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Abstract

Purely sequential life cycles can't cope with the developer's need for relatively unrestricted

and \unordered" creativity when dealing with the development of innovative software systems.

Nevertheless, project management usually favors sequential project phasing, because sequential

processes are easier to plan, control and monitor.

In this paper, we present a life cycle plan that integrates an incremental and iterative devel-

opment style, relying on evolutionary prototyping, with the management's perspective of clear

and unambiguous project phasing. As consequence of applying this \hybrid" life cycle plan, the

quality of innovative, complex software systems can be increased, while risks can be detected

better and earlier.

We support validity of our approach by also reporting experiences we made when applying

the life cycle plan to two large, multilateral software projects, and compare them to two systems

developed following the traditional approach.

Keywords: incremental development, life cycle models, evolutionary prototyping, project management, risk
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1 Introduction

When dealing with the development of innovative, complex software systems, such as e.g. neural

networks for seismic simulation, traditional software engineering approaches are no longer suitable.

Prototyping has emerged as one of the prime methods to facilitate, or even enable, the development

of such innovative, experimental software products. Applying prototyping in software development

consequently implies an adjustment of the software process model, too. Prototyping is strongly

related to incremental or evolutionary life cycle models [Boe88], as opposed to the traditional

sequential life cycle models [Boe76]. Nevertheless, project management often favors traditional

sequential life cycles as the waterfall model and its variations because sequential processes are much

easier to plan, control and monitor. Our paper describes how an incremental life cycle incorporating

evolutionary prototyping as main concept can be integrated with the management's perspective of

sequential project phasing , and reports the experiences we made applying such an integrated process

plan during the development of two large geophysical software systems, compared to two similar

systems developed earlier in the traditional manner.

At TNO

1

, we succeeded to de�ne and to establish a \hybrid" software process plan which

bridges the gap between the developers' needs for relatively unrestricted and \unordered" creativity

(progress-by-experience) and the management's need for organization, clearness and controllability

of the development process (progress-by-planning). With this approach, we were able to increase

the quality of our software development by capturing better the requirements of our customers,

and at the same time limiting development time and technical risks of the �nal product.

Section 2 shows how an incremental and iterative life cycle as consequence of applying evo-

lutionary prototyping looks like from the developer's perspective, and how it can be consistently

integrated with the project management's sequential view of the software life cycle. In section 3,

evolutionary prototyping as basis for a more sophisticated software engineering is motivated and

described. Experiences with two recent, multilateral projects, carried out at TNO Institute of Ap-

plied Geoscience, are given and evaluated in regard of development time and risk management in

section 4. Section 5 concludes the paper by summarizing assets and constraints of our approach.

2 An Evolutionary Life Cycle: Two Perspectives

The two basic components of a life cycle model are the set of development phases , characterized

by the activities to be performed in them and their resulting deliverables, and the execution order

in which the activities are combined to produce these deliverables [LRR93]. In practice, life cycle

models are not only used to describe di�erent forms of system development. The goal of using

normative models is to have a validated prescription of the development process and the behavior

of the people involved in it. Models used in this way to control a project are more adequately

described by the term life cycle plan [BKKZ92].

Today, most of the large software development projects follow the line of a life cycle plan. The

most common plan is the sequential waterfall model [Boe76]. In the waterfall model, the activities

are �xed and arranged in a temporal sequence. The basic assumption behind this is that a system

can be developed by a sequence of translations of well-de�ned speci�cations from an abstract

problem description to a program that meets all the necessary quality criteria. The in
uence that

these kind of sequential life cycle plans have exercised on software development in recent years

can't be neglected: they match the project management's requirements of a clearly organized and

1

At the TNO Institute for Applied Geoscience, Delft, The Netherlands, we develop experimental information

systems and simulation programs for oil & gas exploration and production (cf. section 4).
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veri�able development process. Nevertheless, there are important factors which indicate that this

is not the (only) way how software is developed:

� By applying the waterfall model, software development is primarily seen as technical problem

of stepwise transforming a problem description via a set of speci�cations into its program

equivalent. The communication problem between users and developers is mostly totally ne-

glected, as users are only involved at the beginning (requirements speci�cation) and at the

end (�-testing). The relatively late feedback can result in a serious mismatch between the

users' expectations and wishes regarding the solution of their application-speci�c problem on

the one hand, and the technical interpretation, i.e., the system, o�ered by the developers.

