
Validating Database Components of Software

Systems

Perdita L�ohr-Richter Andreas Zamperoni

Technical University of Braunschweig Leiden University

Dept. of Computer Science Dept. of Computer Science

Gau�str. 12, D-3300 Braunschweig Niels Bohrweg 2, NL-2333 CA Leiden

Germany The Netherlands

Tel.: ++49/531/391 7447 Tel.: ++31/71/27 7103

Fax.: ++49/531/391 3298 Fax.: ++31/71/27 6985

email: loehr@idb.cs.tu-bs.de email: zamper@wi.leidenuniv.nl

Abstract

In this article, we present a framework and a concrete method to support validation

of central database components in application software. We explain how validation

can cope with both the need for a formalized evaluation of correctness as well as

the need for prototyping high level database speci�cations in early development

phases. We de�ne di�erent levels of correctness suitable for database speci�cations

and show how these levels can be checked by our validation method. For this

purpose, we describe both the method's formal basis and explain step-by-step the

corresponding pragmatic algorithm to actually generate test data and validate the

speci�cation.

Keywords: consistency, correctness, database-centered application software, ex-

tended ER model, high level database speci�cation, prototyping, test data,

validation method

1 Introduction

In the area of software engineering, testing has a well-known tradition and corresponding

theories exist [1, 2, 19]. These approaches focus on tests of programs or programming

systems, i.e., dynamic structures. In this respect, most of them derive test data to test

for functionality, coverage criteria, boundary cases, etc. . Nowadays, a lot of software

systems rely on central, complex structured database components. This demands to

test and validate the underlying database component before dynamic structures can be

tackled. But testing data structures requires new notions of correctness, because the

traditional ones suitable for dynamic structures don't hold for data structures. Therefore,

1



testing and validating database components requires the de�nition of speci�c correctness

properties and the development of matching validation strategies.

Few approaches exist which work on this topic. We classify them into four groups: General

approaches which investigate general validation principles for classes of speci�cations [5].

Logic based approaches which consider a database speci�cation as a collection of predicate

logic formulas which has to be satis�ed [3, 16]. Proof approaches which evolve a theory

to prove speci�c correctness properties for a certain class of speci�cations leaving out

methodological aspects [12, 22]. Low level testing approaches which deal with database

implementations instead of database speci�cations [14, 17, 18]. They all agree on the

underlying idea to populate the database speci�cations with (reasonable) test data. By

this, they try to show the database speci�cation to be consistent which in general is only

a semi-decidable property [15].

In contrast to the above approaches, we propose a validation approach which

� adapts validation techniques to high level, graphically oriented speci�cations

of databases. For this purpose, we choose one representative from the group of

semantic data models [10] to specify the database component, in our case: an ex-

tended ER model [7]. Such data models are well-known as high level speci�cation

languages for database components during the early development phases. By us-

ing a semantic data model, we support early validation, testing, and prototyping

activities.

� bases on a proof and formally described correctness properties to determine

the achievable levels of correctness for a database speci�cation. One bene�t of

this was that we could prove that consistency is a decidable property for EER

speci�cations [24].

� o�ers a concrete, pragmatic validation algorithm to actually generate sound

test data and to support prototyping of database speci�cations. The algorithm basi-

cally uses the EER speci�cation as input to construct test data. To ease prototyping,

some additional information is required for the data to support the generation of

comprehensible test data.

Nowadays, prototyping in general is realized by applying standard transformations of se-

mantic data models to high level database speci�cations (e.g., relational) [6, 8, 9]. Thereby,

database prototypes can be automatically generated, executing the (high level) database

speci�cation [8]. This eases prototyping of software speci�cations, too, because necessary

test data can easily be stored in a database prototype and re-used later in the context of

the whole system.

To present our approach, the paper is organized as follows: section 2 describes how the

validation objects, i.e., high level database speci�cations, are expressed in terms of an

EER model. Section 3 formally de�nes the correctness properties which are relevant

for such database speci�cations. Section 4 gives the structural frame for the validation

method, i.e., for how to investigate the de�ned correctness properties. It demonstrates

the power and the theoretical basis of our approach. In section 5, the concrete validation

algorithm is introduced. That section shows how the theory is implemented by an applica-

ble and pragmatic validation method ensuring the consistency of database speci�cations

2



and delivering concrete test data. The paper concludes by an outlook of how to apply

this approach to other speci�cation types.

2 Validation Objects: High Level Database Speci�-

cations

As mentioned in section 1, a database schema represents the speci�cation for a central

component of the entire application software. To describe such schemata, semantic data

models are widely used [10]. Such models usually o�er a graphical language which provides

a comprehensible but still formal enough description of the problem domain during early

development phases. To concretely develop our approach, we choose one representative

of such models: the extended ER model [7]. We will give a brief overview over this

speci�cation technique in the following.

A conceptual database schema: The EER schema

The EER model is an extension of Chen's classical ER model [4]. Due to the additional

concepts and the intuitive graphical speci�cation language, EER speci�cations especially

Name

Name

=

Type : [ocean, sea, lake,...]

Capacity

allowed 
to use

for
responsible

lies at

(1,*)

Owner

Captain (0,1)

(1,*)

(0,*)

(0,1)

Date of birth

Castle

Waters

Waters
Running_

Navigable_
Waters

Stagnant_
Waters

Ship

Person

Name : string

RegistrationNo

Owner : SET OF

Type : [river, stream, ...]

