
A Multiset Semantics for

the pi-Calculus with Replication

Joost Engelfriet

?

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Abstract. A multiset (or Petri net) semantics is de�ned for the �-

calculus with replication. The semantic mapping is a strong bisimulation,

and structurally congruent processes have the same semantics. This pa-

per is readable without knowledge of Petri nets.

1 Introduction

The �-calculus has recently been introduced as an extension of CCS to mobile

concurrent processes (see [16, 13, 14, 15]). As for CCS [12], the (interleaving)

semantics of the �-calculus is given by a transition system of which the states are

process terms. In this paper, and in its sequel paper [9], we provide a Petri net

semantics for the \small �-calculus", i.e., the subset of the �-calculus de�ned by

Milner in [13]. The main features of this subset are that it has no choice operator

and that recursion is replaced by the more basic operation of replication, denoted

by an exclamation mark: if P is a process, then !P stands for a countably in�nite

number of concurrent copies of P . It is shown in [13] that this subset su�ces to

simulate important aspects of the �-calculus.

Petri net semantics of process algebras has been studied in, e.g., [1, 6, 10, 17,

18, 21]. In such a semantics, a Petri net is associated with each process; the idea

is that this Petri net expresses the concurrency present in the process in a more

direct way than the interleaving transition system. Here we wish to stress that

a Petri net (and in particular a P/T net) is just a particular kind of transition

system, viz. one of which the states are multisets (also called markings) and the

transition relation ! satis�es the following \chemical law" (where S

1

, S

2

, and

S are states and [is multiset union): if S

1

! S

2

, then S

1

[S ! S

2

[S. For this

reason, we propose the term \multiset transition system" as an alternative to

\Petri net" (just as a \transition system" used to be called \automaton"). It has

been the early insight of Petri that the (multi)set is exactly the datastructure

that �ts to the notion of concurrency: a (multi)set can be viewed as the parallel

composition of all its elements, and the communication between these elements

can be modeled by (multi)set replacement, as formalized by the chemical law.

The suggestive \chemical" terminology is from [2, 4] where a multiset is viewed as

?

The research of the author was supported by the Esprit Basic Working Group

No.6067 CALIBAN.

1

a chemical soup of molecules; but we will use Petri nets rather than the recent

CHemical Abstract Machines (CHAM's) of [4], which have some unnecessary

features and have been less well studied.

The semantics of the \small �-calculus" is presented in [13] (and in [14]) in

a novel way, inspired by the CHAM. First a so-called structural congruence is

de�ned on the process terms that is meant to capture the fact that two processes

are structurally, i.e., statically, the same. In other words, the processes have the

same
ow graph (see [12, 16]), which roughly means that they can be decom-

posed into the same concurrent subprocesses. Then, an interleaving transition

system is given in which structurally congruent processes are given the same be-

haviour, by de�nition. This separation of \physical" structure and behaviour is

intuitively clear, and simpli�es the transition system to a large extent. In partic-

ular, the commutativity and associativity of parallel composition are handled on

the structural level, and replication is even handled completely on the structural

level (reducing it to parallel composition).

In this paper, and its sequel [9], we wish to put forward the general idea that

the multiset (or Petri net) semantics of a process algebra should also be used to

express the structure of the processes: we would like two processes to have the

same structure if and only if they have the same multiset semantics. Intuitively,

the syntax of process terms that is needed to describe a multiset of concurrent

subprocesses, should not be present in that multiset; the syntactic laws needed

to describe multisets should in fact be sound, and preferably even complete.

We de�ne one \large" multiset transition system (or Petri net), called M�,

and we de�ne a (compositional) semantic mapping that associates a state of

M� with each process of the small �-calculus. Thus, the meaning of a process

is a multiset (or marking of the net M�); intuitively, it is the multiset of all

its concurrent subprocesses. The Petri net M� has one type of transition only,

which corresponds to the basic action in the small �-calculus: a communication

between two subprocesses. In this way M� is similar to the \object-oriented"

interleaving transition system of the small �-calculus. Our main results on this

semantics are:

(A) the semantic mapping is a strong bisimulation between the interleaving

transition system of the small �-calculus and the multiset transition system M�,

and

(B) if two processes of the small �-calculus are structurally congruent, then

they have the same semantics in M�.

Result (A) ensures that a process and its corresponding multiset in M� have

the same (interleaving) behaviour. Result (B) means that two processes that have

the same structure also have the same multiset semantics. The converse of (B)

does not hold and thus the laws of structural congruence of the small �-calculus

are sound, but not complete relative to the multiset semantics. We suggest that

the structural congruence should be extended in such a way that (B) does hold

in both directions. In fact, we present four natural laws for structural congruence

that are not valid in the small �-calculus. After extending structural congruence

with these new laws, we show that results (A) and (B) still hold, and we show in

2

[9] that result (B) now even holds in both directions (i.e., the laws of structural

congruence are now sound and complete relative to the multiset semantics).

Moreover, it is shown in [9] that structural congruence is decidable (which does

not seem to be known without the extension); since structural congruence is a

static, \physical", property, its decidability is desirable.

(A

0

) The semantic mapping is a strong bisimulation between the interleaving

transition system of the extended small �-calculus and the multiset transition

system M�,

(B

0

) two processes of the extended small �-calculus are structurally congruent

if and only if they have the same semantics in M�, and

(C

0

) it is decidable, for two processes of the extended small �-calculus,

whether or not they are structurally congruent (i.e., have the same semantics in

M�).

We note that results (A) and (A

0

) imply that each process of the small �-calculus

is strongly bisimilar with itself in the extended small �-calculus. Thus the pro-

posed extension of structural congruence does not change the behaviour of the

processes (modulo strong bisimilarity).

Our semantics satis�es, in a certain sense, the two requirements for a Petri

net semantics to be a \good" semantics as formulated by Olderog in [18]. The

�rst requirement is that the interleaving semantics should be \retrievable" from

the Petri net semantics in the sense that they should be strongly bisimilar; this

is exactly result (A). The second requirement is that the Petri net semantics

should re
ect the \intended concurrency". Although its formalization in [18] is

not applicable here, we believe intuitively that it is ful�lled, i.e., we claim that

the Petri net semantics that we provide for the small �-calculus, models the

concurrency that is meant to be present in the processes of the �-calculus. We

note here that the two CHAM's proposed in [4] for the small �-calculus both

fail to satisfy the �rst requirement, due to their heating rules. In our opinion,

they also fail to satisfy the second requirement, the �rst CHAM because it uses

cooling rules to implement �-conversion, and the second CHAM because it has

a non-distributed name server. The second CHAM is strongly related to our

multiset semantics; in fact, our semantic mapping may be viewed as a one-stroke

implementation of its heating rules.

The semantic mapping associates a multiset S in M� with each process term

P . Intuitively, S is the decomposition of P into its concurrent subprocesses.

Thus, the semantic mapping is similar to the decomposition mappings of [6, 18];

however, as opposed to [6, 18], it also decomposes all (guarded) subterms of

P . Another di�erence is that it decomposes into multisets rather than sets; in

fact, the replication operation forces us to consider non-safe Petri nets. The

advantages of non-safe nets have been pointed out in [10]; runs (or \processes")

of such nets have been studied in [11] (see also [7]). A third, essential, di�erence

with [6, 18] is that it is impossible to reconstruct P from S; in fact, such a

reconstruction would contradict the desired result (B). A �nal di�erence with

[6, 18] is discussed in general in what follows.

3

One may ask what type of semantics is given to the �-calculus in this paper.

Is it compositional, denotational, operational, etc.? Although these terms are

necessarily vague, we believe that we have given a new type (or subtype) of se-

mantics. Let us be more precise. On the one hand, any semantics that associates

an initialized transition system (i.e., a transition system together with one of its

states) with each process, is operational by nature, because transition systems

are operational. On the other hand, di�erent types of such operational seman-

tics can be distinguished, e.g., the following: system-compositional operational

semantics, structured operational semantics (or SOS), and state-compositional

operational semantics. In [18] the �rst two types are just called compositional

and operational semantics, respectively. The third type is introduced here and

is the type of our �-calculus semantics. Note that our structural requirement

(that two processes have the same structure i� they have the same semantics)

is orthogonal to this classi�cation.

System-compositional semantics. The mapping that associates an initialized

transition system with each process is compositional, i.e., the syntactical opera-

tions on processes are interpreted as semantical operations on initialized transi-

tion systems.

Structured operational semantics (SOS). The semantics is de�ned by specify-

ing one \large" transition system and a mapping that associates a state of that

transition system with each process, thus initializing it. The set of transitions of

the transition system is de�ned recursively, by SOS rules and axioms that follow

the syntax of processes. The mapping is de�ned in some \natural" way.

State-compositional semantics. As in the previous case, the semantics is de-

�ned by specifying one \large" transition system and a mapping that associates

a state of that transition system with each process. The transition system is de-

�ned in some \natural" way. The mapping is compositional, i.e., the syntactical

operations on processes are interpreted as semantical operations on states of the

transition system.

Clearly, the �rst and third type of semantics are very similar, because they

are both compositional. However, they are essentially di�erent: in one case the

operations are on transition systems, and in the other case on states of a �xed

transition system.

It should also be clear from the above description that the second and third

type of semantics are very similar, and, in fact, the distinction between these

two types is not clear cut. For the usual SOS interleaving semantics of process

algebra's the mapping that associates a state with each process, is trivial; in

fact, it is the identity (because the processes themselves are the states of the

transition system). For the usual SOS Petri net semantics of process algebra's

that mapping is more complicated, as it associates a multiset with each process.

It is the decomposition mapping of [6, 18] mentioned above. This mapping is

compositional, but usually on part of the syntax only (typically on parallel com-

position, restriction, and relabeling). Thus, the usual SOS Petri net semantics

are in fact inbetween the second and third type of semantics. The semantics of

the �-calculus in this paper is of the third type. The mapping is compositional

4

on the whole syntax, and the transition system is de�ned without SOS rules.

The structure of this paper is as follows. Section 2 contains the de�nition of

the small �-calculus. In Section 3 we discuss multisets and multiset transition

systems. In Section 4 we de�ne the multiset �-calculus M� and discuss its basic

properties. Section 5 contains the de�nition of the multiset semantics of the small

�-calculus, i.e., the relation between process terms and the states of M�. In

Section 6 we state the main results. Section 7 contains the proofs of results (A),

(B), (A

0

), and the only-if part of (B

0

). The if part of result (B

0

), and result (C

0

),

are proved in the sequel paper [9].

A previous version of this paper was published in the Proceedings of CON-

CUR'93 [8].

2 The Small �-Calculus

We brie
y recall the de�nition of the small �-calculus from [13].