� Even if there is exchange of ideas, i.e., the speci�cation documents are discussed with users, it

has to be taken into account that formal, non-executable system speci�cations are unsuitable

for communication between developers and users. As the software changes the working situ-

ation, the user needs \material" to visualize the new requirements, and on which to develop

creativity and a feeling for the new possibilities. This is where prototyping comes into the

game.

� Sequential life cycle plans do not meet the developing and the developer's reality: speci-

�cation and implementation are distinct activities, but they are also tightly related in a

bidirectional relationship. On the one hand, the implementation realizes the abstract speci�-

cation of system functionality and structure. But on the other hand, the type of the potential

implementation in
uences what aspects and parts of a system have to be speci�ed [GS93].

The more is known about the projected implementation, the more precise and stable the

speci�cation can be, helping to avoid unrealistic or inconsistent requirements. But this kind

of \change management" is often not implemented in sequential life cycle plans. Even more,

in the case of research & development software (cf. section 4), the appropriate requirements

are simply not su�ciently speci�able at the beginning of a project.

� Last, but not least, the gaining attention that is paid to system maintenance conceals the

true problem concerned with adapting a system to the application context . Furthermore, the

maintenance phase often falls outside the managed development cycle, resulting in unplanned,

instant, bug-and-change-�xing activities.

Considering these factors, the traditional life cycle model has to be revised for projects expected

to need more freedom in their development. Within this revision, the set of activities and resulting

deliverables does not have to defer from sequential life cycles. But its execution order has to take

the iterative and incremental nature of an evolutionary system development into account, without

loosing the managerial control aspects out of sight.

At TNO, we established a life cycle plan that incorporates relative unrestricted, but controlled

evolution of the software product, based on an evolutionary life cycle model . Note that the base

document de�ning the life cycle plan is a software quality assurance plan [Ger93] that conforms en-

tirely to the ANSI/IEEE Std. 730-1984

2

. Interpretation of this standard is in most cases consistent

with the ANSI/IEEE Std. 983-1986

3

and other standards

4

.

An overview of such an evolutionary development life cycle can be found in �gure 1 to �gure 3.

In these �gures, the iterative approach and its related sequential perspective can be depicted. The

2

IEEE Guide for Software Quality Assurance Plans [IEE84]

3

IEEE Guide for Software Quality Assurance Planning [IEE86]

4

These standards are collected in [IEE89].
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inner part of the cycle shows the development process from a technical, developer's perspective.

The network of nodes indicates tasks and activities to be carried out, while arrows show their order

and interconnection. In order to have the desired 
exibility of an incremental approach, multiple

transitions are possible at certain stages (cf. �gure 2).

The outer circle of deliverables lists the desired order of delivery from the management perspec-

tive. Management, software quality assurance, etc. can be seen as taking along this temporal frame.

For clarity, not all individual deliverables are shown in this picture. Con�guration plan, veri�cation

& validation plan, user documentation, among others, are not depicted here, but mentioned in the

following description of the life cycle.
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Figure 1: The evolutionary software life cycle, part 1: Preparation/Analysis Phase

The main phases re
ect the subdivision of the life cycle into iterating and non-iterating parts:

preparation/analysis , evolution, and �nalization (plus operation/maintenance).

The developer's perspective

Triggered by the Initiative Plan, during Preparation, activities are carried out to produce all

deliverables required at the project start. Principle deliverables are the Software Project Mana-
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gement Plan (SPMP) and the Software Quality Assurance Plan (SQAP). Also in this phase, the

contractual and �nancial arrangements are settled.

In Concepts & Ideas , the Basic Concepts, considered fundamental for the application are gath-

ered, worked out, and documented. Once established, they are not to be changed anymore, as they

represent the core ideas of the project. In contrast to the basic concepts, design and implementation

concepts may change during the project.