(0,*)

(0,*)

Site : Geo_Position

Figure 1: Example EER diagram

support the development of non-standard database applications [8] (e.g., geoscienti�c

databases). Figure 1 depicts a small example of an EER diagramwhich we use to introduce

the basic concepts. Compared to Chen's original ER model the main extensions include:

3



multi-, complex-, and entity-valued attributes: List, set, bag and record construc-

tors are used to specify ranges of attributes. In this way, complex data types are

built on top of already de�ned or existing data types like int, real, string.

Entity-valued attributes use an entity type as range and may as well be multi- or

complex-valued. With this extension, the classical concepts of \association" and

\aggregation" of entities are modeled [21].

In �gure 1, the attributes of the entity type Castle illustrate di�erent kinds of

attribute ranges

�

. Owner is an entity and set-valued attribute ranging over Person

entities which models that a group of persons may together own a castle. Site

uses the complex data type Geo Position which is de�ned as abstract data type

and could be a record of longitude, latitude, and height over sea level. Name is an

ordinary attribute ranging over the (pre)de�ned data type string.

generalization and specialization of entities: For this purpose, the EER model pro-

vides a \type constructor" (noted as triangle in �gure 1). With a type constructor,

entities of \input types" can be distributed over new entity types, the \output

types". For generalizations, we have many input types, i.e., the speci�c types, and

one output type, i.e., the general type. For specializations, we have one input type,

i.e., the general type, and many output types, i.e., the speci�c types.

A type constructor can be partial or total (\�" or \="). In case of a partial type

constructor, not every entity of an input type needs to appear in one of the output

types. For total type constructors hold that every entity of an input type has to

appear in (exactly) one of the output types.

Additional attributes can be de�ned for the output types, which in principle inherit

the attributes of the input types.

Figure 1 gives an example for the use of type constructors. Input type Waters is (to-

tally) specialized to Running Waters and Stagnant Waters, adding a new attribute

Type to both output types. These specialized entity types become input types for a

(partial) generalization themselves to create the new output type Navigable Waters

to which the attribute Capacity is added.

role concept for relationship types: Through di�erently labeled roles, entity types

may participate multiple times at the same relationship (type) (cf. �g. 1 and the

example below). By using roles, we distinguish di�erent entities of the same entity

type participating at one relationship.

cardinality intervals for relationship types: Cardinality intervals specify how many

times an entity of an entity type may participate at relationships of a certain rela-

tionship type.

In �gure 1, an example for the use of cardinalities and roles can be found for the

relationship type responsible for. An entity of type Person (i.e., a person) can

be responsible for a ship through two di�erent roles: as owner and/or as captain.

The cardinality intervals determine that a person owns at least one ship and may

�

Due to space limitations, we only show only a few data types in the diagram.

4



own as much ships as he/she can a�ord. But a person is only allowed to work on

not more than one ship as a captain.

A detailed discussion of the concepts and semantics of the EER schema is provided in [7].

3 Validation Goals: Correctness Criteria

The quality that can be achieved for a speci�cation is one of the most important ques-

tions posed during the development of an application. Often, designers use an intuitive,

experience-based notion of a speci�cation's correctness to decide to what level their work

is correct. Nevertheless, a more formal classi�cation of \correctness" is necessary

to capture the levels of quality in the development process. For programs, the classical

notions of syntactical, partial, and total correctness hold. But for database speci�cations,

the latter two are useless because they measure correctness of dynamic structures. Con-

sequently, we need new, more suitable correctness criteria for database speci�cations. For

this purpose, we introduce three levels of correctness for database speci�cations:

De�nition 1: Syntactical correctness

A database schema is syntactically correct, if it doesn't violate syntactical and

context-sensitive rules of the speci�cation language used.

This level of correctness holds for both static and dynamic structures and can be easily

checked by a parser.

Although satisfying syntactical correctness, a schema can, of course, violate semantical

constraints. The �rst step to approach semantical correctness for database speci�cations

is to detect contradictions in the schema, i.e., to check whether the schema is consistent.

For this purpose, possible interpretations ("populations") of that schema have to be an-

alyzed. Following logics, an interpretation of a speci�cation is a collection of possible

instances for every element of the speci�cation (in case of EER diagrams: entities for ev-

ery entity type, relationships for every relationship type, etc.). The size of this collection,

i.e., how many instances each element may have, is determined by the structure of the

schema. Speci�cation languages contain rules which constrain the population of a schema.

For example, cardinality intervals restrict the amount of possible instances of relationship

types. We call these rules "quantitative dependencies". They numerically constrain

the possible interpretations of a schema. To check satis�ability for quantitative depen-

dencies, only one of all possible interpretations has to be constructed, thereby proving

that instantiation of the speci�cation is - in principle - possible.

De�nition 2: Consistency

A database schema is consistent, if at least one interpretation exists that

contains �nite, non-empty sets of allowed instances for each element of the

database schema.

In logics, consistency is a well-known correctness criteria for sets of formulas. As a

database speci�cation can be considered as such a collection, the criterion is equally

applicable. In logics, empty or in�nite interpretations are valid, too. However, they make

5



no sense for data to be stored in a database. Hence, we adapted the logics' notion of

consistency to meet database-speci�c correctness requirements.

That syntactical correctness does not necessarily imply consistency, can be seen in �gure 2.

B

R

Q

(2,3)

(1,1)

A

(1,1)

(1,*)a) b)

c) d)

Figure 2: Abstract example of an inconsistent EER schema

Edge c and d imply that the number of entities of type A equals the number of entities

of type B. That means, for each b exactly one a of type A is needed to establish the

relationships q of type Q between A and B. On the other hand, relationship type R (edges a

and b) forces the number of instances a of A to be at least twice as high as the number of

instances b of entity type B, because each b consumes at least two a's and at most three a's.

