : A ! D and g : A ! E then hf; gi : A ! D � E is given by

hf; gi(a) = hf(a); g(a)i. Note that � � hf; gi = f and �

0

� hf; gi = g.

� inclusions in

0

: D ! D + E and in

1

: E ! D + E given by in

i

(?) = ?

and in

i

(x) = hi; xi.

� sum projections out

0

: D +E ! D and out

1

: D +E ! E given by

out

0

(x) =

8

>

<

>

:

? if x � ?

? if x � h1; y

0

i

x

0

if x � h0; x

0

i

and likewise for out

1

.

� sum discriminators is

0

: D +E ! T and is

1

: D +E ! T given by

is

0

(x) =

8

>

<

>

:

? if x � ?

t if x � h0; x

0

i

f if x � h1; x

0

i

and likewise for is

1

. Here we have used the at domain of truth values

T = f?; t; fg.

� all functions can be extended to �nite sums.

Finally we review the construction of the Plotkin powerdomain P

�

(D). It is

more di�cult than the previous ones, and a more detailed exposition can be

found in [Plo79, Smy78, Kni93a]. We start with the collection F(D) of all �nite

sets of �nite elements of D. These will act as the �nite elements of P

�

(D). We

order F(D) by putting

X v

EM

Y i� y 2 Y:x v y ^ 8y 2 Y 9x 2 X:x v y

This order is called the Egli-Milner order. (F(D);v

EM

) is a pre-ordered set,

hence we can form its completion to get a domain (see [Kni93a]). This domain

is by de�nition the powerdomain of D. A suitable representation uses the

following operation (c.f. [Plo81a, Kni93a]).

C̀ (X) = f

G

x

i

� K(D) : 9x 2 X:x v

G

x

i

& 8i9x

0

2 X:x

i

v x

0

g

It is easy to check that C̀ indeed is a set theoretical closure operation. Fur-

thermore we have C̀ (X) = Con(X) for all X 2 F(D) where Con(X) = fy :

9x

1

; x

2

2 X:x

1

v y v x

2

g is the convex closure operator. De�ning

Up(X

i

)

i

= f

G

x

i

: x

i

2 X

i

g

for a chain (X

i

)

i

� F(D), the powerdomain then consists of all sets C̀ (Up(X

i

)

i

).

Unfortunately, the ordering of these sets is in general no longer Egli-Milner, but

becomes the Plotkin order. For details, consult [Plo81a, Smy78, Kni93a]. We

will always be working with �nite elements, and these are Egli-Milner ordered.

9

� For f : D ! E we de�ne P

�

f : P

�

(D)! P

�

(E) by

P

�

f(X) = C̀ ff(x) : x 2 Xg

� For f : D

1

�D

2

! E we de�ne f

y

: P

�

(D

1

)�D

2

! P

�

(E) by

f

y

(X; y) = C̀ ff(x; y) : x 2 Xg

� For f : D

1

�D

2

! E we de�ne f

z

: P

�

(D

1

)�P

�

(D

2

)! P

�

(E) by

f

z

(X

1

;X

2

) = C̀ ff(x

1

; x

2

) : x

1

2 X

1

; x

2

2 X

2

g

� We have a continuous function] : P

�

(D)�P

�

(D)! P

�

(D) given by

X] Y = C̀ (X [Y)

� We have a continuous function fj � jg : D ! P

�

(D) given by fjxjg = fxg

The constructions (�) � (�), P

�

(�) etc., are all continuous. That is, for a chain

of functions (f

i

)

i

we have g �

F

i

f

i

=

F

i

(g � f

i

) etc. In particular this means

that one can solve recursive domain equations involving these constructors (c.f.

[Plo81a, SP82]). Also, the derived operations (�)

y

and (�)

z

are continuous.

A function f : P

�

(D)! P

�

(E) is called linear if f(X]Y) = f(X)]f(Y) for all

X;Y 2 P

�

(D). It is known that P

�

f , (f)

y

and (f)

z

are linear [Plo81a, Plo79].

We need the following continuous function if (�) then (�) else (�) : T�D�D!

D given by

if t then d

1

else t

2

=

8

>

<

>

:

? if t = ?

d

1

if t = t

d

2

if t = f

4 The Semantic Domain

In this section we give the de�nition of the domain P that underlies our order-

theoretic denotational semantics for L. P is de�ned as the least solution of the

following reexive equation

P

�

=

P

�

(f�g

?

+A

?

+A

?

�P)

where � 62 A is used to denote deadlock. For de�niteness, let � be the isomor-

phism between the left- and right-hand sides.

It is instructive to see how the solution P is obtained as we will need the con-

struction in the sequel. For a full treatment of the theory of solving reexive

domain equations, see [Plo81a, SP82]. The following theory is taken from those

papers. Briey, we solve the equation in Cpo

E

, the category that has as ob-

jects cpo's and as arrows embedding-projection pairs (k : D ! E; l : E ! D)

satisfying l � k = 1

D

and k � l v 1

E

. Now P is the colimit of the sequence

P

0

= f?g P

n+1

= P

�

(f�g

?

+A

?

+A

?

� P

n

)

10

with as embedding-projection pairs the pairs (i

n

: P

n

! P

n+1

; j

n

: P

n+1

! P

n

)

given by

i

0

= �x:? j

0

= �x:?

i

n+1

= P

�

(1

f�g

?

+ 1

A

?

+ 1

A

?

� i

n

) j

n+1

= P

�

(1

f�g

?

+ 1

A

?

+ 1

A

?