The Requirement Analysis activity concentrates on a description of how the resulting software

has to look like, and will eventually result in a global Software Requirements Speci�cation (global

SRS), together with the result of the �rst Design activity, a global Software Design Description

(global SDD). It is crucial that the requirements are su�ciently worked out (but do not have to

be complete) and concise to start Prototyping . The construction of a �rst prototype concludes

the �rst, non-iterating part of the development process. All these activities (and deliverables) are

shown in �gure 1 (the gray symbols).
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Figure 2: The evolutionary software life cycle, part 2: Evolution Phase

Subsequently, the global system layout, as laid out in the deliverables produced so far, is worked

out in full detail. Focus is on those concepts and technical issues that are expected to be most

critical for the future system. Attention may easily shift between Requirements Analysis , Design
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and Prototyping , as can be seen in �gure 2, indicated by the gray process symbols. By this iterative,

unrestricted approach, individual parts of the system can further be worked out in a number of

cycles of requirements-design-prototyping . By using evolving versions of the same prototype as

means of communication with the users, the discussion concerning the relative merits of alternative

(design and implementation) concepts and solutions can be narrowed down. The special role of the

prototype is further discussed in section 3.
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Figure 3: The evolutionary software life cycle, part 3: Finalization/Testing Phase

At the end of this evolution, the code of the incrementally developed prototype is completed and

brought into a state of �nalization, meeting the software quality standards de�ned in the SQAP.

Acceptance is ensured by �- (factory acceptance) and �- (site acceptance) testing (FAT, SAT),

and preparations for carrying out maintenance are taken. The tasks and deliverables of this - again

sequential - part of the life cycle are marked gray in �gure 3.

Operation and maintenance are not shown in �gure 3, but close the software life cycle, and can

trigger further evolution of the project.

The project management perspective

Whereas the 
exibility of the incremental approach of tasks and activities presented above may
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appear convenient from a technical perspective, the evolutionary approach is generally to fuzzy

and too far beyond control from a managerial perspective. Having such a complex item as the

prototype as reference \documentation" may also blur the exact taxation of the current project

status. Therefore, for the management, tasks and activities as well as deliverables need to be put

in a clear and unambiguous time frame in order to avoid misplanning.

This can be best accomplished by \unfolding" the network of activities in �gure 1 to 3, resulting

in distinct project phases and a clear sequence of deliverables that each can be attributed to a project

phase (cf. �gure 1 to 3, the outer circle).

The Preparation/Analysis Phase emphasizes on a global work out of the concepts, and a global

layout of system requirements and system architecture. In �gure 1, the shaded deliverables indicate

the deliverables completed during this phase. Again, this phase is not intended to be carried out

iteratively.

As can be read from �gure 1, deliverables include:

� a description of the basic concepts applied � a global SRS � a global SDD � a global

Test Plan � a �rst version of the Prototype

These deliverables typically mirror the global layout of the system so far. In addition, deliver-

ables serving as preparation for further development will be produced:

� an SPMP � a SQAP � Programmer'sGuidelines � a Con�guration Plan � a Veri�cation

& Validation Plan

The Evolution Phase hosts the cyclic part of the system development. During this phase, in-

dividual parts of the system are analyzed in detail, implemented by, and added to the prototype.

SRS and SDD may no longer be anchor points , i.e., validated baseline documents, for supervis-

ing and controlling development. As consequence, the prototype incorporates the crucial role of

representing the state-of-the-art with respect to conceptual solutions and the system architecture.

The prototype is used to discuss and validate decisions taken. Checkpoints for the progress of

the project are when a \cycle" is �nished by evaluation of, and feedback about the last prototype

version by the user. Implications for the project managment which arise from this new role of the

prototype within the project are discussed at the end of section 4. In �gure 2, the deliverables

marked gray represent the deliverables of this project phase. At the end of this phase, the

� SRS � SDD

will have reached their �nal form. Moreover, the code of the

� Prototype

needs to be in such shape that Finalization, the next phase, can be started. To work with the

prototypes, (short) User Instructions are written, but the �nal User Manual is not supposed to be

completed before the �nalization phase, as the prototype might change extensively.