This is a contradiction to the association of a's and b's via Q. Thus, all conditions together

lead to an inconsistent, unrealizable (although syntactically correct) speci�cation.

Semantical correctness forms the highest level of correctness. It demands a database

schema to re
ect the desired portion of the problem domain. This level of correctness is,

of course, a non-decidable quality [15] which has to be evaluated individually. This holds

especially if the constraints of the problem domain have only been informally speci�ed

(as often the case).

De�nition 3: Semantical correctness

A database schema is semantically correct in regard of the problem domain, if

the database schema is consistent and its (possible) interpretations are equi-

valent to the (possible) interpretations of the problem domain.

To check for semantical correctness involves generating a lot of interpretations and \com-

pare" them with the interpretations developers have in mind. This is often done in the

scope of prototyping activities.

By translating our abstract example in �gure 2 into an intuitive example (cf. �g. 3)

we illustrate what simple kind of errors may cause inconsistent speci�cations. The EER

speci�cation (cf. �g. 3) is intended to model that

Students have to participate in at least two and at most three courses. A course

(of our small world) has at least one participant but in general allows for an

unrestricted number of participants. Students have to and are allowed to pass the

exam for a certain course exactly for once.

6



Course

(1,*) (2,3)

(1,1) (1,1)

pass the
exam

participate

Student

Figure 3: Concrete example of the inconsistent EER schema in �gure 2

According to �gure 2 and the calculations performed, this diagram is inconsistent. Such

kind of inconsistency is often caused by erroneously used cardinality constraints, a well-

known problem of using such constraints. In contrast to the above formulated intention,

the relationship type pass the exam and its associated cardinalities model that a student

passes the exam exactly for one single course in his/her life time. Correspondingly,

a course is modeled to o�er its exam only for one single student. The common pattern

behind this mistake is that cardinality constraints are misused to couple individual entities

via a concrete relationship. In contrast to that, cardinality constraints can only express at

how many actual relationships an individual entity may participate without determining

the other participating entities.

If such mis-interpretations directly result in inconsistent speci�cations, it has to be de-

tected during the prototyping activities. For example, if we would have de�ned the

cardinality interval (0,�) for the course (edge c), the speci�cation would have passed the

consistency check. But validating the speci�cation for semantical correctness would have

revealed that only a small set of degenerated populations could have been generated - in

this case exactly those which allow each student to pass only one exam during his/her

life time. How to perform such a validation for high level database speci�cations will be

shown in the next sections.

4 Validation Method: Principles and Theory

Experiences in the �eld of validation and testing show that a lot of testing e�ort is

done in an unstructured, ad hoc manner. Although, such proceeding may suit for small

speci�cations, it is inadequate for complex and large speci�cations. Thus, the validation

e�ort itself has to be structured and de�ned in advance (cf. �g. 4). Afterwards, such a

structural frame can be tailored to the actually desired validation process.

Structural frame

To start a validation e�ort, we have to identify the validation goals we want to achieve,

i.e., choose the (special purpose) correctness criteria (cf. section 3). These criteria imply

a set of hypotheses which re
ect presumptions about the correctness of the considered

speci�cation. The hypotheses remain constant during the validation procedure and char-

acterize the results which we expect at the end of the procedure. The next step is to

7



testing method

evaluation of
results

==>

validation goals:

develop a set of  hypotheses

correctness criteria 1. consistency
2. approaching semantical correctness

Quit

Stop
classification of
detection and

characteristics

test results delivered

changed parameters

not correct

parameters: 
specification, testing parameters

reaching the  goals
is judged to be unlikely

goals
not  achieved

goals
achieved

of the testing method

specification
modify

modify  constraints

test results
non effective

Figure 4: Structural frame for validation e�ort

execute a testing method. This method bases on collections of generated test data and

should be planned to support or to reject the chosen hypotheses. After the execution of

the testing method, its results are compared with the expected results. Through such an

evaluation, we decide whether we achieved our validation goals and may terminate the

validation procedure or have to continue because the goals have not been achieved. In the

latter case, we detect and classify the characteristics of the failure from the delivered

results. This classi�cation leads to three di�erent conclusions:

� The speci�cation is not correct wrt. our set of hypotheses. Thus, we have tomodify

the speci�cation.

� The delivered results are insu�cient to evaluate our set of hypotheses, e.g., a hy-

pothesis can neither supported nor rejected. Thus, the parameters of the testing

method have to be modi�ed.

� Reaching the goals, i.e., satisfying the hypotheses, is judged to be unlikely. In this

case, the validation procedure should be aborted.

After modifying the incorrect speci�cation or the unsuitable parameters, we reiterate the

validation procedure with the same set of hypotheses until it either stops (goals achieved)

or is aborted (human judgement).

To organize our validation approach concerning the quality of EER-diagrams, we have

to instantiate this structural frame twice. Since our approach aims at two correctness

8



levels: consistency and approaching semantical correctness via prototyping, we need one

validation process for each criterion. Furthermore, we order both processes in a sequence.

Validation for consistency is executed �rst followed by validation for semantical correctness

because the latter requires consistent speci�cations. The principles and theoretical aspects

of both these processes are discussed in the following.

Instantiating the frame: consistency checking

Instantiating the structural frame for consistency checking requires the following parame-

ter's values:

validation goal: check consistency for the speci�cation

hypotheses: a population exists which satis�es the speci�cation

speci�cation: (a syntactically correct) EER diagram

additional

testing parameter: not needed

testing method: (automatically) generate an arbitrary population

for the speci�cation

The validation process for consistency parametrized like above assumes the speci�-

cation to be consistent. The according hypothesis has to be shown by generating a test

population for the EER diagram. Since, it su�ces to �nd one arbitrary population no

additional testing parameters are required to characterize the data.