� j

n

)

Intuitively, i

n

is the inclusion of P

n

into P

n+1

and j

n

maps a set at nesting

depth n+ 1 onto ?. We write

i

nm

= i

m�1

� � � � � i

n+1

� i

n

and j

nm

= j

n

� j

n+1

� � � � � j

m�1

The colimit comes equipped with functions �

n

: P

n

! P and �

n

: P ! P

n

.

These functions have the properties that

1. �

n

� �

n

v �

n+1

� �

n+1

,

2.

F

n

�

n

� �

n

= 1

P

,

3. �

n

= �

n+1

� i

n

and �

n

= j

n

� �

n+1

.

Concretely, P consists of !-indexed sequences

p � hp

0

; p

1

; : : : ; p

n

; : : :i

where p

n

2 P

n

such that p

n

= j

n

(p

n+1

). Then

�

n

(hp

0

; : : : ; p

n

; : : :i) = p

n

�

n

(p) = hj

0n

(p); : : : ; j

(n�1)n

(p); p; i

n(n+1)

(p); : : :i

As f�g

?

and A

?

are !-algebraic, every P

n

is !-algebraic. In turn, P itself is

!-algebraic and its collection of �nite elements is given by �

n

(p) for p 2 K(P

n

).

We now give a characterization of the continuous functions f : P ! P in

terms of functions f

n

: P

n

! P

n

. This characterization will enable us to derive

properties of functions f : P ! P by showing that these properties hold of

certain (induced) functions f

(n)

: P

n

! P

n

and invoking a limit argument.

The latter task will be substantially easier since we are allowed to reason by

inductive arguments. To our knowledge, this approach is new.

First of all, to each f : P ! P we associate functions f

(n)

: P

n

! P

n

by

stipulating that f

(n)

= �

n

� f � �

n

for each n. Observe that we have

j

n

� f

(n+1)

� i

n

= j

n

� �

n+1

� f � �

n+1

� i

n

= �

n

� f � �

n

= f

(n)

We call a family of functions ff

n

: P

n

! P

n

: n < !g compatible if f

n

=

j

n

�f

n+1

� i

n

and write [f

n

]

n

for such a family. We say that a family of functions

is strongly compatible if f

n

� j

n

= j

n

� f

n+1

. Note that if both [f

n

]

n

and [g

n

]

n

are strongly compatible then so is [f

n

� g

n

]

n

.

11

Each f

n

: P

n

! P

n

gives rise to a function

�

f

n

: P! P given by

�

f

n

= �

n

�f

n

��

n

.

For a compatible family [f

n

]

n

we have

�

f

n

= �

n

� j

n

� f

n+1

� i

n

� �

n

v �

n+1

� f

n+1

� �

n+1

=

�

f

n+1

Hence we may de�ne [f

n

]

"

n

=

F

n

�

f

n

. This is a continuous function. Note that

if [f

n

]

n

is strongly compatible, then

[f

n

]

"

n

hp

0

; p

1

; p

2

; : : :i = hf

0

(p

0

); f

1

(p

1

); f

2

(p

2

); : : :i

Proposition 4.1 For all f : P! P and all compatible families [f

n

]

n

we have

1. [f

(n)

]

n

is compatible.

2. [f

n

]

"

n

is continuous.

3. [f

(n)

]

"

n

= f .

4. 8n:

�

[f

n

]

"

n

�

(n)

= f

n

.

Proof We have already proven 1 and 2 above. Next,

[f

(n)

]

"

n

=

G

�

n

� �

n

� f � �

n

� �

n

=

G

(�

n

� �

n

) � f �

G

(�

n

� �

n

)

= 1

P

� f � 1

P

= f

�

[f

n

]

"

n

�

(n)

= �

n

� [f

n

]

"

n

� �

n

= �

n

�

G

(�

m

� f

m

� �

m

) � �

n

=

G

(�

n

� �

m

� f

m

� �

m

� �

n

)

=

G

(j

nm

� f

m

� i

nm

)

= f

n

�

5 The Denotational Semantics

In this section we de�ne the denotational semantics [[�]] : L ! P and prove that

this semantics provides a model for the equational theory as given in section 2.

To this end we de�ne semantic functions corresponding to the syntactic con-

structors of the language. We de�ne the semantic functions as least �xed points

of certain higher-order functionals. The functionals themselves are de�ned us-

ing a small collection of primitive functions that we know to be continuous.

Consequently, the resulting expressions are automatically continuous functions

themselves. We prove several properties of the semantic functions and indicate

the axioms of ACP that correspond to these properties.

12

5.1 Sequential composition

We want to de�ne a function � : P �P! P. Intuitively, given two processes

p

1

; p

2

2 P, the process p

1

� p

2

is obtained by attaching copies of p

2

to the

endpoints of p

1

. We shall de�ne this function pointwise. That is, we �rst show

how to attach such a copy of p

2

to each `element' in p

1

. We then collect all

these results together to obtain p

1

� p

2

. First de�ne the higher order operator

	

	 : [P�P! P]! [(f�g

?

+A

?

+A

?

�P)�P! (f�g

?

+A

?

+A

?

�P)]

by

	(f)(x; p) = if is

0

(x) then x

else if is

1

(x) then in

2

(hout

1

(x); pi)

else in

2

(h�(out

2

(x)); f(�

0

(out

2

(x)); p)i)

and

~

	 = �f:�

�1

� (

l

(f))

y

� (�� 1). Put � = fix(

~

).

In the remainder of this section, we suppress the functions in

i

and out

i

for

the sake of simplicity, trusting that the reader can provide them himself where

needed. For instance, we will write fjajg instead of fjin

1

(a)jg. This convention

increases readability of the expressions considerably.