Let N be an in�nite set of names. The context-free syntax for process terms

is as follows (where we use a comma rather than j to separate alternatives):

P ::= xy:P ; x(y):P ; 0 ; P j P ; !P ; (�y)P

with x; y 2 N. The strings xy and x(y) are called guards. The y in x(y):P and in

(�y)P binds all free occurrences of y in P . We denote by fn(P) the set of names

that occur free in process P ; thus, fn(P) � N.

Informally, process xy:P sends the name y along the link x and then continues

as process P , and process x(y):P receives any name z along the link x and then

continues as process P [z=y], where P [z=y] denotes the result of substituting z for

all free occurrences of y in P (renaming bound names where necessary, as usual).

Parallel composition of processes P and Q is denoted P j Q as usual in CCS,

and 0 is the inactive process; (�y)P is the restriction of y to P , denoted Pny

in CCS. Finally, the process !P is the replication of process P and abbreviates

P j P j P j � � �.

Structural congruence, denoted �, is the smallest congruence over the set of

all process terms such that

(�) P � Q whenever P and Q are �-convertible,

(1.1) P j 0 � P ,

(1.2) P j Q � Q j P ,

(1.3) P j (Q j R) � (P j Q) j R,

(2.1) (�x)(�y)P � (�y)(�x)P ,

(2.2) (�x)P � P

provided x 62 fn(P),

5

(2.3) (�x)(P j Q) � P j (�x)Q

provided x 62 fn(P), and

(3.1) !P � P j !P .

As usual, two terms are �-convertible if they are the same modulo a renaming of

bound names. In [13], structural law (2.2) is stated as its special case (�x)0 � 0.

However, as shown in [13], the general case can easily be proved from this,

together with structural laws (1.1) and (2.3): if x 62 fn(P), then (�x)P � (�x)(P j

0) � P j (�x)0 � P j 0 � P .

The states of the transition system of the small �-calculus are all process

terms, and its transition relation! (also called reduction) is the smallest relation

satisfying the following (SOS) axiom and rules:

COM: x(y):P j xz:Q! P [z=y] j Q

PAR: If P ! P

0

, then P j Q! P

0

j Q

RES: If P ! P

0

, then (�y)P ! (�y)P

0

STRUCT: If Q � P , P ! P

0

, and P

0

� Q

0

, then Q! Q

0

.

The COM rule formalizes the synchronous communicationbetween two processes

along link x, during which the name z is sent from Q to P (where it replaces

y). The STRUCT rule embodies the idea that structurally congruent processes

have the same behaviour.

In [13] the replication !P of process P is said to \stand for P j P j � � �, as

many concurrent instances of P as you like". This is a rather vague statement,

which might seem to refer to the structural law !P � P j !P as allowing one

to take as many instances of P as one likes o� !P . However, \taking o�" is

something dynamic rather than static. The only way in which the above law can

be true for the static structure of !P is by viewing !P as in�nitely many instances

of P in parallel. Thus, we conclude that \as many as you like" means \in�nitely

many".

3 Multiset Transition Systems

Since !P represents a (countably) in�nite number of concurrent copies of P , i.e.,

!P = P j P j P j � � �, we need multisets in which elements may occur in�nitely

many times. We will consider countable multisets only.

A multiset S is a countable set D

S

together with a mapping �

S

: D

S

!

N [f!g, where N = f1; 2; 3; : : :g is the set of all positive integers. For d 2 D

S

,

�

S

(d) is the multiplicity of d in S. By convention, we also de�ne �

S

(x) = 0 for

any object x that is not in D

S

. Note that every countable set A can be viewed

as the multiset S with D

S

= A and �

S

(a) = 1 for every a 2 A. For a set D,

6

S is said to be a multiset over D if D

S

� D. Intuitively, a multiset S is a bag

that contains �

S

(d) copies of each element d of D

S

(where \! copies" means: a

countably in�nite number of copies). The union of multisets S and S

0

, denoted

S [S

0

, is de�ned by: D

S[S

0

= D

S

[D

S

0

and �

S[S

0

(d) = �

S

(d)+ �

S

0

(d), where,

for n 2 N [f0; !g, n + ! = ! + n = !. A similar de�nition holds for arbitrary

(countable) union: if S

i

is a multiset for every i 2 I, where I is a countable

index set, then their union S =

S

i2I

S

i

is de�ned by: D

S

=

S

i2I

D

S

i

and

�

S

(d) =

P

i2I

�

S

i

(d), where, for n

i

2 N [f0; !g,

P

i2I

n

i

is de�ned as follows:

let Pos = fi 2 I j n

i

6= 0g; if Pos is in�nite, then

P

i2I

n

i

= !, and otherwise

P

i2I

n

i

=

P

i2Pos

n

i

. Note that if n

i

= ! for some i 2 I, then

P

i2I

n

i

= !.

In fact,

P

i2I

n

i

is de�ned in such a way that if the cardinality of a set A

i

is n

i

(where ! stands for cardinality @

0

) and the A

i

are mutually disjoint, then the

cardinality of

S

i2I

A

i

is

P

i2I

n

i

(where, intuitively, A

i

is a set of n

i

copies of

some element of a multiset). From this it can easily be seen that multiset union

is commutative and associative.

A transition system is a tuple (Q;!) where Q is a set of states and !

is a binary relation on Q, called the transition relation. Note that we restrict

ourselves here to unlabeled transition systems.

A multiset transition system (or multiset rewriting system) is a tuple (D;T)

where D is a set and T is a set of basic transitions, which are pairs (S

1

; S

2

)

where S

1

and S

2

are multisets over D. Such a multiset transition system (D;T)

is viewed as a transition system (Q;!) where Q is the set of all multisets over

D, and! is the smallest relation on Q that contains the relation T and is closed

under multiset union. More precisely, the transition relation! is de�ned by the

following axiom and rule (where S

1

; S

2

; S are multisets over D):

(1) if (S

1

; S

2

) 2 T , then S

1

! S

2

, and

(2) if S

1

! S

2

, then S

1

[S ! S

2

[S.

Axiom (1) is the \reaction law" and rule (2) is the \chemical law" of the CHem-

ical Abstract Machine of Berry and Boudol ([4]). Intuitively, a basic transition

(S

1

; S

2

) 2 T models a local communication between the elements of S

1

, as a

result of which they turn into the elements of S

2

. The above two laws express

the locality or \context-freeness" of such communications: if there is a basic

transition from S

1

to S

2

then that transition can take place in any \context" S.

In fact, it follows from associativity of multiset union that, for states S

0

and S

00

,

S

0

! S

00

if and only if there exist S, S

1

, S

2

such that S

0

= S

1

[S, S

00

= S

2

[S,

and (S

1

; S

2

) 2 T .

This last fact means that a multiset transition system (D;T) is the same as

a (possibly in�nite) Place/Transition net, see [19]. D is the set of places of the

net and T is its set of transitions. Multisets of places are the markings of the

net, and the chemical law de�nes the �ring of a (basic) transition in a marking.

Hence, the transition system (Q;!) is the case graph of the Place/Transition

net.

For the reader familiar with Petri nets, we note that our multiset transition

system is in fact slightly more general than the P/T net because it allows mul-

7

tiplicity !. Since the multiplicities of the places in the multisets of a (basic)

transition correspond to the weights on the arcs of the net, it corresponds to a

P/T net that allows in�nitely many tokens on a place, and in�nite weights on

the arcs. In such a net the �ring of a transition t = (S

1

; S

2

) in a given marking

for which it is enabled, need not lead to a unique new marking, because ! � !

may have any value. However, if no element of S

1

has multiplicity ! (i.e., the

weights of the input arcs of t are not !), then the new marking is unique. In this

paper we will only consider such transitions (but elements of S

2

may well have

multiplicity !).

Apart from union we need the following operation on multisets. For a multiset

S over D and a mapping h : D ! E, the image of S under h, denoted h(S), is

the multiset over E de�ned by: D

h(S)

= h(D

S

) and �

h(S)

(e) =

P

d2h

�1

(e)

�

S

(d).

Note that h(D

S

) is the usual image of the set D

S

under h. In fact, for sets

S and T , the notations h(S) and S [T are ambiguous, because they may be

interpreted as the usual operations on sets or as the operations on multisets

de�ned above (because every set is also viewed as a multiset). And in general

the results will be di�erent. In what follows it should always be clear from the

context which of the two interpretations is meant.

We will use two basic properties of the image operation. First, if S and T

are multisets over D, and h : D ! E, then h(S [T) = h(S) [h(T). A similar

result holds for countable unions: if S

i

is a multiset over D for every i 2 I, then

h(

S

i2I

S

i

) =

S

i2I

h(S

i

). Second, if S is a multiset over D, h

1

: D ! E, and

h

2

: E ! F , then (h

2

� h

1

)(S) = h

2

(h

1

(S)).

4 The Multiset �-Calculus

We now introduce a speci�c multiset transition system, that we call the multiset

�-calculus, denoted M�.

Let N be the set of names of the �-calculus. Let New be an uncountably

in�nite set of new names, disjoint with N. These new names will be used to cope

with restriction. The notion of guard is extended accordingly: from now on, a

guard is a string of the form x(y) or xz with x; z 2 N [New and y 2 N. To get

rid of �-conversion we will employ a variant of the idea of De Bruijn ([5], see

also [3, Appendix C]) to use numbers instead of bound names, in a systematic

way to be explained. For this reason we de�ne a schematic guard to be a string

of the form x(�) or xz with x; z 2 N [New [N.

Taking over the chemical terminology of [2, 4], the states of M� are called

solutions, which are multisets of molecules, de�ned in a mutually recursive way

as follows:

(1) A solution is a multiset over the set of molecules.

(2) A molecule is a pair g:S, where g is a schematic guard and S is a solution.

Note that the recursion starts with the empty solution ;. Note also that the

ordered pair (g; S) is written as g:S in order to remain closer to the syntax of

the small �-calculus.

8

The operation of forming a multiset stands for (possibly in�nite) parallel

composition, which is commutative and associative. The schematic guards should

be interpreted in the same way as in the small �-calculus, where it is understood

that each occurrence of a number i in a solution or molecule is bound by the

ith schematic guard x(�) that has i in its scope, counting from the outside

in (as opposed to [5] where one counts from the inside out). As an example,

S = fx(�):f1(�):fy2:;; 1z:;gg; y(�):f1z:;g; xy:;g is a solution consisting of the

three molecules m

1

= x(�):f1(�):fy2:;; 1z:;gg, m

2

= y(�):f1z:;g, and m

3

=

xy:;. Also, m

1

= x(�):S

1

where S

1

= fm

4

g with m

4

= 1(�):S

4

and S

4

is the

solution consisting of the two molecules y2:; and 1z:;. A picture of S is given in

Fig.1. The multiset S will be the semantics of (among others) the process term

x(u):u(v):(yv:0 j uz:0) j (y(w):wz:0 j xy:0) which also shows how to interpret

the binding of the numbers. Note that there exist solutions in which numbers

occur that are not bound to any schematic guard; such solutions will not be

the semantics of process terms. A molecule g:S is similar to a molecule with

a \subsolution" S in the CHemical Abstract Machine of [4]. However we stress

here that we will not adopt the \membrane law" of the CHAM, i.e., there cannot

be any activity within a subsolution.