For our validation approach, we involve a proof which allows to decide whether an EER

diagram is consistent or not. Originally, Lenzerini/Nobili [12] developed such a proof to

decide consistency for classical ER speci�cations [4]. Basically, quantitative dependencies

of an ER diagram, i.e., cardinality constraints, are mapped into a system of linear inequa-

tions. Then, the proof uses the so-called \Ellipsoid-Algorithm" of Papadimitriou/Steiglitz

[20] to decide de�nitely about the existence of a general solution for the system of lin-

ear inequations. The general solution (if one exists) can be analyzed with the algorithm

\fractional dual" [20] to determine de�nitely the existence of an integer solution. The

integer solution of the system of linear inequations describes the size of the population,

i.e., the number of instances for each modeling item (entity type, relationship type, etc.)

used.

We extended this proof to be applicable to systems of inequations re
ecting EER

diagrams [23, 24]. Such speci�cations contain additional quantitative dependencies like

those for type constructors and entity-valued key attributes. To capture an EER speci�ca-

tion in terms of a system of inequations, we developed the following set of transformation

rules:

De�nition 4: System of inequations for EER diagrams

1. cardinality constraints

RE

(min,max)

9



(a) for each cardinality constraint (min,max) with min > 0

jRj

y

� min � jEj

(b) for each cardinality constraint (min,max) with max < 1

jRj � max � jEj

The inequations describe the ratios between the number of instances of

an entity type and a relationship type.

2. type constructions

=/ =/

Em

...
E2E1

En

...
En+1 E1

generalization (n>0) specialization (m>1)

(a) for each type construction

�

n

i=1

jE

i

j � �

m

j=n+1

jE

j

j

(b) additionally, for each total type construction

�

n

i=1

jE

i

j � �

m

j=n+1

jE

j

j

In general, this means that the number of instances of the output types

may not exceed the number of instances of the input types. In case of

total type construction, they are equal.

3. for each entity valued key attribute

E key Ek

jE

k

j � ", " = jEj

E

k

must provide as many instances that each entity of E can be uniquely

identi�ed. If E possesses more than one key attribute, " may decrease

because a combination of values is possible (for how to calculate ", cf.

[23]).

4. for each E, R contained in the EER speci�cation

jEj, jRj � 1 and jEj, jRj < 1

to guarantee �nite and non-empty populations.

In [24], we show that it is possible to transform arbitrary EER diagrams into such a system

of inequations. Hence, the consistency of EER schemata becomes a decidable

quality.

In the following, we illustrate our de�nition by a simple example. For the EER diagram

given in �gure 5, the transformation yields the following system of inequations:

y

jRj is a variable denoting the number of instances for R, analogously for E, etc.

10



R

E 2

E 3 E 4Tot

E 1

(1,1) (2,*)

Figure 5: Example of quantitative dependencies in an EER schema

a) jRj � 2� jE

3

j cardinality constraint

b)� c) jE

2

j = jRj cardinality constraint

(, jE

2

j � jRj ^ jE

2

j � jRj)

d)� e) jE

1

j + jE

2

j = jE

3

j type construction

(, jE

1

j + jE

2

j � jE

3

j ^

jE

1

j + jE

2

j � jE

3

j)

f) jE

4

j � jE

3

j key attribute

g)� k) jE

1

j � 1; : : : ; jE

4

j � 1; jRj � 1 no empty sets of instances

l)� p) jE

1

j < 1; : : : ; jE

4

j < 1; jRj < 1 only �nite sets of instances

The solution of this system of inequations describes the size of the population of the

schema. In our example, no solution exists because the inequations a) and b){c) imply

jE

2

j � 2� jE

3

j which means a contradiction to d){e). Thus, the schema depicted in

�gure 5 is not consistent. The inconsistency is obviously caused by the \dependency

cycle" [E

3

, type constructor, E

2

, R, E

3

] in which every element quantitatively depends on

itself through the cyclic path.

In general, for non-cyclic parts of a schema, it is always possible to �nd an (inte-

ger) solution for the number of instances. This holds because in a non-cyclic path no

contradictions in the ratios of participating schema elements can occur. In terms of the

corresponding system of inequations, this means that more variables than inequations

exist [20]. Special care must only be taken for cyclic dependencies which cause the

system of inequations to be (row) degenerated, i.e., more inequations than variables exist

(cf. �g. 5: 5 variables, 16 inequations).

In principle, determining the existence of a (nonempty, �nite) interpretation for an indi-

vidual EER diagram corresponds to solving the related system of inequations. From a

general solution, an integer solution can be calculated which describes the size of possible

populations. The ability to decide the consistency of an EER speci�cation provides our

corresponding validation process with a formal criterion when to terminate - either a so-

lution exists or not. With this certainty of consistency, the next level of correctness, the

semantical correctness (cf. de�nition 3), can be tackled.

11



Instantiating the frame: approaching semantical correctness

Instantiating the structural frame to check for semantical correctness needs the following

parameter's values:

validation goal: approaching semantical correctness for the speci�cation

hypotheses: 1. the speci�ed test populations satisfy the speci�cation

2. the speci�cation meets the user's intention

speci�cation: (a consistent) EER diagram

testing parameter: 1. desired quantities of instances for (part of) the speci-

�cation, i.e., the size of the population

2. collections of \real-world" (i.e., readable, pronounce-

able) basis-data

testing method: 1. (automatically) generate populations for the speci�ca-

tion, according to the testing parameters

2. develop queries to prototype the population

In fact, this set of parameters equals those necessary for prototyping activities. This is

not surprising because approaching semantical correctness heavily involves user interac-

tion. Concerning the hypotheses, we assume the speci�cation to have passed the syntac-

tical and consistency check and to re
ect the desired portion of the problem domain and

that our intended, i.e., speci�ed, populations will satisfy it.