During the Finalization/Testing Phase, all products and deliverables will be brought in the form

prescribed in the SQAP, and performing as described in the SRS. Project management's focus is

on the deliverance to and acceptance by the customer. Also in this project phase, the preparation

for carrying out maintenance takes place. The gray deliverables in �gure 3 indicate the products

and documents completed in this project phase:

� User Manual � Detailed Test Plan � �-Test Plan � �-Release � � Test Plan � �-Release

� Maintenance Plan � New Release
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The delivery of the New Release usually marks the end of this - sequential - project phase, and

of the software development. The Operation/Maintenance Phase is covered by the Maintenance

Plan, and may evolve in such a manner that the development of a further release or the development

of a related system is envisioned.

3 Evolutionary Prototyping

Prototyping o�ers a practicable solution to the problem of validating and capturing better require-

ments, hence constructing a more stable system [Bud84]. While throwaway prototyping can deliver

useful insights about certain limited details of a system, usually not much e�ort is taken to make

those throwaway prototypes qualitatively persistent in regard of software qualities as e.g., e�ciency,

completeness, etc. [GJM91]. But nowadays, in major projects, the investment in prototyping is

often too expensive for the organization to a�ord any longer to throw the prototypes away. Fur-

thermore, in experimental software development, prototyping has to go beyond addressing single,

isolated details of the projected system, but has become an essential means to stimulate imagi-

nation and creativity of the non computer-scienti�c target users. Assisted by new technologies,

such as object-orientation, prototyping has matured from o�ering very limited working models

which helped to highlight or validate certain limited aspects of a system (e.g., the user interface)

to evolving, full- scale, and persistent repositories of acquired knowledge, development solutions

and decisions [BKKZ92]. Sophisticated prototyping tools and reuse of (object-oriented) system

speci�cations and components support a rapid construction of systems.

The full set of requirements and possible solutions are often not known or can't be overseen

before implementation begins. With a prototype that is constructed early and evolves during the

whole development, software concepts can be worked out and implemented in subsequent cycles

of realization, testing, and feedback from (early) users to the developers. Concentrating on core

functionality and on the new, experimental parts to explore, the current prototype represents at

any time the ideas and visions with respect to conceptual solutions and the system architecture.

This new role for prototyping puts additional requirements and constraints on the prototype and

on the activity of \prototyping", and hence makes it a principle target for con�guration management

and software quality assurance. Important prerequisites of evolutionary prototyping are:

1. Sophisticated software engineering methodologies to facilitate a comprehensible and thorough

requirements speci�cation (e.g., Use Cases [JCJO92]), and to assist the de�nition of a solid,

but extensible system design (e.g., OMT [RBP

+

91]).

2. Object-orientation - not only for the development methodology which captures the intuitive

organization of the embedded knowledge, but also for the implementation. Object-orientation

o�ers the concepts and the components crucial for the construction of the evolutionary pro-

totype, and hence also for the �nal system. Modularization, reusability, and encapsulation

support focusing on the relevant parts of the speci�cation and the system at any time, and

to �lter out the unimportant parts. Clear implementation of the interfaces between objects

is also well supported by object-orientation. Through reuse of existing components, an easier

construction of full-scale prototypes is fostered.

3. The evolutionary prototype incorporates much more than the actual version of the implemen-

tation. To be able to trace back decisions and to reconstruct previous stages of implementa-

tion, version control and careful documentation of the code has to be supported to bridge the

gap in time and understanding between successive development cycles.
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4. Users have to be more tightly committed to the development of the system, as regular eval-

uation and testing of the prototype versions are necessary to steer system evolution into the

right direction.

As bene�t, costs and implications of decisions taken become more visible, risk decreases earlier

and faster . Another important bene�t of this form of prototyping is a smoother transition from the

design phase to the implementation. The prototype is constructed, kept and evolved throughout

the whole design (now: evolution) phase. Thus, the available code on which the implementation is

based, is already rather complete and sound, i.e., ful�lls required software standards.

4 Experiences With the Evolutionary Approach

In recent years, TNO Institute of Applied Geoscience has developed a number of software systems

to manage exploration & production (E&P) data. Many of these applications are unique regarding

their innovative, scienti�c nature, and the knowledge TNO has gathered in this �eld is re
ected by

the numerous cooperations with international petroleum and software companies, universities, and

standardization organizations.