More formally, the sets Sol and Mol of solutions and molecules, respectively,

are the smallest sets such that (1) Sol � P

m

(Mol), and (2) Mol � G�Sol, where

P

m

(Mol) is the set of all multisets over Mol, and G is the set of all schematic

guards. More informally, one may also view a molecule as an unordered rooted

directed tree that has no in�nite directed path starting at the root, and of which

the, countably many, nodes are labeled with schematic guards. A solution can

be viewed in the same way, except that the root is unlabeled. The operation g:S

consists of labeling the root of S with g, and the operation of forming a multiset

S of molecules consists of taking a new root for S and connecting it with the

roots of all (mutually disjoint) molecules.

To de�ne the transitions of M� we need to de�ne the notion of substitution

of names for names in solutions. Since solutions do not contain bound variables,

such a substitution amounts to a straightforward change of names. We also

need to increase and decrease the numbers that occur in a solution; this is

a straightforward change of numbers. From the point of view of labeled trees

these operations consist of a simple relabeling of the nodes. With the recursive

de�nition of solutions and molecules, they can be de�ned recursively, as follows.

Let, in general, f be an arbitrary mapping of N [New [N into itself. Then

f is recursively extended to a mapping f

�

on solutions and a mapping f

�

on

molecules as follows:

f

�

(S) = f

�

(S), the image of S under f

�

(restricted to D

S

),

f

�

(x(�):S) = f(x)(�):f

�

(S) and f

�

(xz:S) = f(x)f(z):f

�

(S).

For the (usual) de�nition of the image of a multiset under a mapping, see Sec-

tion 3. Whenever there will be no danger for confusion, we will denote both

f

�

and f

�

also by f . Note that, by the �rst basic property of multisets men-

tioned at the end of Section 3, for solutions S

i

, f(S

1

[S

2

) = f(S

1

) [f(S

2

) and

f(

S

i2I

S

i

) =

S

i2I

f(S

i

).

9

Fig. 1. Solutions S and S

0

consisting of three and two molecules, respectively.

We now de�ne the mappings inc, dec, [z=y]: N [New [N ! N [New [N,

for z; y 2 N [New [N, as follows (where [z=y] is written post�x):

inc(x) = x+ 1 for x 2N, inc(x) = x for x 2 N [New,

dec(x) = x� 1 for x 2N � f1g, dec(x) = x for x 2 N [New [f1g,

x[z=y] = z for x = y, x[z=y] = x for x 6= y.

Thus, for a solution S, S[z=y] is the result of substituting z for all \occurrences"

of y in S. As mentioned before, since S does not have bound names, this just

means that every y is replaced by z. Also, inc(S) is the result of increasing

all numbers that \occur" in S by one, and, similarly, dec(S) is the result of

decreasing all numbers that \occur" in S (except 1) by one.

Consider two mappings f; h : N[New[N! N[New[N. It is straightforward

to prove that h(f(S)) = (h � f)(S) for every solution S (and similarly for every

molecule). More formally, the extension of the composition of f and h is the

composition of the extensions of f and h, i.e., (h � f)

�

= h

�

� f

�

and (h � f)

�

=

10

h

�

� f

�

. The proof is by induction on the recursive de�nition of solutions and

molecules. First, for a solution S, assuming that (h � f)

�

(m) = h

�

(f

�

(m)) for

every molecule m 2 D

S

, one shows that (h � f)

�

(S) = h

�

(f

�

(S)). This follows

from the second basic property of multisets mentioned at the end of Section 3.

Then, for a schematic guard g and a solution S, assuming that (h � f)

�

(S) =

h

�

(f

�

(S)), one shows that (h � f)

�

(g:S) = h

�

(f

�

(g:S)).

This fact can be used to prove a number of elementary properties of the

functions inc, dec, and [z=y] in a straightforward way. Thus, for instance, for

every solution S, dec(inc(S)) = (dec � inc)(S) = S, because dec � inc is the

identity function id on N [New [N, and, clearly, id(S) = S. Note also that

S[y=y] = S, because [y=y] = id. As another example, S[y=x][z=y] = S[z=y][z=x]

because u[y=x][z=y] = u[z=y][z=x] for every u 2 N[New[N. Similarly, if v 6= x

and y 6= x, then S[u=x][v=y] = S[v=y][u[v=y]=x], and if additionally u 6= y then

S[u=x][v=y] = S[v=y][u=x]. In this way, all the usual substitution laws can easily

be shown. Since there are no bound names in solutions, there is also no need for

�-conversion; this makes the proofs straightforward.

The multiset �-calculus M� is now de�ned to be the multiset transition sys-

tem (Mol,T), where Mol is the set of all molecules and T consists of all the

following basic transitions (that model communication between molecules):

fx(�):S; xz:S

0

g ! dec(S[z=1]) [S

0

where x; z 2 N[New and S; S

0

are solutions. Note that the left-hand side multiset

of a basic transition is always a set of two molecules. Note that, by the chemical

law, the transition relation of M� consists of all transitions

fx(�):S; xz:S

0

g [S

00

! dec(S[z=1]) [S

0

[S

00

:

As an example, S ! S

0

where S is the above example solution and S

0

=

fy(�):fy1:;; yz:;g; y(�):f1z:;gg, see Fig.1.

For x 2 N [New, y 2 N, and a solution S, the guarded molecule x(y):S

is de�ned by x(y):S = x(�):inc(S)[1=y]. The example solution S can now be

written as fx(u):fu(v):fyv:;; uz:;gg; y(w):fwz:;g; xy:;g which is closer to the

process term x(u):u(v):(yv:0 j uz:0) j (y(w):wz:0 j xy:0) of which it is the

meaning.

Since, for y 2 N and z 2 N [New, dec(inc(S)[1=y][z=1]) = dec(inc(S)[z=y])

= dec(inc(S[z=y])) = S[z=y], it follows that for all y 2 N, x; z 2 N [New, and

solutions S; S

0

,

fx(y):S; xz:S

0

g ! S[z=y] [S

0

is a basic transition of M�. Consequently, the transition relation of M� contains

all transitions

fx(y):S; xz:S

0

g [S

00

! S[z=y] [S

0

[S

00

:

These transitions are actually the ones that will simulate those of the small �-

calculus. Note that the e�ect of such a transition is that the solutions S and

S

0

that are hidden (by guards) in the molecules x(y):S and xz:S

0

, are added to

11

the soup S

00

of molecules that is the current state of M�, after changing S into

S[z=y].

The next lemma shows the relation between substitution and the behaviour

of solutions in M�.

Lemma1. Let S, T be solutions, and let y; z 2 N[New. If S ! T in M�, then

S[z=y] ! T [z=y] in M�.

Proof. The transition S ! T is of the form

fx(�):S

1

; xw:S

2

g [S

3

! dec(S

1

[w=1])[S

2

[S

3

:

We have to show that there is a transition

fx

0

(�):S

1

[z=y]; x

0

w

0

:S

2

[z=y]g [S

3

[z=y]! dec(S

1

[w=1])[z=y][S

2

[z=y][S

3

[z=y];

where x

0

= x[z=y] and w

0

= w[z=y]. This follows from the fact that there is a

basic transition

fx

0

(�):S

1

[z=y]; x

0

w

0

:S

2

[z=y]g ! dec(S

1

[z=y][w

0

=1])[S

2

[z=y]

and that dec(S

1

[w=1])[z=y] = dec(S

1

[w=1][z=y]) = dec(S

1

[z=y][w[z=y]=1]). ut

We de�ne the set occ(S) � N [New [N of occurrences in a solution S, and

similarly occ(m) for a molecule m, recursively as follows:

occ(S) =

S

focc(m) j m 2 D

S

g,

occ(x(�):S) = occ(S) [fxg, and occ(xz:S) = occ(S) [fx; zg.

We denote occ(S) \ (N[New) by fn(S), the set of (free) names of S. Note that

in fact all names that occur in S are free. We denote fn(S) \ New by new(S),

the set of new names of S. Note that occ(S) is countable, and hence new(S)

is a proper subset of New (because we have assumed New to be uncountable).

For the example solution S = fx(�):f1(�):fy2:;; 1z:;gg; y(�):f1z:;g; xy:;g, we

have occ(S) = fx; y; z; 1; 2g, fn(S) = fx; y; zg, and new(S) = ;.

Obviously, occ(S

1

[S

2

) = occ(S

1

) [occ(S

2

) and similarly for countable

unions. For a function f from N [New [N to itself and a solution S, it can

easily be shown, by induction on the recursive de�nition of S, that occ(f(S)) =

f(occ(S)). This implies, e.g., that occ(S[z=y]) = (occ(S)�fyg)[fz j y 2 occ(S)g.

Similar properties hold for fn and new.

It is now straightforward to show that, during the behaviour of M�, the set

of free names in the solution cannot increase: for solutions S and T , if S ! T in

M�, then fn(T) � fn(S). For instance, for the example transition S ! S

0

(see

Fig.1), fn(S

0

) = fy; zg � fn(S) = fx; y; zg.

Let f , h be functions from N [New [N to itself. Obviously, the value of

f(S) is determined by the values of f on occ(S) only. In other words, if the

restrictions of f and h to occ(S) are equal, then f(S) = h(S). This can easily

be shown by induction on S. It implies, e.g., that S[z=y] = S if y =2 occ(S)

(because [z=y] is the identity on occ(S)). As another example, if y =2 occ(S) then

S[y=x][z=y] = S[z=x], and in particular S[y=x][x=y] = S.

12

We observe now that almost all basic transitions of M� are of the form

fx(y):S; xz:S

0

g ! S[z=y] [S

0

:

To prove this, consider a basic transition

fx(�):S; xz:S

0

g ! dec(S[z=1]) [S

0

and assume that occ(S) \N � N, i.e., there exists y 2 N such that y =2 occ(S).

For the semantics of the small �-calculus it actually su�ces to consider such

solutions. We now show that the above basic transition equals

fx(y):T; xz:S

0

g ! T [z=y] [S

0

for T = dec(S[y=1]). Note �rst that inc(T) = S[y=1] because 1 =2 occ(S[y=1]).

Now x(y):T = x(�):inc(T)[1=y] = x(�):S[y=1][1=y] = x(�):S because y =2

occ(S). Also, T [z=y] = dec(S[y=1][z=y]) = dec(S[z=1]) because y =2 occ(S).

Finally we list some properties of guarded molecules u(x):S that are easy to

prove. Let u; y; z 2 N [New and x 2 N. Then

fn(u(x):S) = (fn(S) � fxg) [fug,

if y =2 fn(S) � fxg, then (u(x):S)[z=y] = u[z=y](x):S,

if y 6= x and z 6= x, then (u(x):S)[z=y] = u[z=y](x):S[z=y],

if w 2 N� fn(S), then u(x):S = u(w):S[w=x].