To support prototyping activities, the population should ful�ll certain properties. Our

approach o�ers to control the generation of populations in two ways (testing parameters).

We can restrict its size and require the concrete data to be better comprehensible, i.e.,

pronounceable by a user. The latter is adopted from a former low level testing approach

[17] and is part of the concrete algorithm [13].

Sizing the population means to modify the system of inequations for the EER speci�cation.

As stated in de�nition 4.4, the number of instances for each entity and relationship type

has to be greater than 0 and less than 1. Consequently, sizing the number of instances

means to replace these inequations by such which give the desired number. Obviously,

this modi�ed system of inequations requires to be checked again for consistency. Thus,

introducing testing parameter 1. might imply a second validation process for consistency

(if the quantities haven't been calculated automatically).

Applying the testing method means to generate concrete test populations (cf. section 5)

and to develop a collection of queries. These queries should re
ect the expected workload

of the system and should test for semantical meaning as well as boundary cases or coverage

criteria. We are still investigating whether part of such queries can be automatically

derived from an EER speci�cation. With the generated populations and the collection of

queries at hand, the validation process follows the structural frame.

5 Validation Method: Pragmatic Algorithm

In the last section, we introduced a proof-based method to check consistency and seman-

tical correctness via prototyping. This method is only of theoretical bene�t due to its

enormous complexity which is measured in terms of the complexity of a standard linear

12



optimization problem [20, 23]. Additionally, by solving the system of inequations, the

information is lost where errors occur in the diagram. But this is necessary information

to correct inconsistencies.

Hence, we need a pragmatic validation method which is applicable within reasonable

time restrictions and which e�ectively helps to localize errors. To satisfy the latter,

references to the structure of the speci�cation have to be managed during the execution

of the testing method. To reduce the complexity, the method has to be specially tailored

to the needs of the underlying speci�cation, thereby, avoiding the inherent complexity

of general approaches. For this purpose, we developed and implemented [23] a concrete

validation algorithm for EER diagrams. This algorithm bases on the transformation of

an EER diagram into a so-called cardinality graph (cf. �g. 6). A cardinality graph

describes an EER diagram in terms of its quantitative dependencies (cf. sec. 3) and

additionally, keeps a relation between them and the structure of the EER diagram. Thus,

our algorithm �rstly constructs a cardinality graph from the EER diagram. We give the

corresponding construction rules in de�nition 5.

De�nition 5: Cardinality graph cg

eer

= h E, R, K

1

, K

2

i for an EER

diagram eer.

1. E: a set of nodes.

Each node represents an entity type of the EER diagram eer,

2. R: a set of nodes.

Each node represents a relationship type of the EER diagram eer,

3. K

1

: a set of non-directed, labeled edges.

Each edge represents a cardinality constraint (min,max) of the EER di-

agram eer with (min,max) 6= (0,�). An edge connects the two nodes in

cg

eer

representing the entity and relationship type for which the cardi-

nality constraint is de�ned. The edge is labeled with this cardinality

constraint interval.

4. K

2

: a set of directed, labeled edges.

Each edge represents a cardinality constraint induced by a type construc-

tion or a entity valued key attribute (cf. de�nition 4.2 and 4.3). It is

labeled twice:

� For total type constructions with \=", for partial ones with \�",

and for entity valued key attributes always with \�".

� With an identifying number to distinguish di�erent constructs.

In case of entity valued key attributes, the edge points to the node rep-

resenting the entity type to be identi�ed and connects it with the node

representing the key attribute's entity type. In case of generalization,

the edge points from the nodes representing the input entity types to the

node representing the output entity type. In case of specialization: vice

versa.

To illustrate this de�nition, we transform an EER diagram into its corresponding cardinal-

ity graph (cf. �g. 6). Please note that connections between entity types and relationship

13



types marked in the EER diagram with cardinality constraints (0,�) don't appear in the

graph, e.g., see E

7

, R

1

, since they don't restrict the possible populations (cf. de�nition

5.3). Furthermore, multiple relationships like those between E

2

and R

1

are aggregated

into one restricting edge labeled by the strongest constraint determined from the multiple

relationships.

E4

EER diagram cardinality graph

E5 R3

E3R2E6

R5R4

E7 R1

E2

E1(0,*) (1,1)

(2,*)(3,*)(0,1)

(1,1) (1,2)

(0,1) (1,2)

(1,3)

(0,*)

(0,2)

(1,1)

(0,2)

E2

R1

R4 R5

E7

E6

E5

R2 E3

R3

E1

(3,*)(0,1)

(1,1) (1,2)

(1,3)

(0,2)(0,2)

(1,1)

(2,*)

(1,1)
(1,1)

E4

Label:
- 1.
- 

Label:
- 2.
- 

Figure 6: Example how to transform an EER diagram into a cardinality graph

On top of such a cardinality graph, it is now possible to detect critical paths. A critical

path in the context of consistency checking is a cyclic path in the cardinality graph where

entity types quantitatively depend on themselves. Such re
exive dependencies are the

only quantitative dependencies which can (but must not) cause inconsistencies. Hence,

detecting and checking critical paths forms the second step of our algorithm.