Lemma 5.1 For all n, we have that �

(n)

= �

n

, where �

n

= (

~

�

n

)

y

using

~

�

n+1

: [f�g

?

+A

?

+A

?

� P

n

]� P

n+1

! [f�g

?

+A

?

+A

?

� P

n

]

inductively given by

~

�

0

= �x; y: ?

~

�

n+1

= �x; y: if is

0

(x) then x

else if is

1

(x) then hx; j

n

(y)i

else h�(x); �

0

(x)�

n

j

n

(y)i

Proof First we observe that we can de�ne �

n

and �

n

with the help of functions

~�

n

inductively given by

if is

0

(x) _ is

1

(x) then x else h�(x); �

n

(�

0

(x))i

putting �

n

= �

�1

� P

�

(~�

n

) � �. Likewise for �

n

. Hence both �

n

and �

n

are

linear.

We proceed by induction on n to show that �

(n)

= �

n

. The case n = 0 is

trivial. For n � 0, we have p

1

�

(n+1)

p

2

= �

n+1

(�

n+1

(p

1

)��

n+1

(p

2

)). This last

function is the pointwise extension of

if is

0

(x) then x

else if is

1

(x) then hx; �

n

(�

n+1

(p

2

))i

else h�(x); �

n

(�

n

(�

0

(x))� �

n+1

(p

2

))i

Since �

n

� �

n+1

= j

n

and �

n

(p � �

m

(p

0

)) = �

n

(p � �

n

(j

mn

(p

0

))) for all n and

m � n, we have that �

n

(�

n

(�

0

(x)) � �

n+1

(p

2

)) = �

n

(�

n

(�

0

(x)) � �

n

(j

n

(p

2

))).

Hence the desired conclusion. �

13

Corollary 5.2 �

(n)

� (j

n

� j

n

) = j

n

� �

(n+1)

.

Lemma 5.3 For all p

1

; p

2

; p

3

2 P,

1. (p

1

� p

2

)� p

3

= p

1

� (p

2

� p

3

) (Axiom A5);

2. fj�jg � p

1

= fj�jg (Axiom A6).

Proof First we show that for all n, (p

0

1

�

(n)

p

0

2

) �

(n)

p

0

3

= p

0

1

�

(n)

(p

0

2

�

(n)

p

0

3

)

for all p

0

1

; p

0

2

; p

0

3

2 P

n

. The case n = 0 is trivial. For the induction step we

argue as follows. The right hand side of the equation, considered as a function

of p

0

1

; p

0

2

; p

0

3

, is the pointwise extension of

if is

0

(x) then x

else if is

1

(x) then hx; j

n

(p

0

2

�

(n+1)

p

0

3

)i

else h�(x); �

0

(x)�

(n)

j

n

(p

0

2

�

(n+1)

p

0

3

)i

By properties of the compatible family [�

(n)

]

n

, we have that

�

0

(x)�

(n)

j

n

(p

0

2

�

(n+1)

p

0

3

) = �

0

(x)�

(n)

(j

n

(p

0

2

)�

(n)

j

n

(p

0

3

))

By induction hypothesis, the last expression equals

(�

0

(x)�

(n)

j

n

(p

0

2

))�

(n)

j

n

(p

0

3

)

Now it is easy to see that the left-hand side is the pointwise extension of the

aforementioned function.

The claim now follows because

(p

1

� p

2

)� p

3

=

G

n

�

n

(�

n

(p

1

)�

(n)

�

n

(p

2

))

!

� p

3

=

G

m

�

m

�

m

G

n

�

n

�

�

n

(p

1

)�

(n)

�

n

(p

2

)

�

!

�

(m)

�

m

(p

3

)

!

=

G

m

�

m

G

n>m

j

nm

�

�

n

(p

1

)�

(n)

�

n

(p

2

)

�

�

(m)

�

m

(p

3

)

!

=

G

m

�

m

�h

�

m

(p

1

)�

(m)

�

m

(p

2

)

i

�

(m)

�

m

(p

3

)

�

=

G

m

�

m

�

�

m

(p

1

)�

(m)

h

�

m

(p

2

)�

(m)

�

m

(p

3

)

i�

= p

1

� (p

2

� p

3

)

The second equality is immediate. �

5.2 Choice

In order to de�ne the other operators it is convenient to have another function

� available. This function � : P ! P removes �'s from the �rst level of its

14

argument, unless that argument equals fj�jg. Note that this function is of a

`global' nature, that is, � is not linear. It is this de�nition that enables us

to formulate our model. We can de�ne �

n

: P

n

! P

n

uniformly on the �nite

elements of P

n

by

�

n

(X) =

(

X if X � fh0; �ig

X n fh0; �ig otherwise

It is easy to see that �

n

is monotonic on the �nite elements of P

n

and hence

extends to a continuous function on P

n

. (Note that � is not monotonic with

respect to the Smyth or the Hoare order: consider the sets fh0; �i; h1; aig v

S

fh0; �ig.) It is also easy to show that �

n

� j

n

= j

n

� �

n+1

, hence [�

n

]

n

is a

compatible family. Let � : P! P be the induced function on P. The following

lemmas list some elementary properties of �.

Lemma 5.4 For all p; p

0

2 P,

1. �(�(p)) = �(p);

2. �(p] p

0

) = �(�(p)]�(p

0

)) = �(p]�(p

0

));

3. �(p� p

0

) = �(p)� p

0

.

We de�ne the semantic choice operator � : P�P! P as � = � �].