As an example we prove the last property: u(w):S[w=x] = u(�):inc(S[w=x])[1=w] =

u(�):inc(S)[w=x][1=w] = u(�):inc(S)[1=x] = u(x):S.

5 Semantics of the �-Calculus

We have cheated a little in the introduction by saying that we will associate one

solution S of M� with every process term P . In fact, in order to treat restriction

properly, we are forced to associate in�nitely many solutions S with P . However,

all these solutions can be obtained from each other by a bijective renaming of

the new names occurring in them.

We will write P) S to indicate that the solution S of M� is associated to

the process term P . Thus, we will de�ne a relation) between the process terms

of the small �-calculus and the solutions of the multiset �-calculus.

The semantic relation) is de�ned to be the smallest relation that satis�es

the following compositional requirements:

(S0) 0) ;

(S1) If P

1

) S

1

and P

2

) S

2

, then P

1

j P

2

) S

1

[S

2

provided new(S

1

) \ new(S

2

) = ;

(S2) If P) S, then (�x)P) S[n=x]

provided n 2 New � new(S)

13

(S3) If P) S and g is a guard, then g:P) fg:Sg

(S4) If P) S

i

for all i 2N, then !P)

S

i2N

S

i

provided new(S

i

) \ new(S

j

) = ; for all i 6= j.

In (S3), g is of course an \ordinary" guard, i.e., one that contains no new names.

Note that by rule (S3) xz:P is translated into fxz:Sg, and x(y):P is trans-

lated into fx(y):Sg which abbreviates fx(�):inc(S)[1=y]g. Rules (S1) and (S4)

translate parallel composition and replication into multiset union, and rule (S0)

translates the inactive process into the empty multiset.

It is straightforward to prove, by induction on the structure of P , that if

P) S, then fn(P) = fn(S) \ N. The names in new(S) = fn(S) \ New are

all introduced to get rid of the restrictions in P , through rule (S2). Intuitively,

the name x of (�x)P , of which the scope is restricted to P , is replaced by a

completely new name n with a global scope.

Process terms P and Q are multiset congruent, denoted P �

m

Q, if fS j

P) Sg = fS j Q) Sg, i.e., if P and Q have the same multiset semantics in

M�. It is immediate from the compositional de�nition of the semantic relation

) that �

m

is a congruence.

Let us consider some examples of the semantic relation P) S. As a �rst

example, let P =

(x(w):w(y):w(z):yz:0 j x(w):0) j ((�u)(xu:uy

1

:uz

1

:0) j (�u)(xu:uy

2

:uz

2

:0)):

Then P) S, where S =

fx(w):fw(y):fw(z):fyz:;ggg; x(w):;; xn:fny

1

:fnz

1

:;gg; xm:fmy

2

:fmz

2

:;ggg;

and n and m are distinct new names. Note that, in more detail, S =

fx(�):f1(�):f1(�):f23:;ggg; x(�):;; xn:fny

1

:fnz

1

:;gg; xm:fny

2

:fmz

2

:;ggg:

As a second example, we observe the big di�erence between !(�x)Q and

(�x)(!Q). Let Q = yx:x(z):0. Then

!(�x)Q = !(�x)(yx:x(z):0)) fyn

1

:fn

1

(z):;g; yn

2

:fn

2

(z):;g; yn

3

:fn

3

(z):;g; : : :g

where the n

i

are distinct new names, i 2 N. But

(�x)(!Q) = (�x)(!yx:x(z):0)) fyn:fn(z):;g; yn:fn(z):;g; yn:fn(z):;g; : : :g

where n is a new name. Thus, the domain of the �rst solution contains in�nitely

many molecules, each with multiplicity 1, and the domain of the second solution

contains one molecule, with multiplicity !.

The following two lemma's show that the semantic relation is in fact a total

function modulo a bijective renaming of the new names. We start with totality.

Lemma2. For every P there exists S such that P) S.

Proof. See Section 7. ut

14

It is easy to show that for process terms P that do not contain any restrictions,

this S is unique (and new(S) = ;). In general, functionality is modulo bijective

renamings of new names. If S is a solution and f : new(S) ! New, then we

tacitly assume that f is extended to a function from N[New [N into itself by

de�ning f(x) = x for every x not in new(S). Then, as usual, f(S) denotes the

value for S of the extension of this f as de�ned in Section 4.

Lemma3. If P) S, then P) S

0

if and only if there exists a bijection f :

new(S)! new(S

0

) such that f(S) = S

0

.

Proof. See Section 7. ut

Clearly, the relation between solutions S and S

0

that holds when f(S) = S

0

for some bijection f : new(S) ! new(S

0

), is an equivalence relation. The above

lemma's show that the semantic relation associates an equivalence class of solu-

tions with each process term. Intuitively, the solutions in one such equivalence

class are just \isomorphic copies" of each other. Thus, rule (S1) can be under-

stood as follows: if S

1

is the meaning of P

1

and S

2

is the meaning of P

2

, then

S

0

1

[S

0

2

is the meaning of P

1

j P

2

, where S

0

1

and S

0

2

are \disjoint copies" of S

1

and S

2

, respectively. Similarly for (S4): if S is the meaning of P , then

S

i2N

S

i

is the meaning of !P , where the S

i

are mutually disjoint copies of S.

The next, important, lemma shows that the semantic relation is composi-

tional with respect to substitution: fS j P [z=y]) Sg = fS[z=y] j P) Sg. This

implies that the multiset congruence �

m

is also a congruence with respect to

substitution.

Lemma4. Let y; z 2 N.

(1) If P) S, then P [z=y]) S[z=y].

(2) If P [z=y]) S

0

, then there exists S such that P) S and S

0

= S[z=y].

Proof. See Section 7. ut

6 Main Results

(A) The semantic relation) is a strong bisimulation between the transition

systems of the small �-calculus and the multiset �-calculus M�.

(B) For process terms P and Q of the small �-calculus, if P � Q (i.e., P and Q

are structurally congruent), then P �

m

Q (i.e., P and Q are multiset congruent).

The proofs of these results are given in Section 7. In Section 7 we also prove

(in Lemma 7) that !(P j Q) �

m

!P j !Q, !!P �

m

!P , !0 �

m

0, and (�x)g:P �

m

g:(�x)P provided x does not occur in g. It should be clear from Lemma's 2

and 3 that �

m

= ())

�1

� ()). Thus, it follows from (A) and the well-known

closure of strong bisimulations under composition and inverse, that the multiset

congruence �

m

is a strong bisimulation: if P �

m

Q, then P and Q are strongly

bisimilar in the transition system of the small �-calculus. From that point of view

15

one may then safely add P � Q to the laws of structural congruence (in the sense

that the STRUCT rule will not change their behaviour). Let the extended small

�-calculus be de�ned by adding the following laws to the de�nition of structural

congruence:

(3.2) !(P j Q) � !P j !Q,

(3.3) !!P � !P ,

(3.4) !0 � 0, and

(2.4) (�x)g:P � g:(�x)P

provided x does not occur in g.

Note that, altogether, structural laws (3.1)-(3.4) deal with replication, and struc-

tural laws (2.1)-(2.4) deal with restriction. The remaining laws deal with �-

conversion (law (�)) and parallel composition (laws (1.1)-(1.3)).

(A

0

) The semantic relation) is a strong bisimulation between the transition

systems of the extended small �-calculus and the multiset �-calculus M�.

(B

0

) For process terms P and Q of the extended small �-calculus, P � Q (i.e.,

P and Q are structurally congruent) if and only if P �

m

Q (i.e., P and Q are

multiset congruent).

(C

0

) For process terms P and Q of the extended small �-calculus, it is decidable

whether or not P � Q (i.e., whether or not P �

m

Q).

The proofs of (A

0

) and the only-if part of (B

0

) are given in Section 7. The if-part

of (B

0

), and (C

0

), are the main results of [9].

Note that the three new replication laws (3.2)-(3.4) do not hold in the (ordi-

nary) small �-calculus, because structural congruence preserves the number of

replications. If one adds the �rst law only, then structural congruence preserves

the nesting depth of replication, and so the other two laws still do not hold.

However, intuitively all three structural laws should hold, if one recalls that !P

stands for ! (i.e., in�nitely many) copies of P . Clearly, ! copies of P and Q is

the same as ! copies of P and ! copies of Q, ! copies of ! copies of P is the

same as ! copies of P (because ! �! = !, viewing ! as aleph zero), and ! copies

of nothing is nothing. The original structural law (3.1) for replication is based

on the fact that 1+! = !. It is also easy to see that the new restriction law (2.4)

does not hold in the small �-calculus; it should hold for the same reasons that

structural law (2.3) should hold.

Extending structural congruence implies, by the STRUCT rule, that also the

transition relation! of the small �-calculus is extended. Thus, in the transition

system of the extended small �-calculus there are more transitions possible than

in the transition system of the ordinary small �-calculus. However, by results

(A) and (A

0

), the relation �

m

= ())

�1

� ()) is a strong bisimulation between

these two transition systems. Hence, since P �

m

P , every process term P is

16

strongly bisimilar to itself in the two transition systems. Thus, modulo strong

bisimilarity, the behaviour of all processes is the same in both transition systems.

We now illustrate results (A) and (B) with an example. P and Q are two

friends that want to go �shing. P knows a nice spot where there are many �sh,

and he sends Q the address. Then they pack their bags, meet at the address,

and throw out there �shing rods. There is also a supply B of two (empty) bags.

Finally, there is a jealous friend R who would like to go �shing with P in the

place of Q, but does not know the address. In the following formalization, we

abbreviate, for any name a, the guards a(d) and ad by a and a, respectively,

where d is a dummy name: a and a are communications in which the name that

is sent, is irrelevant. Now P = s:0 j s:(�y)(b:y:r:0 j xy:0), Q = x(y):b:y:r:0,

B = b:0 j b:0, and R = y:r:0.

Consider the process term P

1

= P j Q j B j R. Then P

1

) S

1

with

S

1

= fs:;; s:fb:fn:fr:;gg; xn:;g; x(�):fb:f1:fr:;ggg; b:;; b:;; y:r:;g. Let us now

consider the behaviour of P

1

and S

1

in their respective transition systems. First,

there is just one possible transition: P sends the address to Q. This is the tran-

sition P

1

! P

2

, where P

2

= 0 j (�y)(b:y:r:0 j xy:0) j Q j B j R. Now P

2

�

P

0

2

� P

00

2

, where P

0

2

= (�y)(b:y:r:0 j xy:0) j x(z):b:z:r:0 j B j R by the structural

laws (1.1) and (�), removing 0 and �-converting Q, and P

00

2

= (�y)(b:y:r:0 j

xy:0 j x(z):b:z:r:0 j B) j R by the structural law (3.1), extending the scope of

(�y). Hence (by STRUCT) also P

1

! P

00

2

. In M� the corresponding transition

is S

1

! S

2

, where S

2

= fb:fn:fr:;gg; xn:;; x(�):fb:f1:fr:;ggg; b:;; b:;; y:r:;g.