We distinguish two types of critical paths in the cardinality graph (cf. �g. 6): pure

entity/relationship cycles like E

6

, R

5

, E

7

, R

4

, E

6

or cycles containing type con-

structions like E

3

, E

1

, R

1

, E

3

. Each such path and their combination represent a possible

consistency con
ict. Hence, each individual critical path and overlapping critical paths

have to be checked. Non cyclic dependencies don't have to be checked since they don't im-

ply consistency con
icts. As stated in section 4, it is always possible to generate instances

for the related modeling concepts.

Checking pure entity/relationship cycles

To check pure entity/relationship cycles, we compute a so-called cardinality condition

for each such cycle. For this purpose, we choose a direction how to circulate through a

cycle. Due to the chosen direction and starting from one node, we calculate the depen-

dency of the node from itself in terms of cardinality constraints. To achieve this, we have

14



to regard that depending on the chosen direction, an edge of the graph may describe a

dependency from an entity to a relationship or vice versa.

This is re
ected by the following, direction-dependent quantitative dependencies:

� The direction-dependent quantitative dependency of entity type E represented by

node n

e

to relationship type R represented by node n

r

amounts to

min� jEj � jRj � max� jEj

with (min,max) the label of the edge connecting n

e

with n

r

.

� The direction dependent quantitative dependency of relationship type R represented

by node n

r

to entity type E represented by node n

e

amounts to

1

max

� jRj � jEj �

1

min

� jRj

with (min,max) the label of the edge connecting n

e

with n

r

and

1

min

=1 for min = 0 and

1

max

= 0 for max = 1

Now, to calculate the dependency for a speci�cation element X (represented by node n

x

)

from itself, we use the above direction dependent quantitative dependencies. For a cycle in

the cardinality graph with p nodes, we get p such dependencies with p di�erent variables

(one for each node). Now, we can eliminate p-1 (node's) variables via substitution and,

hence, express the re
exive quantitative dependency for the remaining node n

X

as follows:

a

1

� a

2

� : : : a

p

� jXj � jXj � b

1

� b

2

� : : : b

p

� jXj

Dividing this inequation by jXj

z

yields the cardinality condition for the considered cycle

which has to be satis�ed in case of consistency:

p

Y

i=1

a

i

� 1 �

p

Y

j=1

b

j

Such a cardinality condition is easy to compute and can be calculated independently from

the starting node. Thus, it is possible to decide for each individual entity/relationship

cycle whether it is consistent or not. Fortunately, it can be shown that even overlapping

cycles (as those in �gure 7) can be proven to be consistent by checking each individual

cycle contained.

X1 X2

X3

X4X5

1 2
3

Figure 7: Overlapping cycles in cardinality graph

This holds because if each individual cardinality condition is satis�ed (for example: for

cycles 1, 2, and 3 of �g. 7) then a strongest cardinality condition can be derived from

z

jXj> 0isobviousaswearelookingfornon � emptysetsofinstance.

15



the set of individual ones which gives the smallest interval [

Q

p

i=1

a

i

;

Q

p

j=1

b

j

] valid for all

overlapping cycles.

Using our example graph in �gure 5 for illustration purposes, we calculate the following

cardinality condition for the two pure entity/relationship cycles:

1) E

5

, R

3

, E

3

, R

2

, E

5

: 1 �

1

2

� 1 �

1

2

� jE

5

j � jE

5

j � 3 � 1 � 1 � 1� jE

5

j

1

4

� 1 � 1

2) E

6

, R

5

, E

7

, R

4

, E

6

: 1 � 0 � 0 � 1� jE

6

j � jE

6

j � 2 �

1

3

� 1 � 1� jE

6

j

0 � 1 �

2

3

The cardinality condition of the �rst cycle is satis�able and, therefore, the corresponding

speci�cation part consistent whereas the second cardinality condition indicates inconsis-

tency. Thus, the �rst part of our second algorithm step consists of detecting all pure

entity/relationship cycles in the cardinality graph of the EER speci�cation and to calcu-

late and check the cardinality condition for each such cycle. Consequently, the rest of the

second algorithm step deals with the remaining critical paths:

Checking cycles containing type constructions

To check cycles containing type constructions, we have to ensure that the quanti-

tative dependencies between entities of input and output types (cf. de�nition 4.2) don't

con
ict with dependencies induced by cardinality constraints (cf. de�nition 4.1). Thus,

we identify all paths in the cardinality graph from a node n

out

representing an output

type E

out

to a node n

in

representing an input type E

in

of a certain type construction, e.g.,

E

1

, R

1

, E

3

in �gure 6. For each such path, we calculate the dependency from the output

type to the input type with the help of the direction-dependent quantitative dependencies

introduced above. This results in a cardinality condition for each path � with k the

number of connected nodes:

k

Y

i=1

a

i

j E

out

j � j E

in

j �

k

Y

j=1

b

j

j E

out

j

Since, several paths may exist in the graph, leading from n

out

to n

in

, several cardinality

conditions may exist. In order to guarantee consistency, we have to ensure the strongest

quantitative restriction jointly induced by all paths �. This means to �nd the overlap-

ping interval for all cardinality conditions of the di�erent paths:

MAX

�

(

k

Y

i=1

a

i

) j E

out

j � j E

in

j � MIN

�

(

k

Y

j=1

b

j

) j E

out

j

or for short: A� j E

out

j � j E

in

j � B� j E

out

j

Since, we may have sets of input types for one output type in case of generalization

x

, the

total number of all necessary output entities has to be calculated in order to derive the

x

vice versa for specialization.