Remark. Note that with this de�nition of the choice operator, it is in general not

the case that p�p = p or that p�fj�jg = p. For instance, let p � fh0; �i; h1; aig.

Then

p� fj�jg = �(fh0; �i; h1; aig) = fh1; aig 6= p

We call a function f �-linear if f(X � Y) = f(X)� f(Y).

Lemma 5.5 If f is linear and f(fj�jg) = fj�jg, then f is �-linear.

Proof Immediate from the observation that � � f(X) = � � f(�(X)). �

Lemma 5.6 For all p

1

; p

2

; p

3

2 P,

1. p

1

� p

2

= p

2

� p

1

(Axiom A1);

2. p

1

� (p

1

� p

3

) = (p

1

� p

2

)� p

3

(Axiom A2);

3. (p

1

� p

2

)� p

3

= (p

1

� p

3

)� (p

2

� p

3

) (Axiom A4).

Proof The �rst equality is trivial. For the other two equalities, we have

p

1

� (p

2

� p

3

) = �(p

1

]�(p

2

] p

3

))

= �(p

1

] p

2

] p

3

)

= �(�(p

1

] p

2

)] p

3

)

15

= (p

1

� p

2

)� p

3

(p

1

� p

2

)� p

3

= �(p

1

] p

2

)� p

3

= �((p

1

] p

2

)� p

3

)

(�)

= �(p

1

� p

3

] p

2

� p

3

)

= (p

1

� p

3

)� (p

2

� p

3

)

where equality (�) holds since � is de�ned pointwise in its �rst argument and

hence is linear in that argument. �

5.3 Parallel composition

We now de�ne the parallel composition operator
 : P � P ! P as follows.

We now de�ne the parallel composition operator
 : P � P ! P. First we

discuss how this function should behave. Let p

1

and p

2

be two elements in

P. Then, according to Axiom CM1, p

1

 p

2

should equal (p

1

L

p

2

)� (p

2

L

p

1

) � (p

1

f

p

2

) where

L

denotes the semantic left-merge and

f

denotes

the semantic communication merge function, respectively. Since

L

should

execute an action from its left-hand-side argument �rst, and then behave like

, its de�nition closely resembles the de�nition of the sequential composition

function �, except that in the recursion we have to apply
 instead of �. Hence

the higher-order operator 	 used in the de�nition of sequential composition in

section 5.1, will again be used in the de�nition of the left-merge function.

For communications, we have to take an action from the left-hand-side and one

form the right-hand-side argument, and attempt to synchronize them. To do

this, we lift the function as given in the de�nition of the algebra to a function

 : (f�g

?

+A

?

)� (f�g

?

+A

?

)! (f�g

?

+A

?

)

in the obvious strict way. Hence is strict, commutative, and associative and

has h0; �i as zero. We now de�ne

	

C

: [P�P! P]!

[(f�g

?

+A

?

+A

?

�P)� (f�g

?

+A

?

+A

?

�P)! (f�g

?

+A

?

+A

?

�P)]

16

by

	

C

(f)(x; y) = if (is

0

(x) _ is

1

(x)) ^ (is

0

(y) _ is

1

(y))

then (x; y)

else if is

1

(x) ^ is

2

(y)

then if is

0

((x; �(y)))

then �

else h(x; �(y)); �

0

(y)i

else if is

2

(x) ^ is

1

(y)

then if is

0

((�(x); y))

then �

else h(�(x); y); �

0

(x)i

else if is

0

((�(x); �(y)))

then �

else h(�(x); �(y)); f(�

0

(x); �

0

(y))i

and we de�ne

~

	

C

= �f:� � (

C

(f))

z

.

We now de�ne

�(f)(p

1

; p

2

) =

~

	(f)(p

1

; p

2

)�

~

	(f)(p

2

; p

1

)�

~

	

C

(f)(p

1

; p

2

)

and put
 = fix(�). Likewise, we de�ne

L

=

~

	(
) and

f

=

~

	

C

(
). The

next lemma follows immediately from the de�nitions.

Lemma 5.7 For all a; b; c 2 A, p; p

0

2 P,

1. fjajg

f

fjbjg = fjbjg

f

fjajg = fj(a; b)jg (Axiom CF);

2. (fjajg

f

fjbjg)

f

fjcjg = fjajg

f

(fjbjg

f

fjcjg) = fj((a; b); c)jg;

3. fjajg

L

p = fjha; pijg = fjajg � p (Axiom CM2);

4. (fjajg � p)

L

p

0

= fjajg � (p
 p

0

) (Axiom CM3);

5. (fjajg � p)

f

fjbjg = fj(a; b)jg � p (Axiom CM5);

6. fjajg

f

(fjbjg � p) = fj(a; b)jg � p (Axiom CM6);

7. (fjajg � p)

f

(fjbjg � p

0

) = fj(a; b)jg � (p
 p

0

) (Axiom CM7).

Lemma 5.8 For all p

1

; p

2

; p

3

2 P,

1. p

1

 p

2

= (p

1

L

p

2

)� (p

2

L

p

1

)� (p

1

f

p

2

) (Axiom CM1);

2. (p

1

� p

2

)

L

p

3

= (p

1

L

p

3

)� (p

2

L

p

3

) (Axiom CM4);

3. (p

1

� p

2

)

f

p

3

= (p

1

f

p

3

)� (p

2

f

p

3

) (Axiom CM8);

4. p

1

f

(p

2

� p

3

) = (p

1

f

p

2

)� (p

1

f

p

3

) (Axiom CM9).