TNO's activities fall into three categories: research & development projects, consultancy &

(pure) production projects, and knowledge transfer. While the latter two pose no, or only low

risk of not succeeding, research & development projects have a higher risk of failure, due to their

innovative nature of realizing in a software system the results of geoscienti�c research. These kind

of projects lead to so-called experimental software (because the success of the resulting system can't

be predicted), and are therefore often contracted to TNO. Our institute combines the application

speci�c, i.e., geophysical, knowledge with the information technological skills to cope with the

high risks of these projects. It was the particularity of the research & development projects that

triggered the elaboration of a di�erent life cycle plan.

This section will compare the development e�orts for two \pure production" projects, realized

with a traditional waterfall life cycle plan, with two experimental software projects, developed using

the evolutionary approach introduced in the previous sections. As not only technical data about

the products, but also con�dential development information is presented, the real names of the

projects are omitted and referred to using capital letters.

Project A and B: Information Systems for Reservoir Characterization

The projects presented in this subsection are both information systems that aim at managing

information needed for the process of oil & gas reservoir characterization. Both systems run on

workstations and o�er graphical display functionality on top of a relational database. In both cases,

information analysis was carried out with semantic data modeling techniques (cf. table 1).

The fundamental di�erence between the two systems lies in the speci�c application area. Unlike

the conventional systems for well information, hydrocarbon production and geology (the category

of System A), System B focusses on outcrop information and includes viewing functions in the form

of e.g. maps, cross sections and scanned images. As such a system didn't exist in the past, there

was no reference system to rely on, and therefore System B's technical risks were much higher than

for System A.

Figure 4 gives an overview of the distribution of man-hours for the various development activities

of the two projects.

Management activity hours are not explicitly stated, but attributed to the respective develop-

ment phases. Although both projects are about the same size (duration, man-hours, platform), it is
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Characteristics: Project A: Project B:

project type pure production research & development

total duration 18 months 18 months

total man-hours 3100 3600

team size 6 4

platform/ workstation, Unix, OSF/Motif, workstation, Unix, OSF/Motif,

tools Uniface, Oracle DBMS, Uniface, Oracle DBMS,

Lotus 1-2-3 XV (image display)

languages Uniface 4GL Uniface 4GL

development tools (ER tool), Uniface X-NIAM, Uniface

product size 40 entities 180 entities

249 forms 197 forms

2.9 mb executable 3.5 mb executable

+ 19.7 mb Uniface 4GL code + 14.4 mb Uniface 4GL code

Table 1: Technical data for Project A and Project B.

di�cult to compare the absolute numbers directly. Developers, who participated at both projects,

subjectively categorized Project B as \2{3 times more complex" than Project A. This appraisal

is supported by the complexity of the data model (cf. table 1, no. of entities). So instead of the

absolute numbers, the amount of man-hours is given in percentage of the total man-hours of the

respective project, which reveals a very interesting picture, too.

In Project A, with the sequential life cycle, a �rst version of the system was available only in

the implementation phase, after more than 70% of the total project time, with the �rst complete

version being ready only after more than 90% of the total project time. This means that feedback

about adequacy and performance of the system could occur only at a very late project stage, while

the risk of the project was still relatively high. At the same (relative) point of time, Project B

was still in the �nalization phase, but feedback by the users had already occurred (at least) three

times (at 17.2%, 50.8%, and 77.8%), not taking into account the �-release �nished shortly after

(at 94.6%).

Note also, how the percentage of activities during the three evolution cycles of Project B shifts

from mainly requirements analysis (R) to mainly prototyping (P). The small box on the right side

of �gure 4 gives the total percentage of requirements analysis, design and prototyping for Project

B. Design activities in Project B have a considerably bigger share of the total project time than

in Project A (15.8%, comp. to 8.1%). This is not only an indication for a more complex system,

but is also due to the fact that evolutionary prototyping requires a better thought-out system

architecture which does not only aim at an optimal �nal product, but also facilitates reconstruction

and change of its subcomponents. Furthermore, Project B already incorporates the principle of

reusability, i.e., the aim of constructing, components that would be easier to reuse in future projects

- a characteristics that requires a good components design.