16



number of the necessary input entities (cf. de�nition 4.2). This results in the following

expression:

(�

E2inputtypes

A

E

)� j E

out

j � j E

+

in

j � (�

E2inputtypes

B

E

)� j E

out

j

The expression above yields a relation between (�

E2inputtypes

A

E

) and (�

E2inputtypes

B

E

)

which describes the quantitative dependencies between input and output types indepen-

dent from the dependency induced by the type construction itself. In case of consistency,

the relation must be numerically satis�able and may not con
ict with the quantitative de-

pendency induced by the type construction. The interval above can easily be computed for

each type construction and analyzed wrt. its inherent type construction dependencies

{

.

To illustrate this proceeding with an example, consider the type construction in �gure 6.

The input types E

3

and E

4

depend on the output type E

1

via the type construction.

Additionally, E

3

depends on E

1

via the path E

3

, R

1

, E

1

. For E

4

, no additional dependency

exists. The twofold dependency for E

3

has to be checked for consistency con
icts.

First, we calculate the cardinality condition for the detected path:

E

1

;R

1

;E

3

:

1

2

� 1� j E

1

j � j E

3

j � 1 � 1� j E

1

j

Since no other path has to be considered, we get A

E

3

=

1

2

and B

E

3

= 1. For E

4

,

the cardinality conditions are set to A

E

4

= 0 and B

E

4

= 1 which means no restriction

(default). This results into:

(A

E

3

+A

E

4

)� j E

1

j � j E

+

3;4

j � (B

E

3

+ B

E

4

)� j E

1

j

1

2

� j E

1

j � j E

+

3;4

j � 1� j E

1

j

This expression gives the quantitative dependencies between the input and output ele-

ments of a type construction independent from its inherent dependency. This inherent

dependency resulting from the type construction itself taken into account, implies (cf.

de�nition 4.2):

j E

3

j + j E

4

j � j E

1

j ) j E

+

3;4

j � j E

1

j

which doesn't con
ict with the above expression.

Deciding consistency for such critical paths reduces to analyzing the relation of the A's

and B's for a number of well-de�ned error cases [23]. With this check, the second step of

our algorithm terminates. As result, consistency or inconsistency is delivered. In case of

consistency, test data generation follows.

Test data generation

Now after the �rst two algorithm steps, consistency is determined. The calculated in-

tervals for the critical paths determine the ratios between the number of instances for

{

Due to the two kinds of type constructions, we distinguish three �ne grained error cases which we

will not present here. They are discussed in detail in [23].

17



speci�cation elements, i.e., entity and relationship types. We employ this information to

actually generate test data, respectively, a test population.

In this step of the algorithm (step 3), an interactive process starts which expects proposals

for instances' numbers from a user. Due to the (pre)calculated ratios, the proposed

numbers are checked for satis�ability and either accepted or rejected. In case of rejection,

proposals for consistent quantities are o�ered by the algorithm that can be accepted by

the user. If no initializing numbers are given, a population of arbitrary size is generated.

Stagnant_
Waters

Waters
Running_

Waters
Navigable_

responsible
for

allowed 
to use

Position
Geo_

Registration No Ship

Date of birth

Name
Person 

Site

Name

Castle

Type

WatersName

Type

lies at

Capacity

Real

Figure 8: Example dependency graph for the EER diagram in �g. 1

In step 4 of the algorithm, the concrete test data generation starts. For this purpose,

we transform the original EER diagram into a so-called general dependency graph.

We brie
y introduce such a graph by example (cf. [24] for a broader overview). Figure 8

shows such a general dependency graph for our example EER diagram in �gure 1. Each

node represents an element of the EER diagram, e.g., an entity or relationship type, an

attribute, or a data type. Each edge expresses an existential dependency of the node

the edge origins in from the node it points to. For example, an instance of a relationship

type can only exist if the participating entities exist. In turn, each entity needs the values

of its attributes, an entity of an output class requires the existence of a corresponding

entity in the input class, and an attribute needs values of its range. In �gure 8, lies at

depends on a Castle entity and on a Waters entity, the Castle entity itself depends on its

attribute values Site and Name. Site depends on values for the data type Geo Position

which in turn depends on its component data types latitude, longitude, and height, each

of them ranging over Real numbers.

We use such a general dependency graph to describe an execution order for the test

data generation. Test data is generated for each node of the dependency graph for which

two conditions hold: Firstly, no data yet exists for the node and, secondly, the node is

independent from any other node without test data. Due to this order, a traversal through

the dependency graph is de�ned. Special care must be taken for cyclic dependencies but

18



since the original speci�cation is known to be consistent such cycles can be handled via

backtracking steps.

The basic philosophy for our test data generation comprehends also a pool concept. In

contrast to other approaches with complex rejection mechanisms, the certainty of a consis-

tent speci�cation allows to employ an optimistic constructive approach. We successively

generate value pools for each speci�cation element represented in the general dependency

graph, constructing them from already completed pools of validated (sub-)pools. Accord-

ing to the execution order, the algorithm starts to generate data pools for the data types,

e.g., int, real, string. From these basic pools, pools for the complex data types, e.g.,

Geo Position, are constructed. On top of these data pools, values for attributes are

chosen and assembled to values for entities, etc. Using values pools supports to

� explicitly control and limit (to the necessary minimum) the number of actual in-

stances for a speci�cation element,

� de�ne speci�c characteristics for such pools resp. its values, e.g., statistical distri-

butions, pronounceability, or the use of \real-world" data,

� to reuse former pools, e.g., for names of persons

After the successful construction of an entire population, the data is stored in the database

prototype referring to the EER speci�cation. There, it can be queried or represented by

a browser [8].