17

Proof The �rst equality follows immediately from the de�nitions. For the

second equality, we have �(p

L

p

0

) = �(p)

L

p

0

just like for �. The claim

now follows by the same argument. The third equality follows from Lemma 5.5.

The fourth equality is proved similarly. �

Having de�ned the merge, left-merge and communication merge functions, we

now show that the Standard Concurrency Axioms hold for this interpretation.

First, we have that

(n)

is given by:

(n)

(p; p

0

) =

(n)

L

(p; p

0

)�

(n)

(n)

L

(p

0

; p)�

(n)

f

(n)

(p; p

0

)

where

f

(n)

is inductively given by

~

f

(0)

= �x; y: ?

~

f

(n+1)

= 	

C

�

f

(n)

�

putting

f

(n)

= � �

�

~

f

(n)

�

z

. Furthermore,

(n)

L

is given analogously to �

(n)

.

~

(0)

L

= �x; y: ?

~

(n+1)

L

= �x; y: if is

0

(x) then x

else if is

1

(x) then hx; j

n

(y)i

else h�(x); �

0

(x)

(n)

j

n

(y)i

Lemma 5.9 For all p; p

0

2 P,

1. p

f

p

0

= p

0

f

p (Axiom SC3);

2. p
 p

0

= p

0

 p (Axiom SC4).

ProofWe can prove that, for all p; p

0

2 P

n

, p

f

(n)

p

0

= p

0

f

(n)

p and p

(n)

p

0

=

p

0

(n)

p by a simultaneous induction on n. The �rst equality follows easily

from the fact that

~

f

(n)

is de�ned symmetrically in x and y, and the induction

hypothesis. The claim for

(n)

is then trivial. �

Lemma 5.10 For all p

1

; p

2

; p

3

2 P,

1. (p

1

L

p

2

)

L

p

3

) = p

1

L

(p

2

 p

3

) (Axiom SC1);

2. (p

1

f

p

2

)

L

p

3

= p

1

f

(p

2

L

p

3

) (Axiom SC2);

3. p

1

f

(p

2

f

p

3

) = (p

1

f

p

2

)

f

p

3

(Axiom SC5);

4. p

1

 (p

2

 p

3

) = (p

1

 p

2

)
 p

3

(Axiom SC6).

Proof We prove the equalities in their (�)

(n)

form, by simultaneous induction

on n. The base case n = 0 is in all cases trivial. For the �rst equality, we have

~

(n+1)

L

(x;

(n+1)

(p

2

; p

3

)) = if is

0

(x) then x

else if is

1

(x)

then hx; j

n

(

(n+1)

(p

2

; p

3

))i

else h�(x);

(n)

(�

0

(x); j

n

(

(n+1)

(p

2

; p

3

)))i

18

~

(n+1)

L

(

~

(n+1)

L

(x; p

2

); p

3

) = if is

0

(x) then x

else if is

1

(x)

then hx;

(n)

(j

n

(p

2

); j

n

(p

3

))i

else h�(x);

(n)

(

(n)

(�

0

(x); j

n

(p

2

)); j

n

(p

3

))i

By properties of the compatible family [

(n)

]

n

and the induction hypothesis on

(n)

these two expressions are the same.

The second equality is proved likewise.

The associativity of

f

(n+1)

follows readily from the associativity of and the

induction hypothesis on

(n)

.

For the last equality, we write out left- and right-hand-sides of the equality.

p

1

(n+1)

(p

2

(n+1)

p

3

) =

[p

1

(n+1)

L

(p

2

(n+1)

p

3

)]

f1g

�

(n+1)

[(p

2

(n+1)

L

p

3

)

(n+1)

L

p

1

]

f2g

�

(n+1)

[(p

3

(n+1)

L

p

2

)

(n+1)

L

p

1

]

f3g

�

(n+1)

[(p

2

f

(n+1)

p

3

)

(n+1)

L

p

1

]

f4g

�

(n+1)

[p

1

f

(n+1)

(p

2

(n+1)

L

p

3

)]

f5g

�

(n+1)

[p

1

f

(n+1)

(p

3

(n+1)

L

p

2

)]

f6g

�

(n+1)

[p

1

f

(n+1)

(p

2

f

(n+1)

p

3

)]

f7g

:

(p

1

(n+1)

p

2

)

(n+1)

p

3

=

[(p

1

(n+1)

L

p

2

)

(n+1)

L

p

3

]

f1

0

g

�

(n+1)

[(p

2

(n+1)

L

p

1

)

(n+1)

L

p

3

]

f2

0

g

�

(n+1)

[(p

1

f

(n+1)

p

2

)

(n+1)

L

p

3

]

f5

0

g

�

(n+1)

[p

3

(n+1)

L

(p

1

(n+1)

p

2

)]

f3

0

g

�

(n+1)

[(p

1

(n+1)

L

p

2

)

f

(n+1)

p

3

]

f6

0

g

�

(n+1)

[(p

2

(n+1)

L

p

1

)

f

(n+1)

p

3

]

f4

0

g

�

(n+1)

[(p

1

f

(n+1)

p

2

)

f

(n+1)

p

3

]

f7

0

g

:

In the above we have, by the previous cases in the lemma, that fig = fi

0

g for

1 � i � 7. �

5.4 Encapsulation

Each subset H � A gives rise to the following continuous function

b

H : A

?

! T:

b

H(x) =

8

>

<

>

:

? if x � ?

t if x 6� ? and x 2 H

f otherwise

Fixing such a set H � A, we de�ne r

H

: P! P with the help of

	

H

: (P! P)! (f�g

?

+A

?