Interesting are also the numbers for the requirements analysis, which was shorter for Project B

(27.5%, comp. to 35.5%). In Project B, requirements analysis was done by a project partner without

computer-scienti�c speci�cation and abstraction background. As consequence, the speci�cations

were not so clear and complete, and had to be adapted and revised, by showing their implications

to the users via the prototypes.
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Figure 4: Overview of development activities for Project A and B

As expected, the �nalization phase of Project B is much shorter than the implementation phase

of Project A (16.8%, comp. to 32.3%). Finalization consisted mainly of \cleaning up the code".

Nevertheless, the total amount of coding activities is higher for Project B, as the prototyping has

to be considered as coding, too. This high percentage of coding activities (P + �nalization: 40.7%,

comp. to 32,3% for Project A), but even more the fact that the �-release of the system was preceded

by (at least) three versions of a prototype, required a good version and code management tool. In

the case of Project B, this task was su�ciently realized by Uniface itself, which was used also as

development environment.

Project C and D: Reservoir Characterization by Seismic Data Interpretation

Both projects aim at developing a software system which enables the geoscientist to extract

structural and reservoir characteristics from seismic response around an interpreted (arti�cial)

seismic event. Goal is to transform the seismic data into an accurate depth image of the subsurface

including the greatest possible detail on stratigraphic, structural features, and above all, rock and

pore parameters. While both systems incorporate innovative parts and are comparable in terms of

project size (cf. table 2), an innovative combination of stochastic modeling and arti�cial intelligence,

i.e., arti�cial neural networks, is applied in System D to achieve its goal. The approach of using

trained neural networks is new and made it necessary to prototype extensively with real data in

proprietary case studies, in order to feedback the results of these studies to optimize the software

product.

A situation similar to Project A and B holds here: while both projects had about the same

duration and costs, and similar platforms, the complexity of Project D, indicated by the number
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Characteristics: Project C: Project D:

project type production research & development

total duration 30 months 26 months

costs (overall) US $ 1.25 M US $ 1.30 M

total man-hours 7400 9600

team size 5 15

platform/ workstation (UI) + Cray workstation (UI) + Cray

tools Unix, OSF/Motif, Unix, OSF/Motif, XFaceMaker,

XFaceMaker System C (reuse), SU, WingZ (spreadsheet),

SU (Seismic Unix) Aspirin/Migraine (PD neural network)

languages C C, C++, WingZ-Hyperscript

development tools StP

5

, XFaceMaker StP, XFaceMaker,

RCS/CVS, proprietary tools

product size:

subsystems (subject 2 (1) 5 (4)

of research) 48 mb executable 38 mb executable

(116 kloc) (110 kloc)

+ 2.44 mb worksheets (WingZ)

(35 kloc)

Table 2: Technical data for Project C and Project D.

of subsystems that were subject to research, classi�es it as experimental development .

Figure 5 shows an overview of the development activities for both projects. The same technique

as for the other two projects is applied to compare development e�orts.

In Project C , with sequential life cycle, implementation was available for �-testing after 83.8% of

the total project time. The functional tests at this relatively late stage revealed serious performance

problems related to the access and processing of the large amount of seismic data. These problems

explain the extensive �-test phase (13.5%), in which it was tried to locate the pitfalls that threatened

the success of the whole project. After �-testing soon con�rmed the shortcomings of the system, it

was decided to totally redesign and re-implement System A (this is not indicated in �gure 5). With

the experiences of Project A in mind, management and developers chose for extensive prototyping

of System B (44.3% of the total project hours), concentrating especially on the technical part,

the performance of the \unknown" neural network. At a comparable point of time (at 82.3% of

the total project hours), three prototypes had been tested and evaluated. Thus, �nalization and

�-testing, like for System B, took much less time than in the sequential reference projects (8.3%

�nalization, 3.1% �-testing).

The same shift in activities from requirements speci�cation (R) to prototyping (P) during the

evolution phase is observable here for Project D. The percentage of design activities is again higher

than for System C, and the total amount of coding activities, i.e., prototyping + �nalization, for

System D matches the implementation activities of System C. The di�erence is, of course, that

in System D these coding activities are more \distributed" and intertwined with the requirements

analysis, design and feedback by the user. Initially, in Project D, the familiar SCCS-tool for

con�guration management & control was used. Later, it was switched to the use of RCS/CVS ,

as this tool o�ers a richer set of features and more appropriately allows a team to do concurrent
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Figure 5: Overview of development activities for Project C and D

software development. Apart from this tool, a proprietary tool, implemented for a former TNO-

project, was used for documentation, extraction of headers, annotating, etc..