Clearly, P

2

) S

2

, P

0

2

) S

2

, and P

00

2

) S

2

. This illustrates both results (A) and

(B).

Next, several things can happen in parallel: P packs his bags, and Q �rst

receives the address and then also starts packing. The transition in which Q re-

ceives the address is in the small �-calculus P

00

2

! P

3

, where P

3

= (�y)(b:y:r:0 j

0 j b:y:r:0 j B) j R, and P

3

� P

0

3

= (�y)(b:y:r:0 j b:y:r:0 j b:0 j b:0) j

R by structural law (1.1). In M� the transition is S

2

! S

3

, where S

3

=

fb:fn:fr:;gg; b:fn:fr:;gg, b:;; b:;; y:r:;g. Then there are two transitions in which

P and Q pack their bags. In the small �-calculus they are P

0

3

!

2

P

5

, where

P

5

= (�y)(y:r:0 j y:r:0) j R and in M� they are S

3

!

2

S

5

, where S

5

=

fn:fr:;g; n:fr:;g; y:r:;g. Finally, P and Q meet at the address of P and throw

out their �shing rods. In the small �-calculus this is the transition P

5

! P

6

,

where P

6

= (�y)(r:0 j r:0) j R � r:0 j r:0 j R and in M� it is S

5

! S

6

, where

S

6

= fr:;; r:;; y:r:;g.

One of the nice aspects of multiset transition systems (i.e., Petri nets) is that

there is a natural notion of parallel computation of the system (unfortunately

often called a \process" in Petri net terminology), see, e.g., [19, 11, 7]. A picture

of such a parallel computation neatly shows the concurrencies and dependencies

between the basic transitions that occur during a run of the system. In Fig.2 a

picture is shown of the parallel computation of the example solution S

1

, described

above. The ovals represent molecules, and the rectangles represent the basic

transitions. For a basic transition (S; S

0

) represented by a rectangle, there are

directed edges from the ovals representing the molecules in S to the rectangle,

17

and from the rectangle to the ovals representing the molecules in S

0

. The parallel

computation naturally induces a partial order on the �ve basic transitions that

occur during the computation: the address is sent by P before it is received

by Q and before P packs his bags, Q receives the address before he packs his

bags, and P and Q pack their bags before they meet at the address. There is

no order between P packing bags and Q receiving the address, and there is no

order between P and Q packing bags. Thus, the parallel computation gives a

much better insight in what happens \in real life" than the above sequence of

transitions.

7 Proofs

Lemma 2. For every P there exists S such that P) S.

Proof. We prove that for every process term P and every countably in�nite set

W � New there exists a solution S such that P) S and new(S) � W . This is

done by induction on the structure of P . It is obvious for P = 0 by (S0).

P = P

1

j P

2

. Partition W into two countably in�nite sets W

1

and W

2

.

By induction there exist S

1

and S

2

such that P

1

) S

1

and P

2

) S

2

with

new(S

1

) � W

1

and new(S

2

) � W

2

. Since new(S

1

) \ new(S

2

) = ;, we obtain, by

(S1), that P

1

j P

2

) S

1

[S

2

with new(S

1

[S

2

) = new(S

1

) [new(S

2

) �W .

P = (�x)Q. Take n 2 W arbitrarily. By induction there exists S such

that Q) S and new(S) � W � fng. Hence, by (S2), (�x)Q) S[n=x] and

new(S[n=x]) � new(S) [fng �W .

P = g:Q. By induction Q) S with new(S) � W . Then, by (S3), g:P)

fg:Sg with new(fg:Sg) = new(S) �W .

P = !Q. Partition W into a countably in�nite number of countably in�nite

sets W

i

, i 2 N. By induction there exist S

i

such that Q) S

i

and new(S

i

) � W

i

.

By (S4), !Q)

S

i2N

S

i

and new(

S

i2N

S

i

) �

S

i

W

i

= W . ut

Lemma 3. If P) S, then P) S

0

if and only if there exists a bijection f :

new(S) ! new(S

0

) such that f(S) = S

0

.

Proof. The proof is by induction on the de�nition of the semantic relation),

i.e., by induction on the structure of P . The case 0) ; is obvious.

P

1

j P

2

) S

1

[S

2

with P

1

) S

1

, P

2

) S

2

, and new(S

1

)\new(S

2

) = ;. Note

that new(S

1

[S

2

) = new(S

1

) [new(S

2

).

(Only if). Assume that P) S

0

. By (S1), S

0

= S

0

1

[S

0

2

with P

1

) S

0

1

, P

2

) S

0

2

,

and new(S

0

1

) \ new(S

0

2

) = ;. By induction there are bijections f

i

: new(S

i

) !

new(S

0

i

) such that f

i

(S

i

) = S

0

i

for i = 1; 2. Let f = f

1

[f

2

. Then f is a bijection

from new(S) to new(S

0

). Since f

i

is the restriction of f to new(S

i

), f

i

(S

i

) = f(S

i

)

and so f(S) = f(S

1

[S

2

) = f(S

1

) [f(S

2

) = f

1

(S

1

) [f

2

(S

2

) = S

0

1

[S

0

2

= S

0

.

(If) Assume that f : new(S

1

) [new(S

2

) ! new(S

0

) is a bijection with f(S

1

[

S

2

) = S

0

. Let f

i

be the restriction of f to new(S

i

) and let S

0

i

= f

i

(S

i

). As above,

f

i

(S

i

) = f(S

i

) and so S

0

= f(S

1

)[f(S

2

) = S

0

1

[S

0

2

. Clearly, f

i

is a bijection from

18

new(S

i

) to f

i

(new(S

i

)) = new(f

i

(S

i

)) = new(S

0

i

). Hence, by induction, P

i

) S

0

i

.

Since f

1

(new(S

1

))\f

2

(new(S

2

)) = ;, this implies by (S1) that P) S

0

1

[S

0

2

= S

0

.

(�x)P

1

) S

1

[n=x] with P

1

) S

1

and n 2 New�new(S

1

). This case is in fact

quite similar to the previous one.

(Only if). Assume that P) S

0

. By (S2), S

0

= S

0

1

[m=x] with P

1

) S

0

1

and

m 2 New � new(S

0

1

). By induction there is a bijection f

1

: new(S

1

) ! new(S

0

1

)

such that f

1

(S

1

) = S

0

1

. We �rst consider the case that x =2 fn(P

1

). Then also

x =2 fn(S

1

), because P

1

) S

1

implies that fn(P

1

) = fn(S

1

) \ N. Similarly

x =2 fn(S

0

1

). Hence, in this case, S

0

= S

0

1

and S = S

1

which �nishes the proof. As-

sume now that x 2 fn(P

1

). Then new(S) = new(S

1

[n=x]) = new(S

1

) [fng and

new(S

0

) = new(S

0

1

[m=x]) = new(S

0

1

) [fmg. Let f = f

1

[f(n;m)g. Then f is a

bijection from new(S) to new(S

0

). Moreover f(S) = f(S

1

[n=x]) = f(S

1

)[m=x] =

f

1

(S

1

)[m=x] = S

0

1

[m=x] = S

0

.

(If) Assume that f : new(S

1

[n=x])! new(S

0

) is a bijection with f(S

1

[n=x]) =

S

0

. If x =2 fn(P

1

), then S

1

[n=x] = S

1

. Hence, by induction, P

1

) S

0

and so, by

(S2), P) S

0

[m=x] for any m 2 New � new(S

0

) (note that new(S

0

) is a proper

subset of New). Since x =2 fn(S

0

), P) S

0

. Assume now that x 2 fn(P

1

). Then

f : new(S

1

)[fng ! new(S

0

). Let f

1

be the restriction of f to new(S

1

), let m =

f(n), and let S

0

1

= f

1

(S

1

). Then S

0

= f(S

1

[n=x]) = f

1

(S

1

)[m=x] = S

0

1

[m=x].

Clearly, f

1

is a bijection from new(S

1

) to f

1

(new(S

1

)) = new(f

1

(S

1

)) = new(S

0

1

).

Hence, by induction, P

1

) S

0

1

. Since m =2 f

1

(new(S

1

)), we obtain from (S2) that

(�x)P

1

) S

0

1

[m=x] and so P) S

0

.

The case that P = g:P

1

is straightforward (because the guard g does not

contain new names), and the case that P = !P

1

is very similar to the case that

P = P

1

j P

2

. They are left to the reader. ut

Lemma 4. Let y; z 2 N.

(1) If P) S, then P [z=y]) S[z=y].

(2) If P [z=y]) S

0

, then there exists S such that P) S and S

0

= S[z=y].

Proof. After proving (1), it is easy to show (2) with the previous lemma's, as

follows. Assume that P [z=y]) S

0

. By Lemma 2 there exists S

1

such that P)

S

1

. Then, by (1), P [z=y]) S

1

[z=y]. Lemma 3 then implies that f(S

1

[z=y]) =

S

0

for some bijection f : new(S

1

[z=y]) ! new(S

0

). Note that new(S

1

[z=y]) =

new(S

1

) because z; y 2 N. Let S = f(S

1

). Then new(S) = f(new(S

1

)). Hence

f : new(S

1

)! new(S). By Lemma 3 (in the other direction) P) S. Moreover

S[z=y] = f(S

1

)[z=y] = f(S

1

[z=y]) = S

0

.

It remains to show (1). The proof is based on the fact that the substitution

operation of M� satis�es all the usual laws of substitution, as shown in Section 4.

The proof is by induction on the length (i.e., the number of symbols) of P .

We consider the usual cases of the syntactical form of P . Let P) S. For P = 0

we obtain from (S0) that S = ; and so P [z=y] = 0) ; = S[z=y].

P = P

1

j P

2

. From (S1) follows that S = S

1

[S

2

with P

1

) S

1

, P

2

) S

2

,

and new(S

1

) \ new(S

2

) = ;. By induction (because P

1

and P

2

are shorter than

P), P

1

[z=y]) S

1

[z=y] and P

2

[z=y]) S

2

[z=y]. Since new(S

i

[z=y]) = new(S

i

),

we obtain from (S1) that P [z=y] = P

1

[z=y] j P

2

[z=y]) S

1

[z=y] [S

2

[z=y] =

(S

1

[S

2

)[z=y] = S[z=y].

19

P = (�x)P

0

. By (S2), S = S

0

[n=x] with P

0

) S

0

and n 2 New � new(S

0

).

We consider three cases.

(1) y =2 fn(P) = fn((�x)P

0

). Since P) S, also y =2 fn(S). Then P [z=y] = P)

S = S[z=y].

(2) y 2 fn((�x)P

0

) and z 6= x. Note that y 6= x. By induction P

0

[z=y]) S

0

[z=y].