+A

?

�P)! (f�g

?

+A

?

+A

?

�P)

by

	

H

(f)(x) = if is

1

(x)

then if

b

H(x) then � else x

else if is

2

(x)

then if

b

H(�(x)) then � else h�(x); f(�

0

(x))i

else x

19

Now de�ne

~

	

H

= �f:� � �

�1

� P

�

(

H

(f)) � � and r

H

= fix(

~

	

H

). We give

some elementary properties of r

H

.

Lemma 5.11 Let H � A and let a 2 A. Then

1. r

H

(fjajg) = fj�jg if a 2 H (Axiom D1);

2. r

H

(fjajg) = fjajg if a 62 H (Axiom D2).

Lemma 5.12 For all p; p

0

2 P,

1. r

H

(p) = r

H

(�(p)) = �(r

H

(p));

2. r

H

(p] p

0

) = �(r

H

(p)]r

H

(p

0

));

3. r

H

(p� p

0

) = r

H

(p)�r

H

(p

0

) (Axiom D3).

Proof We have

r

H

(p� p

0

) = r

H

(�(p] p

0

))

= �(r

H

(p)]r

H

(p

0

))

= r

H

(p)�r

H

(p

0

)

The other equalities follow immediately from the de�nitions. �

Lemma 5.13 For all p

1

; p

2

2 P, r

H

(p

1

� p

2

) = r

H

(p

1

) � r

H

(p

2

) (Axiom

D4).

Proof Again de�ne the compatible family fr

(n)

H

: P

n

! P

n

: n < !g and use

induction on n to prove that for each n,

r

(n)

H

(p�

(n)

p

0

) = r

(n)

H

(p)�

(n)

r

(n)

H

(p

0

)

for all p; p

0

2 P

n

. �

5.5 The denotational model

Having de�ned semantical counterparts to all syntactic operators, we are ready

to de�ne the denotational semantics. This de�nition is the standard one, com-

pare [dB80]. First of all, let � : PV ar ! P be the set of environments or

meanings of procedure variables.

De�nition 5.14 We de�ne D : L ! � ! P by induction on the structure of

s as follows:

� D()(a) = fjajg;

� D()(�) = fj�jg;

20

� D()(s

1

; s

2

) = D()(s

1

)�D()(s

2

);

� D()(s

1

+ s

2

) = D()(s

1

)�D()(s

2

);

� D()(s

1

k

�

s

2

) = D()(s

1

)

L

D()(s

2

);

� D()(s

1

js

2

) = D()(s

1

)

f

D()(s

2

);

� D()(s

1

k s

2

) = D()(s

1

)
D()(s

2

);

� D()(@

H

(s)) = r

H

(D()(s));

� D()(X) = (X).

The order on P extends to an order on �. The higher-order operator � : �! �,

de�ned by �()(X) = D()(d(X)), is a continuous operator and hence has a

�xed point

d

. Now de�ne [[�]] : L ! P as D(

d

).

6 Soundness and completeness

In the preceding section we have de�ned a denotational semantics for the lan-

guage L. In this section we show that this interpretation is sound and complete

for the process algebra ACP.

In view of the lemmas in the preceding section the only equalities that we still

need to prove are Axioms A3 and A6. We can de�ne the following subset

P

�

� P. First, de�ne the operator �

�

: P! P as

�(f)(x) = if is

0

(x) _ is

1

(x) then x

else h�(x); f(�

0

(x))i

and set

~

� = �f:� � �

�1

� P

�

(�(f)) � �. Set �

�

= fix(

~

�). Intuitively, �

�

applies � recursively to a process. De�ne P

�

= �

�

(P), the direct image of P

under �

�

. As �

�

(�

�

(p)) = �

�

(p), P

�

consists of all �xed points of �

�

. For the

next proposition we need the following de�nition. Given a domain D, a subset

D

0

� D is called inclusive if whenever (x

i

)

i

� D

0

then

F

x

i

2 D

0

.

Proposition 6.1 P

�

is an inclusive subset of P.

Since ?, [[a]] and [[�]] 2 P

�

and all operators preserve the property of being in

P

�

, it follows that [[�]] is a function from L to P

�

.

Lemma 6.2 For all p 2 P

�

,

1. p� p = p (Axiom A3);

2. p� fj�jg = p (Axiom A6).

21

Finally, we have to show that the Approximation Induction Principle holds in

the model given by the denotational semantics. We de�ne projections �

n

: P!

P

n

as follows. De�ne ~�

n

by

~�

1

(x) = if is

0

(x) _ is

1

(x) then x

else �(x)

~�

n+1

(x) = if is

0

(x) _ is

1

(x) then x

else h�(x); �

n

(�

0

(x))i

and set �

n

= P

�

(~�

n

).

We have the following lemma.

Lemma 6.3 For all s 2 L, [[�

n

(s)]] = �

n

[[s]].

Proof The lemma obviously holds for s 2 N . For s 2 L

f

, we have [[s]] =

[[NF(s)]]. Hence [[�

n

(s)]] = [[�

n

(NF(s))]] = �

n

[[NF(s)]] = �

n

[[s]]. For s 2 L

we �rst observe ` �

n

(s) = �

n

(s

0

) where s

0

is obtained from s

(n)

(see section 2)

by replacing each procedure variable by an arbitrary term in L

f

. This follows

easily from the fact that we have guarded recursion. Likewise, �

n

[[s]] = �

n

[[s

0

]].