6 Conclusions

We presented a validation approach which focusses on the validation of central database

components of application software. Its original basis comprises a formal proof and a

formal classi�cation of special purpose correctness levels to be achieved. This solid, the-

oretical foundation enables to develop a pragmatic validation algorithm which

� de�nitely determines whether a database speci�cation is consistent or not and, thus,

yields a terminating but still pragmatic method to prove this property,

� uses only the speci�cation and user information about the size of the population

and the desired characteristics of the value pools to generate a population, i.e., test

data,

� supports reuse of existing value pools in order to reduce the validation e�ort,

� supports high level prototyping of the database component as well as of associated

functional speci�cations, because the data can easily be stored and queried from a

corresponding database prototype.

Currently, we are investigating how this validation approach can be adapted to other spec-

i�cation types, e.g., object oriented speci�cations. Due to the similarities of structuring

concepts of semantic data models and object structures, e.g., generalization, object valued

19



attributes, etc, the approach seems to be applicable for object oriented speci�cations, too

[11]. Additionally, the company TNO at Delft (The Netherlands) checks whether this

approach is applicable for the validation of their data models (using the speci�cation lan-

guage EXPRESS). Furthermore, we are investigating to what extend queries for standard

test cases, e.g., boundary cases, can be derived from an existing speci�cation.

References

[1] B. Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold

Company, 1984.

[2] G. Bernot. Testing Against Formal Speci�cations: a Theoretical View. Technical

Report URA 1327 du CNRS, Departement de Mathematique et d'Informatique, Ecole

Normale Superieure, Paris, 1991.

[3] F. Bry and R. Manthey. Checking Consistency of Database Constraints: A Logical

Basis. In Proc. 12th Int. Conf. Very Large Data Bases, pages 13{20, 1986.

[4] P.P. Chen. The Entity-Relationship Model - Towards a Uni�ed View of Data. ACM

Transactions on Database Systems, 1(1):9{36, 1976.

[5] L. Delcambre and K. Davis. Automatic Validation of Object-Oriented Database

Structures. In Proc. 5th Int. Conf. Data Engineering, pages 2{9. IEEE Computer

Society, 1989.

[6] O. DeTroyer. On Data Schema Transformation. PhD thesis, University of Tilburg,

1993.

[7] G. Engels, M. Gogolla, U. Hohenstein, K. H�ulsmann, P. L�ohr-Richter, G. Saake, and

H.-D. Ehrich. Conceptual Modelling of Database Applications Using an Extended

ER Model. Data & Knowledge Engineering, 9(2):157{204, 1992.

[8] G. Engels and P. L�ohr-Richter. CADDY: A Highly Integrated Environment to Sup-

port Conceptual Database Design. In G. Forte, N. Madhavji, and H. M�uller, edi-

tors, Proc. 5th Int. Workshop on Computer-Aided Software Engineering, Montreal,

Kanada, pages 19{22. IEEE Computer Society Press, 1992.

[9] U. Hohenstein. Automatic Transformation of Entity-Relationship Schemas into Re-

lational Schemas. Technical Report 88-10, Technical University of Braunschweig,

1988.

[10] R. Hull and R. King. Semantic Database Modeling: Survey, Applications, Research

Issues. ACM Computing Surveys, 19(3):201{260, 1989.

[11] B. Hulvershorn. Similarities between the Generation of Test Data for EER Schemata

and TROLL Schemata (in German). Project Thesis, Technical University of Braun-

schweig, 1993.

[12] M. Lenzerini and P. Nobili. On the Satis�ability of Dependency Constraints in

Entity-Relationship Schemata. Information Systems, 15(4):453{461, 1990.

20



[13] P. L�ohr. Automatic Generation of Pronouncable Strings (in German). Project Thesis,

Technical University of Braunschweig, 1984.

[14] N. Lyons. An Automatic Data Generating System for Data Base Simulation and

Testing. Database, 8(4), 1977.

[15] Z. Manna. Mathematical Theory of Computation. Mc Graw - Hill, USA, 1974.

[16] A. Neufeld, G. Moerkotte, and D. Lockemann. Generating Consistent Test Data:

Restricting the Search Space by a Generator Formula. The VLDB Journal, 2(2):173{

213, 1993.

[17] L. Neugebauer and K. Neumann. Schema directed Generation of Test Data for

Relational Databases (in German). Technical Report 85-02, Technical University of

Braunschweig, 1985.

[18] H. Noble. The Automatic Generation of Test Data for a Relational Database. Infor-

mation Systems, 8(2):79{86, 1983.

[19] L. Osterweil and L.A. Clark. A Proposed Testing and Analysis Research Initiative.

IEEE Software, 9(5):89{96, 1992.

[20] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algorithms and

Complexity. Prentice-Hall, USA, 1982.

[21] J.M. Smith and D.C.P. Smith. Database Abstractions: Aggregation and Generaliza-

tion. ACM Transactions on Database Systems, 2(2):105{133, 1977.

[22] B. Thalheim. Fundamentals of Cardinality Constraints. In G. Pernul and A.M. Tjoa,

editors, Proc. 11th Int. Conf. on the Entity-Relationship Approach, LNCS 645, pages

7{23. Springer, 1992.

[23] A. Zamperoni. A Conceptual Framework how to Generate Logical Models for EER

Schemata. Diploma Thesis (in German), Technical University of Braunschweig, 1992.

[24] A. Zamperoni and P. L�ohr-Richter. Enhancing the Quality of Conceptual Database

Speci�cations through Validation. In R.A. Elmasri and V. Kouramajian, editors,

12th Intern. Conf. on the Entity-Relationship Approach, pages 87{99, 1993.

21