Then, by (S2), ((�x)P

0

)[z=y] = (�x)P

0

[z=y]) S

0

[z=y][n=x] = S

0

[n=x][z=y] =

S[z=y].

(3) y 2 fn((�x)P

0

) and z = x. Then ((�x)P

0

)[z=y] = (�w)P

0

[w=x][z=y] for some

w 2 N withw =2 fn(P

0

) and w 6= x. Note thatw 6= y and w =2 fn(S

0

). By induction

P

0

[w=x]) S

0

[w=x]. Again by induction (because P

0

[w=x] has the same length as

P

0

), P

0

[w=x][z=y]) S

0

[w=x][z=y]. Then, by (S2), P [z=y] = (�w)P

0

[w=x][z=y])

S

0

[w=x][z=y][n=w] = S

0

[w=x][n=w][z=y] = S

0

[n=x][z=y] = S[z=y].

P = ux:P

0

. By (S3), S = fux:S

0

g with P

0

) S

0

. Then, by induction and (S3),

(ux:P

0

)[z=y] = u[z=y]x[z=y]:P

0

[z=y]) fu[z=y]x[z=y]:S

0

[z=y]g = fux:S

0

g[z=y] =

S[z=y].

P = u(x):P

0

. By (S3), S = fu(x):S

0

g with P

0

) S

0

. We consider three cases.

We will use the substitution laws for guarded molecules that are listed at the

end of Section 4.

(1) y =2 fn((�x)P

0

), i.e., y =2 fn(P

0

) � fxg. Hence also y =2 fn(S

0

) � fxg. Then

P [z=y] = (u(x):P

0

)[z=y] = u[z=y](x):P

0

) fu[z=y](x):S

0

g = fu(x):S

0

g[z=y] =

S[z=y].

(2) y 2 fn((�x)P

0

) and z 6= x. Note that y 6= x. By induction and (S3),

(u(x):P

0

)[z=y] = u[z=y](x):P

0

[z=y]) fu[z=y](x):S

0

[z=y]g = fu(x):S

0

g[z=y] =

S[z=y].

(3) y 2 fn((�x)P

0

) and z = x. Then (u(x):P

0

)[z=y] = u[z=y](w):P

0

[w=x][z=y] for

some w 2 N with w =2 fn(P

0

) and w 6= x. Note that w 6= y and w =2 fn(S

0

).

By induction (twice) P

0

[w=x][z=y]) S

0

[w=x][z=y]. Then, by (S3), P [z=y] =

u[z=y](w):P

0

[w=x][z=y]) fu[z=y](w):S

0

[w=x][z=y]g = fu(w):S

0

[w=x]g[z=y] =

fu(x):S

0

g[z=y] = S[z=y].

P = !P

0

. By (S4), S =

S

i2N

S

i

with P

0

) S

i

and new(S

i

) \ new(S

j

) =

;. Then, by induction and (S4), (!P

0

)[z=y] = !(P

0

[z=y]))

S

i2N

S

i

[z=y] =

(

S

i2N

S

i

)[z=y] = S[z=y]. ut

The proof of (A) is split into two parts: the left and the right part of the bisim-

ulation.

(AL) If P) S and P ! P

0

, then there exists S

0

such that S ! S

0

and

P

0

) S

0

.

(AR) If P) S and S ! S

0

, then there exists P

0

such that P ! P

0

and

P

0

) S

0

.

In the proof of (AL) we need Lemma's 1 and 4, and we need (B) to handle the

STRUCT rule. For this reason we start with the proof of (B).

Theorem B. If P � Q, then P �

m

Q.

Proof. Since �

m

is a congruence, to prove that � ��

m

it su�ces to show that

�

m

satis�es the laws (1)-(8) of structural congruence.

20

(1) We have to show that P �

�

Q implies P �

m

Q, where �

�

denotes

�-conversion of process terms. Since �

m

is a congruence, it follows from the

properties of �

�

that it su�ces to prove the following two special cases (a) and

(b).

(a) x(y):P �

m

x(z):P [z=y] with z 62 fn(P) and z 6= y. Assume �rst that

x(y):P) S. By (S3), S = fx(y):Tg with P) T . By Lemma 4(1), P [z=y])

T [z=y]. Hence, by (S3), x(z):P [z=y]) fx(z):T [z=y]g. Since z 62 fn(T), we have

fx(z):T [z=y]g = fx(y):Tg = S. Hence x(z):P [z=y]) S. Assume now that

x(z):P [z=y]) S. By (S3), S = fx(z):T

0

g with P [z=y]) T

0

. By Lemma 4(2),

there exists a solution T such that P) T and T [z=y] = T

0

. By (S3), x(y):P)

fx(y):Tg and, since z =2 fn(T), fx(y):Tg = fx(z):T [z=y]g = fx(z):T

0

g = S.

(b) (�y)P �

m

(�z)P [z=y] with z 62 fn(P) and z 6= y. The proof is similar to

the one of (a). Assume �rst that (�y)P) S. By (S2), S = T [n=y] with P) T

and n 2 New � new(T). By Lemma 4(1), P [z=y]) T [z=y]. Hence, by (S2),

(�z)P [z=y]) T [z=y][n=z] = T [n=y] = S. Assume now that (�z)P [z=y]) S. By

(S2), S = T

0

[n=z] with P [z=y]) T

0

and n 2 New � new(T

0

). By Lemma 4(2),

there exists T such that P) T and T [z=y] = T

0

. Note that new(T) = new(T

0

).

Hence, by (S2), (�y)P) T [n=y]. Also T [n=y] = T [z=y][n=z] = T

0

[n=z] = S.

(2) We show that P j 0 �

m

P . If P) S then, by (S0) and (S1), P j 0)

S [; = S. If P j 0) S then S = S

1

[S

2

with P) S

1

and 0) S

2

. Hence

S

2

= ; and so S = S

1

and P) S.

(3) Next we show that P j Q �

m

Q j P . Let P j Q) S. By (S1), S =

S

1

[S

2

with P) S

1

, Q) S

2

, and new(S

1

) \ new(S

2

) = ;. Then, by (S1),

Q j P) S

2

[S

1

= S

1

[S

2

= S by the commutativity of multiset union. The

other direction is symmetric.

(4) The proof of P j (Q j R) �

m

(P j Q) j R is similarly based on the

associativity of multiset union.

(5) To show that !P �

m

P j !P , consider �rst !P) S. By (S4), S =

S

i2N

S

i

with P) S

i

and all new(S

i

) are disjoint. Then !P)

S

i2N

S

i+1

by (S4). Hence

P j !P) S

1

[

S

i2N

S

i+1

=

S

i2N

S

i

= S by (S1). Next consider P j !P) S.

Then S = S

1

[T with P) S

1

, !P) T , and new(S

1

) \ new(T) = ;. Hence

T =

S

i2N

S

i+1

with P) S

i+1

and the new(S

i+1

) are mutually disjoint. This

implies that the new(S

i

), i 2N, are mutually disjoint, and so !P)

S

i2N

S

i

=

S

1

[

S

i2N

S

i+1

= S

1

[T = S.

(7) We �rst show that (�x)P �

m

P if x 62 fn(P). If P) S, then take

any n 2 New � new(S) (note that new(S) is a proper subset of New). Then

(�x)P) S[n=x], but since x 62 fn(S), S[n=x] = S. On the other hand, if

(�x)P) S, then S = T [n=x] with P) T and n 2 New � new(T). Since

x 62 fn(T), T [n=x] = T and so S = T and P) S.

(6) To show that (�x)(�y)P �

m

(�y)(�x)P , with x 6= y, we may now assume,

by the proof of case (7), that x; y 2 fn(P). Consider (�x)(�y)P) S. Then

S = T [n=x] with (�y)P) T and n 2 New � new(T). Hence T = U [m=y] with

P) U and m 2 New � new(U). Since y 2 fn(P), also y 2 fn(U) and hence

m 2 new(T). Thus, m 6= n. Now (�x)P) U [n=x] because new(U) � new(T).

And (�y)(�x)P) U [n=x][m=y] because new(U [n=x]) � new(U) [fng. Since

21

U [n=x][m=y] = U [m=y][n=x] = T [n=x] = S, we have (�y)(�x)P) S. The other

part follows by symmetry.

(8) We have to show that (�x)(P j Q) �

m

P j (�x)Q if x 62 fn(P). Again, by

the proof of case (7), we may assume that x 2 fn(Q). Consider (�x)(P j Q)) S.

Then S = T [n=x] with P j Q) T and n 2 New � new(T). Then T = S

1

[S

2

with P) S

1

, Q) S

2

, and new(S

1

) \ new(S

2

) = ;. Now (�x)Q) S

2

[n=x] and

P j (�x)Q) S

1

[S

2

[n=x]. Since x 62 fn(S

1

), S

1

[n=x] = S

1

and so S

1

[S

2

[n=x] =

(S

1

[S

2

)[n=x] = T [n=x] = S. Hence P j (�x)Q) S. The other part is similar,

using the fact that x 2 fn(Q). Let P j (�x)Q) S. Then S = S

1

[T with

P) S

1

, (�x)Q) T , and new(S

1

) \ new(T) = ;. Then T = S

2

[n=x] with

Q) S

2

and n 2 New � new(S

2

). Now P j Q) S

1

[S

2

and (�x)(P j Q))

(S

1

[S

2

)[n=x]; note that since x 2 fn(S

2

), n 2 new(T) and so n =2 new(S

1

). As

above, (S

1

[S

2

)[n=x] = S

1

[S

2

[n=x] = S

1

[T = S, and so (�x)(P j Q)) S. ut

Theorem AL. If P) S and P ! P

0

, then there exists S

0

such that S ! S

0

and P

0

) S

0

.

Proof. Induction on the de�nition of P ! P

0

.

(COM) P ! P

0

is x(y):P

1

j xz:P

2

! P

1

[z=y] j P

2

. By (S1), S = S

1

[S

2

with

x(y):P

1

) S

1

, xz:P

2

) S

2

and new(S

1

) \ new(S

2

) = ;. Then, by (S3), S

1

=

fx(y):S

0

1

g and S

2

= fxz:S

0

2

g with P

1

) S

0

1

and P

2

) S

0

2

. Clearly new(S

0

i

) =

new(S

i

), and hence new(S

0

1

) \ new(S

0

2

) = ;. Thus, we have that

x(y):P

1

j xz:P

2

) S = fx(y):S

0

1

; xz:S

0

2

g

with P

1

) S

0

1

, P

2

) S

0

2

, and new(S

0

1

) \ new(S

0

2

) = ;.

Now fx(y):S

0

1

; xz:S

0

2

g ! S

0

1

[z=y] [S

0

2

= S

0

. It remains to show that P

0

) S

0

.