5 Assets, Constraints and Conclusions

It truly is di�cult to compare the absolute numbers of the projects to come to a conclusion like

\we saved this amount of time and that amount of money with our evolutionary approach." After

all, the new life cycle plan was established because we had to cope with new, experimental software

systems, for which no reference systems exist.

Assets

What comes closest to an absolute estimation is a cautious statement that \we were able

to develop more complex systems with the same order of magnitude of resources." Much more

important though, is that the evolutionary life cycle plan helped us to decrease technical risks and

the risk of not meeting the users' requirements and wishes earlier and faster.

Each version of the prototype and the feedback from testing and users translates directly in a

decrease of risk, as sketched in �gure 6, where the risk curves for traditional, sequentially phased

projects and for the evolutionary development are compared. As consequence, this approach to

system development can increase the con�dence of users and developers in the quality of the future

product.

Apart from the general, more advantageous risk curve for the evolutionary approach, two details

concerning this curve are noticeable. In the beginning, risk decreases slower because analysis
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Figure 6: The risk curves for sequential and evolutionary development compared.

and design activities are not as detailed as for the sequential approach. But this changes with

every prototype that is evaluated. At the end, the hazard of failure generally is lower for systems

developed via the evolutionary approach, simply because, although spread over the whole life cycle,

the total of feedback and evaluation of the current development e�orts is higher than in traditional

projects.

Constraints

Some considerations with respect to the presented evolutionary approach deserve particular

attention, as they are vital for the success of the \hybrid" life cycle plan:

� Project management has to pay constant attention to measure precisely enough the progress

of development during the cyclic evolution phase.

� Deliverables are not necessarily produced in the order presented in �gure 1, and speci�cation

documents like the SRS and SDD may no longer be anchor points for controlling development

prior to the start of prototyping. But concepts, overall requirements, and overall design

have to be su�ciently complete and concise when coding starts, in order not to hamper the

evolution of the system at later stages. To decide about this is again a crucial task for project

management and (software) quality assurance.

� The prototype has an additional role as central repository of knowledge concerning concepts,

design decisions and their implementation. As consequence, the code has to be documented

and annotated carefully , and a sophisticated development environment has to support the

di�erent versions and stages the di�erent parts of the prototype may be in.

� Due to early prototyping, a (global) test plan needs to be available in a relatively early stage.

Users and non-computer scientists, as e.g., application domain experts have to be involved

in the activities of the evolution phase. This might not always be so easy to achieve for

usual software development sites. At TNO, which is a large organization

6

, it is possible and

supported that software constructors and domain experts (geophysicists) work together in

one team.

6

about 4500 employees in 15 institutes
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Conclusions

The bene�ts of our approach to integrate the developer's and the management's perspectives

of the software life cycle and of evolutionary prototyping have been con�rmed by the outcome

of the project described above. This holds for positive results as the sophisticated capturing of

requirements and wishes of the users, as well as for the early detection of risks and shortcomings.

Still, it is di�cult to measure precisely the impact of our life cycle plan. The two reasons for this

point to the areas of future work concerning our approach:

� Metrics have to be provided to describe more concretely the decrease of risk and increase

of con�dence, which up to know can only be estimated, as sketched in �gure 6. The time

diagrams (�gure 4 and 5) give a good picture of the di�erent stages of the project, but another

signi�cant indication would be comparing the number of change proposals and their impact

on the projects.

� The experimental nature of the systems likely to be developed via the evolutionary approach

makes it di�cult to �nd reference systems . Uncapturable factors as the experience of the

development team and the knowledge of the users, and the complexity of the research part

always play an important, individualizing role that can only be excluded by developing more

projects according to the evolutionary approach.

Furthermore, work is done to formalize and to integrate the approach presented here into a more

general methodology which integrates also other aspects of software engineering, such as system

architecture and speci�cation techniques [Zam94].
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