Hence [[�

n

(s)]] = [[�

n

(s

0

)]] = �

n

[[s

0

]] = �

n

[[s]]. �

We now discuss the relation between �

n

and �

n

. Recall the description of

�

n

as given in the proof of Lemma 5.1. Comparing this last de�nition with

the de�nition of �

n

above, we see that the only di�erence between these two

functions is that �

n

maps a set on depth n + 1 to ? whereas �

n

removes the

set alltogether. Hence we have the following proposition.

Lemma 6.4 For all n, p; p

0

2 P,

1. �

n

(p) = �

n

(p

0

) implies �

n

(p) = �

n

(p

0

);

2. �

n+1

(p) = �

n+1

(p

0

) implies �

n

(p) = �

n

(p

0

).

Proposition 6.5 (AIP) For all p; p

0

2 P, p = p

0

i� for all n, �

n

(p) = �

n

(p

0

).

Proof It folows from section 4 that for all p; p

0

2 P, p = p

0

i� for all n it is the

case that �

n

(p) = �

n

(p

0

). The claim now follows from Lemma 6.4. �

Now we have shown that every axiom from Table 1 and the rule AIP hold in

the model.

To obtain an interpretation of the collection of all terms T , we need to intro-

duce environments. An environment is a function � : V ar ! P

�

. Given an

environment �, the interpretation [[�]] : L ! P

�

extends to an interpretation

[[�]]

�

: T ! P

�

by stipulating that [[x]]

�

= �(x). Note that, for every closed

term s and environment �, [[s]] = [[s]]

�

. We have the following theorem.

Theorem 6.6 (Soundness) For all s; t 2 T , ` s = t implies [[s]]

�

= [[t]]

�

for

every environment �.

22

We now show that the semantics is complete in the sense that the reverse

implication also holds, at least for closed terms. We obtain this result rather

immediately from the fact that [[�]] is a sound model in which two distinct

normal forms have di�erent interpretations.

First, recall the collection of normal forms of terms as given in section 2. We

can assign to each total p 2 �

�

(P

n

) an element NF(p) 2 N , where we call p

total if it has no occurrences of ?. We proceed by an induction on n.

(n = 1) NF(p) =

(

� p � fh0; �ig

P

n

i=1

a

i

p � fh1; a

1

i; : : : ; h1; a

n

ig

(n+ 1) NF(p) =

8

>

<

>

:

� p � fh0; �ig

P

n

i=1

a

i

+

P

m

k=1

a

0

k

;NF(p

k

) p �

(

h1; a

1

i; : : : ; h1; a

n

i;

h2; ha

0

1

; p

1

ii; : : : ; h2; ha

0

m

; p

m

ii

)

Note that we have to \choose" an order in which to list the elements of p in

the de�nition of NF . In view of Axioms A1 and A2, however, this order is

irrelevant.

The following proposition shows that the functions NF and [[�]] are inverse to

each other.

Lemma 6.7 1. For all total p 2

S

n<!

�

�

(P

n

), p = [[NF(p)]].

2. For all s 2 N , ` s = NF([[s]]).

Corollary 6.8 For all s; t 2 N , ` s = t if and only if [[s]] = [[t]].

Using this corollary, we can show that the model [[�]] is complete for the equa-

tional theory of the �nite terms L

f

.

Proposition 6.9 For all s; t 2 L

f

, ` s = t i� [[s]] = [[t]].

Proof We have

` s = t i� ` NF(s) = NF(t)

i� [[NF(s)]] = [[NF(t)]]

i� [[s]] = [[t]]

where the latter equivalence holds since, by soundness, we have that [[s]] =

[[NF(s)]]. �

The previous proposition extends immediately to the whole of L.

Theorem 6.10 For all s; t 2 L, ` s = t if and only if [[s]] = [[t]].

23

Proof We have

` s = t i� 8n: ` �

n

(s) = �

n

(t)

i� 8n:[[�

n

(s)]] = [[�

n

(t)]]

i� 8n:�

n

[[s]] = �

n

[[t]]

i� [[s]] = [[t]]:

�

Since the equational theory precisely captures bisimulation, the following corol-

lary is immediate.

Corollary 6.11 For all s; t 2 L, s and t are bisimular if and only if [[s]] = [[t]].

7 Discussion

We have de�ned an order theoretic interpretation for L and have proved that

it is a complete model for the equational theory of ACP. Some remarks seem

appropriate. First of all, traditionally ACP is interpreted over so-called process

graphs modulo strong bisimulation [BW91]. A canonical model for the algebra

of �nite terms (i.e. without procedure variables) is the set of �nitely branching

trees of �nite depth. These trees precisely correspond to �nite an toatal (i.e.

not containing ?) elements in P

�

. Next, a recursively speci�ed process X

can be given meaning in the projective limit model [BW91]. This is essentially

similar to how the denotation of X is obtained in P.

Next, P contains a lot of `junk', i.e. elements p 62 P

�

. Moreover, P

�

itself

contains junk: no non-total process (that is, a process containing ?) can be

obtained as the denotation of a closed term. Moreover, consider the in�nite

process fh1; ai : a 2 Ag [f?g. Since the recursion is guarded, this process can

never be obtained as the denotation of a program.

An important feature of process algebras is the so-called silent move � , which

is used to model a step or a sequence of steps local to a process [BW91, dBK90,

Mil89]. Axioms for � include � ;x + x = � ;x. It is readily seen that this

axiom prevents us from modeling the semantic choice operator by a continuous

function. Hence we cannot extend our model to cover this extension of the

algebra. It is an interesting question which kind of structure we should use in

order to model this.

References

[Abr91a] S. Abramsky. A domain equation for bisimulation. Information

and Computation, 92:161{218, 1991.