Since P

1

) S

0

1

, Lemma 4(1) implies that P

1

[z=y]) S

0

1

[z=y]. Together with

P

2

) S

0

2

, we obtain from (S1) that P

0

= P

1

[z=y] j P

2

) S

0

1

[z=y] [S

0

2

= S

0

.

(PAR) P ! P

0

is P

1

j P

2

! P

0

1

j P

2

with P

1

! P

0

1

, and the result holds for P

1

!

P

0

1

. Then S = S

1

[S

2

with P

1

) S

1

and P

2

) S

2

and new(S

1

) \ new(S

2

) = ;.

By induction there exists S

0

1

such that S

1

! S

0

1

and P

0

1

) S

0

1

. By the chemical

law, S

1

[S

2

! S

0

1

[S

2

= S

0

. Since new(S

0

1

) � new(S

1

), new(S

0

1

)\ new(S

2

) = ;.

Hence P

0

= P

0

1

j P

2

) S

0

1

[S

2

= S

0

.

(RES) P ! P

0

is (�x)Q ! (�x)Q

0

with Q ! Q

0

and the result holds for

Q ! Q

0

. By (S2), S = T [n=x] with Q) T and n 2 New � new(T). By

induction there exists T

0

such that T ! T

0

and Q

0

) T

0

. By Lemma 1 it

follows from T ! T

0

that T [n=x] ! T

0

[n=x] = S

0

. From Q

0

) T

0

(and the

fact that new(T

0

) � new(T) and hence n 62 new(T

0

)), it follows with (S2) that

P

0

= (�x)Q

0

) T

0

[n=x] = S

0

.

(STRUCT) P ! P

0

with Q! Q

0

, P � Q, and P

0

� Q

0

, and the result holds for

Q ! Q

0

. By Theorem B, P) S and P � Q imply that Q) S. By induction

there exists S

0

such that S ! S

0

and Q

0

) S

0

. Again by Theorem B, it follows

from Q

0

) S

0

and P

0

� Q

0

that P

0

) S

0

. ut

To prove (AR) we need two key lemma's. In their proofs we use all the laws of

structural congruence. We abbreviate [n

1

=x

1

] � � � [n

m

=x

m

] by [n

i

=x

i

]. For a guard

g we denote by g[n=x] the guard obtained by replacing the free ocurrences of x

by n, i.e., (u(v))[n=x] = u[n=x](v) and (uv)[n=x] = u[n=x]v[n=x].

22

Lemma5. Let F � N be �nite. If P) S and S = fg:S

1

g [S

2

, where g is a

guard, then there exist x

1

; : : : ; x

m

2 N � F (m � 0), n

1

; : : : ; n

m

2 new(S), a

guard g

0

over N, process terms P

1

; P

2

, and solutions S

0

1

; S

0

2

such that

P � (�x

1

) � � � (�x

m

)(g

0

:P

1

j P

2

);

g

0

[n

i

=x

i

] = g, P

1

) S

0

1

, S

0

1

[n

i

=x

i

] = S

1

, P

2

) S

0

2

, S

0

2

[n

i

=x

i

] = S

2

, new(S

0

1

) \

new(S

0

2

) = ;, and n

1

; : : : ; n

m

62 new(S

0

1

) [new(S

0

2

).

Proof. The proof is by induction on the length of P . We consider the usual cases

of P) S. It is trivial for 0) ;.

(S1) P) S is Q

1

j Q

2

) T

1

[T

2

with Q

1

) T

1

, Q

2

) T

2

, and new(T

1

) \

new(T

2

) = ;. Assume T

1

= fg:S

1

g[U and S

2

= U [T

2

(the case that g:S

1

is in

T

2

is symmetric). By induction, for Q

1

) T

1

with the �nite set F

1

= F [fn(Q

2

),

we obtain that Q

1

� (�x

1

) � � � (�x

m

)(g

0

:P

1

j R), n

i

2 new(T

1

), g

0

[n

i

=x

i

] = g,

P

1

) S

0

1

, S

0

1

[n

i

=x

i

] = S

1

, R) U

0

, U

0

[n

i

=x

i

] = U , new(S

0

1

) \ new(U

0

) = ;, and

n

i

62 new(S

0

1

) [new(U

0

). Since x

i

62 F

1

and hence x

i

62 fn(Q

2

), it follows that

P = Q

1

j Q

2

� (�x

1

) � � � (�x

m

)(g

0

:P

1

j R) j Q

2

� (�x

1

) � � � (�x

m

)(g

0

:P

1

j R j Q

2

)

by structural laws (1.2), (1.3), and (2.3). Let P

2

= R j Q

2

and S

0

2

= U

0

[T

2

. Then

P

2

) S

0

2

because new(U

0

) � new(U) � new(T

1

), and S

0

2

[n

i

=x

i

] = U

0

[n

i

=x

i

] [

T

2

[n

i

=x

i

] = U[T

2

= S

2

because x

i

62 fn(T

2

). Furthermore new(S

0

1

)\new(S

0

2

) = ;

because new(S

0

1

) \ new(U

0

) = ; and new(S

0

1

) \ new(T

2

) = ;, where the latter

holds because new(S

0

1

) � new(S

1

) � new(T

1

) and new(T

1

) \ new(T

2

) = ;.

Finally, n

i

62 new(S

0

2

) because n

i

62 new(U

0

) and n

i

62 new(T

2

), where the latter

holds because n

i

2 new(T

1

).

(S2) P) S is (�x)Q) T [n=x] with Q) T and n =2 new(T). We �rst

observe that we may assume that x is not bound in g and that x =2 F . Otherwise

we could consider a suitable �-equivalent P

0

= (�w)Q[w=x] instead of P . Then

P

0

� P by structural law (�), and hence P

0

) S by Theorem B. Also, the

induction hypothesis holds for Q[w=x] because it is shorter than P .

In the case that x =2 fn(Q) we are ready by induction, because then P =

(�x)Q � Q by structural law (2.2), and S = T [n=x] = T .

Now assume that x 2 fn(Q). Consider T [n=x] = fg:S

1

g [S

2

. Since, as dis-

cussed above, x is not bound in g, T = T [n=x][x=n] = fg[x=n]:S

1

[x=n]g[S

2

[x=n].

Hence T = fh:T

1

g[T

2

, with h[n=x] = g, T

1

[n=x] = S

1

, and T

2

[n=x] = S

2

. By in-

duction, for Q) T with the same F , it follows that Q � (�x

1

) � � � (�x

m

)(h

0

:P

1

j

P

2

) with n

i

2 new(T), h

0

[n

i

=x

i

] = h, P

1

) S

0

1

, S

0

1

[n

i

=x

i

] = T

1

, P

2

) S

0

2

, and

S

0

2

[n

i

=x

i

] = T

2

. Then P = (�x)Q � (�x

1

) � � � (�x

m

)(�x)(h

0

:P

1

j P

2

) by structural

law (2.1), with h

0

[n

i

=x

i

][n=x] = h[n=x] = g and S

0

j

[n

i

=x

i

][n=x] = T

j

[n=x] = S

j

.

Furthermore n =2 new(S

0

j

) because new(S

0

j

) � new(T

j

) � new(T). Finally,

n 2 new(T [n=x]) because x 2 fn(Q) = fn(T) \N.

(S3) P) S is g:P

1

) fg:S

1

g with P

1

) S

1

. Let S

2

= ; and P

2

= 0. Then

P � g:P

1

j 0 by structural law (1.1), with m = 0, g

0

= g, S

0

1

= S

1

, and S

0

2

= S

2

.

(S4) P) S is !Q)

S

i2N

T

i

with Q) T

i

. Since this case is very simi-

lar to case (S1), we do not consider all details. Assume that T

1

= fg:S

1

g [U

and S

2

= U [

S

i2N

T

i+1

. By induction, for Q) T

1

, we obtain that Q �

(�x

1

) � � � (�x

m

)(g

0

:P

1

j R). It follows that P = !Q � Q j !Q � (�x

1

) � � � (�x

m

)(g

0

:P

1

j

23

R j !Q) by structural law (3.1). Now let P

2

= R j !Q and S

0

2

= U

0

[

S

i2N

T

i+1

.

ut

By applying Lemma 5 twice, in a rather straightforward way, we obtain the

following lemma, to be used in the proof of (AR).

Lemma6. If P) fg

1

:S

1

; g

2

:S

2

g [S

3

, where g

1

and g

2

are guards, then there

exist x

1

; : : : ; x

m

2 N (m � 0), n

1

; : : : ; n

m

2 New, guards g

0

1

; g

0

2

over N, terms

P

1

; P

2

; P

3

, and solutions S

0

1

; S

0

2

; S

0

3

such that

P � (�x

1

) � � � (�x

m

)(g

0

1

:P

1

j g

0

2

:P

2

j P

3

);

g

0

1

[n

i

=x

i

] = g

1

, g

0

2

[n

i

=x

i

] = g

2

, P

j

) S

0

j

and S

0

j

[n

i

=x

i

] = S

j

for j = 1; 2; 3,

the sets new(S

0

j

) are mutually disjoint, and n

1

; : : : ; n

m

62 new(S

0

1

) [new(S

0

2

) [

new(S

0

3

).

Proof. Let T = fg

2

:S

2

g [S

3

. Since P) fg

1

:S

1

g [T , we obtain from Lemma 5,

with F consisting of fn(P) together with the bound name in g

2

if it has one,

that P � (�x

1

) � � � (�x

k

)(g

0

1

:P

1

j Q) and g

0

1

[n

i

=x

i

] = g

1

, P

1

) S

0

1

, S

0

1

[n

i

=x

i

] = S

1

,

Q) T

0

, T

0

[n

i

=x

i

] = T , new(S

0

1

)\new(T

0

) = ;, and n

i

=2 new(S

0

1

)[new(T

0

). Now

T [x

i

=n

i

] = T

0

[n

i

=x

i

][x

i

=n

i

] = T

0

because n

i

=2 new(T

0

). Hence Q) T [x

i

=n

i

]

and, since x

i

is not bound in g

2

(because x

i

is not in F), T

0

= T [x

i

=n

i

] =

fh

2

:T

2

g [T

3

with h

2

= g

2

[x

i

=n

i

], T

2

= S

2

[x

i

=n

i

], and T

3

= S

3

[x

i

=n

i

]. Applying

Lemma 5 to Q) fh

2

:T

2

g [T

3

, with F

0

= fx

1

; : : : ; x

k

g [fn(g

0

1

:P

1

), we obtain

that Q � (�y

1

) � � � (�y

p

)(g

0

2

:P

2

j P

3

) andm

i

2 new(T

0

), g

0

2

[m

i

=y

i

] = h

2

, P

2

) S

0

2

,

S

0

2

[m

i

=y

i

] = T

2

, P

3

) S

0

3

, S

0

3

[m

i

=y

i

] = T

3

, new(S

0

2

) \ new(S

0

3

) = ;, and m

i

=2

new(S

0

2

) [new(S

0

3

). Since the y's are di�erent from the x's and y

i

=2 fn(g

0

1

:P

1

),

we get

P � (�x

1

) � � � (�x

k

)(g

0

1

:P

1

j (�y

1

) � � � (�y

p

)(g

0

2

:P

2

j P

3

))

� (�y

1

) � � � (�y

p

)(�x

1

) � � � (�x

k

)(g

0

1

:P

1

j g

0

2

:P

2

j P

3

):

It can now be checked that all requirements are ful�lled. First, g

0

1

[m

i

=y

i

][n

i

=x

i

] =

g

0

1

[n

i

=x

i

] = g

1

because y

i

does not occur free in g

0

1

; also g

0

2

[m

i

=y

i

][n

i

=x

i

] =

h

2

[n

i

=x

i

] = g

2

[x

i

=n

i

][n

i

=x

i

] = g

2

because x

i

=2 fn(P) and hence x

i

does not occur

free in g

2

. For similar reasons, S

0

1

[m

i

=y

i

][n

i

=x

i

] = S

0

1

[n

i

=x

i

] = S

1

and, for j =

2; 3, S

0

j

[m

i

=y

i

][n

i

=x

i

] = T

j

[n

i

=x

i

] = S

j

[x

i

=n

i

][n

i

=x

i

] = S

j

. Next we observe that,

for j = 2; 3, new(S

0

j

) � new(T

j

) � new(T

0

). This implies that the sets new(S

0

j

)

are mutually disjoint for j = 1; 2; 3 and that n

i

=2 new(S

0

1

)[new(S

0

2

)[new(S

0

3

).