[Abr91b] S. Abramsky. Domain theory in logical form. Ann. Pure and

Applied Logic, 51:1{77, 1991.

24

[ABV92] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into

equations. In Proc. 7th Ann. Symp. on Logic in Computer Science,

pages 113{124. IEEE Press, 1992. Full version available as CWI

Report CS-R9218.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous

communication. Information and Control, 60:109{137, 1984.

[BK85] J.A. Bergstra and J.W. Klop. Algebra for communicating

processes with abstraction. Theoretical Computer Science,

37(1):77{121, 1985.

[BW91] J. Baeten and P. Weyland. Process Algebra, volume 18 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge Univ.

Press, Cambridge, 1991.

[dB80] J.W. de Bakker. Mathematical Theory of Program Correctness.

Prentice-Hall International, Englewood-Cli�s, NJ, 1980.

[dBK90] J.W. de Bakker and J.N. Kok. Comparative metric semantics for

Concurrent Prolog. Theoretical Computer Science, 75:15{43, 1990.

[dBMOZ88] J.W. de Bakker, J.-J.Ch. Meyer, E.-R Olderog, and J.I. Zucker.

Transition systems, metric spaces and ready sets in the semantics

of uniform concurrency. Journal of Computer and System Sciences,

36(2):158{224, 1988.

[dBR92] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Con-

currency Semantics. World Scienti�c, Singapore, 1992.

[dBZ82] J.W. de Bakker and J.I. Zucker. Processes and the denotational

semantics of concurrency. Information and Control, 54:70{120,

1982.

[GS90] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, Vol. B: Formal

Models and Semantics, chapter 12, pages 635{675. Elsevier, Ams-

terdam, 1990.

[GV92] J.F. Groote and F. Vaandrager. Structured operational semantics

and bisimulation as a congruence. Information and Computation,

100(2):202{261, 1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall

International, Englewood Cli�s, NJ, 1985.

[Hor89] E. Horita. Homomorphism from LTS's to de Bakker-Zucker do-

main. Unpublished manuscript, 1989.

[HP79] M. Hennessy and G.D. Plotkin. Full abstraction for a simple

parallel programming language. In J. Be�cv�a�r, editor, Proc. 8th

25

Mathematical Foundations of Computer Science, volume 74 of Lec-

ture Notes in Computer Science, pages 108{120. Springer Verlag,

Berlin, 1979.

[Kni93a] P.M.W. Knijnenburg. Algebraic domains, chain completion and

the Plotkin powerdomain construction. Technical Report RUU-

CS-93-03, Utrecht University, 1993.

[Kni93b] P.M.W. Knijnenburg. Guarded structured operational semantics

induce complete denotational models. Submitted to: Mathemati-

cal Structures in Computer Science, 1993.

[Kni93c] P.M.W. Knijnenburg. Order-theoretic and Categorical Approaches

to Programming Language Semantics. PhD thesis, Dept. of Com-

puter Science, Utrecht University, 1993.

[LS86] J. Lambek and P.J. Scott. Introduction to Higher Order Categor-

ical Logic. Cambridge Studies in Advanced Mathematics. Cam-

bridge Univ. Press, Cambridge, 1986.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer Verlag, Berlin, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall Inter-

national, Englewood Cli�s, NJ, 1989.

[MM79] G. Milne and R. Milner. Concurrent processes and their syntax.

JACM, 26(2):302{321, 1979.

[Mol90] R. Moller. The importance of the left merge operator. In M. Pater-

son, editor, Proceedings 17

th

ICALP, volume 443 of Lecture Notes

in Computer Science, pages 752{764. Springer Verlag, Berlin,

1990.

[Plo79] G.D. Plotkin. A powerdomain construction. SIAM J. on Comput-

ing, 5:452{487, 1979.

[Plo81a] G.D. Plotkin. Post-graduate lecture notes in advanced domain

theory (incorporating the Pisa lecture notes). Technical report,

Dept. of Computer Science, Univ. of Edinburgh, 1981.

[Plo81b] G.D. Plotkin. A structural approach to operational semantics.

Technical Report DAIMI FN-19, Computer Science Dept., Aarhus

Univ., 1981.

[RT93] J.J.M.M. Rutten and D. Turi. On the foundations of �nal seman-

tics: Non-standard sets, metric spaces, partial orders. In J.W.

de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc.

REX Workshop on Semantics: Foundations and Applications, vol-

ume 666 of Lecture Notes in Computer Science. Springer Verlag,

Berlin, 1993.

26

[Rut90] J.J.M.M. Rutten. Deriving denotational models for bisimulation

from Structured Operational Semantics. In M. Broy and C.B.

Jones, editors, Programming concepts and methods, pages 155{177.

North-Holland, Amsterdam, 1990.

[Rut92] J.J.M.M. Rutten. Processes as terms: Non-well-founded models

for bisimulation. Mathematical Structures in Computer Science,

2(3):257{277, 1992.

[Sco76] D.S. Scott. Datatypes as lattices. SIAM J. on Computing, 5:522{

587, 1976.

[Smy78] M.B. Smyth. Power domains. Journal of Computer and System

Sciences, 16:23{36, 1978.

[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of

recursive domain equations. SIAM J. on Computing, 11(4):761{

783, 1982.

[Vaa89] F.W. Vaandrager. Algebraic techniques for concurrency and their

applications. PhD thesis, Universiteit van Amsterdam, 1989.

[vD83] D. van Dalen. Logic and Structure (2nd Edition). Springer Verlag,

Berlin, 1983.

27