Also, since m

i

2 new(T

0

), m

i

=2 new(S

0

1

). ut

Theorem AR. If P) S and S ! S

0

, then there exists P

0

such that P ! P

0

and P

0

) S

0

.

Proof. First we observe that if P) S, then fn(S) \ N = fn(P) and hence

fn(S) \ N � N. Consequently, as argued in Section 4, the transition S ! S

0

is

the result of communication of two guarded molecules, i.e.,

S = fx(y):S

1

; xz:S

2

g [S

3

and S

0

= S

1

[z=y] [S

2

[S

3

:

24

By Lemma 6, P � (�x

1

) � � � (�x

m

)(x

0

(y):P

1

j x

0

z

0

:P

2

j P

3

) with x

i

6= y and with

the properties mentioned in that lemma.Hence (using STRUCT) P ! P

0

where

P

0

= (�x

1

) � � � (�x

m

)(P

1

[z

0

=y] j P

2

j P

3

). It remains to show that P

0

) S

0

. Since

P

1

) S

0

1

, P

1

[z

0

=y]) S

0

1

[z

0

=y] by Lemma 4(1). Hence, using the properties of

new(S

0

j

), P

0

) (S

0

1

[z

0

=y] [S

0

2

[S

0

3

)[n

i

=x

i

] = S

0

1

[z

0

=y][n

i

=x

i

] [S

2

[S

3

. Since

z

0

[n

i

=x

i

] = z, S

0

1

[z

0

=y][n

i

=x

i

] = S

0

1

[n

i

=x

i

][z=y] = S

1

[z=y]. Hence P

0

) S

1

[z=y] [

S

2

[S

3

= S

0

. ut

Next we show that the new structural laws (3.2)-(3.4) and (2.4) are valid for

multiset congruence.

Lemma7. !(P j Q) �

m

!P j !Q, !!P �

m

!P , !0 �

m

0, and (�x)g:P �

m

g:(�x)P

provided x does not occur in g.

Proof. We prove the equivalences one by one.

!(P j Q) �

m

!P j !Q. Consider !(P j Q)) S. Then S =

S

i2N

S

i

with

P j Q) S

i

for every i 2 N, and all new(S

i

) are disjoint. Then S

i

= T

i

[U

i

with P) T

i

and Q) U

i

and new(T

i

) \ new(U

i

) = ;. By (S4), !P)

S

i

T

i

and

!Q)

S

i

U

i

. Hence, by (S1), !P j !Q)

S

i

T

i

[

S

i

U

i

=

S

i

(T

i

[U

i

) =

S

i

S

i

= S,

and so !P j!Q) S. Note that the equality

S

i

T

i

[

S

i

U

i

=

S

i

(T

i

[U

i

) follows from

the (general) associativity of multiset union. In the other direction, if !P j!Q) S

then S = T [U with !P) T and !Q) U . Then T =

S

i

T

i

with P) T

i

and U =

S

i

U

i

with Q) U

i

. By (S1), P j Q) T

i

[U

i

and so, by (S4),

!(P j Q))

S

i

(T

i

[U

i

) =

S

i

T

i

[

S

i

U

i

= T [U = S. Hence !(P j Q)) S.

!!P �

m

!P . Consider !!P) S. Then S =

S

i2N

S

i

with !P) S

i

for all i,

and the new(S

i

) are mutually disjoint. Hence, for every i, S

i

=

S

j2N

S

i;j

with

P) S

i;j

for all j, and the new(S

i;j

) are mutually disjoint. Let c : N � N !

N be a bijection. De�ne, for k 2 N, T

k

= S

c

�1

(k)

, i.e., T

c(i;j)

= S

i;j

. Since

P) T

k

for all k, and the new(T

k

) are mutually disjoint, !P)

S

k2N

T

k

.

But S =

S

i2N

S

i

=

S

i2N

S

j2N

S

i;j

=

S

k2N

T

k

by (general) associativity of

multiset union. And so !P) S. In the other direction, consider !P) S. Then

S =

S

k2N

T

k

with P) T

k

for every k. De�ne S

i;j

= T

c(i;j)

, and, for every i,

S

i

=

S

j2N

S

i;j

. Then, for every i, !P) S

i

. Hence !!P)

S

i2N

S

i

= S.

!0 �

m

0. This follows from the obvious fact that if S

i

= ; for all i, then

S

i2N

S

i

= ;.

If x does not occur in g, then (�x)g:P �

m

g:(�x)P . Clearly (�x)g:P)

fg:Sg[n=x] for all S and n such that P) S and n =2 new(g:S). Also, g:(�x)P)

fg:S[n=x]g for all S and n such that P) S and n =2 new(S). Now new(g:S) =

new(S). Moreover, fg:Sg[n=x] = fg[n=x]:S[n=x]g because x does not occur

bound in g, and fg[n=x]:S[n=x]g = fg:S[n=x]g because x does not occur free

in g. ut

It is easy to see from the proofs in this section that after adding the laws (9)-(12)

to structural congruence, results (A) and (B) are still valid. This proves result

(A

0

) and the only-if part of result (B

0

).

25

8 Conclusion

It would be nice to extend result (A) to the labeled transition system of the small

�-calculus, with labels � , x(y), xz, and (�z)xz. This raises the problem of �nding

a suitable notion of strong bisimulation between the labeled transition system

of the small �-calculus and a correspondingly labeled transition system of the

multiset �-calculus M�. Lemma 4(1) suggests that the semantic mapping could

be an open bisimulation, in the sense of [20]. Also, one would like to extend

the whole approach (a multiset semantics for which structural congruence is

sound and complete) to CCS and the full �-calculus. The addition of choice (+)

to the small �-calculus in its full generality would ruin our approach, due to

the possible presence of parallel composition in a choice context (see [6, 18] for

quite complicated solutions to this well-known problem). However, this paper

can be extended in a straightforward way to guarded choice, in particular to the

(monadic) �-calculus presented in [14].

Acknowledgments. I am grateful to P.S.Thiagarajan for the stimulating dis-

cussions that led to this paper. I thank my student Tjalling Gelsema for checking

many of the details.

References

1. J.C.M.Baeten, J.A.Bergstra, J.W.Klop; An operational semantics for process alge-

bra, Mathematical Problems in Computation Theory, Banach Center Publications,

Vol.21, PWN, Warsaw, 1988, pp.47-81

2. J.-P.Bânatre, D. Le M�etayer; Programming by multiset transformation, Comm. of

the ACM 36 (1993), 98-111

3. H.P.Barendregt; The Lambda Calculus, North-Holland, Amsterdam, 1984

4. G.Berry, G.Boudol; The chemical abstract machine, Theor.Comput.Sci. 96 (1992),

217-248

5. N.G.De Bruijn; Lambda calculus notation with nameless dummies, a tool for au-

tomatic formula manipulation, Indag. Math. 34 (1972), 381-392

6. P.Degano, R.De Nicola, U.Montanari; A distributed operational semantics for CCS

based on Condition/Event systems, Acta Informatica 26 (1988), 59-91

7. J.Engelfriet; Branching processes of Petri nets, Acta Informatica 28 (1991), 575-591

8. J.Engelfriet; A multiset semantics of the pi-calculus with replication, in

Proc.CONCUR'93, Lecture Notes in Computer Science 715, Springer-Verlag, 1993,

7-21

9. J.Engelfriet, T.E.Gelsema; Multisets and structural congruence of the pi-calculus

with replication, Technical Report, Department of Computer Science, Leiden Uni-

versity, August 1994.

10. U.Goltz; On representing CCS programs by �nite Petri nets, in Proc. MFCS'88,

Lecture Notes in Computer Science 324, Springer-Verlag, 1988, pp.339-350

11. U.Goltz, W.Reisig; The non-sequential behaviour of Petri nets, Inform. Control 57

(1983), 125-147

12. R.Milner; Communication and Concurrency, Prentice-Hall, Englewood Cli�s, NJ.,

1989

13. R.Milner; Functions as processes, Math. Struct. in Comp. Science 2 (1992), 119-141

26

14. R.Milner; The polyadic �-calculus: a tutorial, Report ECS-LFCS-91-180, Univer-

sity of Edinburgh, 1991

15. R.Milner; Elements of interaction, Comm. of the ACM 36 (1993), 78-89, Turing

Award Lecture

16. R.Milner, J.Parrow, D.Walker; A calculus of mobile processes, Inform. Comput.

100 (1992), 1-77

17. M.Nielsen; CCS and its relationship to net theory, in Petri nets: applications and

relationships to other models of concurrency, Lecture Notes in Computer Science

255, Springer-Verlag, 1987, pp.393-415

18. E.-R.Olderog; Nets, Terms and Formulas, Cambridge University Press, Cambridge,

1991

19. W.Reisig; Petri Nets, EATCS Monographs in Theoretical Computer Science,

Springer-Verlag, 1982

20. D.Sangiorgi; A theory of bisimulation for the �-calculus, in Proc.CONCUR'93, Lec-

ture Notes in Computer Science 715, Springer-Verlag, 1993, 127-142. Also, Report

ECS-LFCS-93-270, University of Edinburgh

21. D.Taubner; Finite representations of CCS and TCSP programs by automata and

Petri nets, Lecture Notes in Computer Science 369, Springer-Verlag, 1989

This article was processed using the L

a

T

E

X macro package with LLNCS style

27

Fig. 2. Picture of a parallel computation in M�.

28

