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Abstract

The artificial neural network with one hidden unit and the input units con-
nected to the output unit is considered. It is proven that the error surface of
this network for the patterns of the XOR problem has minimum values with
zero error and that all other stationary points of the error surface are saddle
points. Also, the volume of the regions in weight space with saddle points is
zero, hence training this network, using e.g. backpropagation with momen-
tum, on the four patterns of the XOR problem, the correct solution with error
zero will be reached in the limit with probability one.

1 Introduction

A central theme in neural network research is to find the right network

(architecture and learning algorithm) for a problem. Some learning algo-

rithms also influence the architecture (pruning and construction, see e.g. [5,
7]). In our research [1, 2, 3] we are trying to generate good architectures for
neural networks using a genetic algorithm which works on strings containing

coded production rules of a graph grammar (L-systems). These production
rules result in an architecture and training of the architecture on a given prob-
lem results in a fitness for the given string, which is used by the genetic algo-
rithm. In order to be able to decide objectively which architecture is better, a
distinction is made between the following three aspects:

* representation,
* learning and
* generalization.

The representation aspect considers whether a network is able to represent
solution of the problem. The learning aspect concerns the ability of a net-
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work to learn a solution of the problem. If the network is able to learn a solu-
tion, how fast, with what probability and how accurate will that solution be
learned? The third aspect is whether the network is able to generalize, i.e.
does the network give reasonable output for patterns that were not in the
training set?

In order to learn more about these aspects we considered some simple net-
works for boolean functions. This paper is concerned with the simplest net-
work that can represent the XOR function: one hidden unit and connections
from the input units to the output unit (see figure 1). As training algorithm

Figure 1. The simplest XOR network

we take some gradient-based algorithm, e.g. backpropagation with momen-
tum. The error of a network is here defined as the difference, in a least-
squares sense, between the output calculated by the network and the desired
output. The error of a network depends on its weights and the training pat-
terns. With a fixed training set the error is a function of the weightertoe
surface The backpropagation algorithm reduces the error in the output by
changing the weights—which are randomly initialized—in the direction
opposite to the gradient of the error with respect to the weights. Often, an
extra momentum term is added to average out different directions, which
speeds up learning. So the update of each weighs given by:Aw;(t) =

—a 0E/ow;; + B Aw;(t=1), with learning parameter and momentum param-
eter. This has the effect that the weights are updated such that a point on
the error surface is reached with a smaller error value. Distinction can be
made between batch learning and on-line learning. During batch learning the
weights are updated after the whole training set is seen and the errors of the
individual samples are summed to the total error, while during on-line learn-
ing the weights are corrected after each sample, with respect to the error for
the sample just seen by the network.

1.1 Representation

First we looked at the representational power of the simplest XOR network.
It is well known that this network with a treshold transfer function can repre-



sent the XOR function and that such a network with a sigmoid transfer func-
tion can approximate a solution of the XOR function. In this paper we will
show that such a network with a sigmoid transfer function can represent the
XOR function exactly if TRUE ~ 0.9 and FALSE ~ 0.1 for the output unit
(the values 0.9 and 0.1 are used, but all valuésahdd, for some small pos-

itive numberd, can also be used). This result is not trivial, since for a one-
layer network for the AND function, it is possible to find an approximate
representation, but it is not possible to solve the AND function exactly, using
a sigmoid transfer function.

1.2 Learning

The next question that can be asked concerns learnability: under what condi-
tions is a given network able to learn the desired function. When we assume
that some kind of gradient-based learning algorithm is used, the shape of the
error surface is very important. The ideal error surface has one minimum in
weight space (ideally with error zero) corresponding to an acceptable solu-
tion and in each other point a nonzero gradient. With such an error surface
each gradient-based learning algorithm will approximate the minimum, and
so find a reasonable solution. However if the error surface has so-called local
minima, then the learning algorithm can wind up in such a local minimum
and reach a suboptimal solution. From experiments by Rumelhart et al. [9] it
seems that the simplest XOR network does not have such local minima in
contrast to the XOR network with two hidden units and without connections
from the inputs to the output. The problem whether an error surface for a cer-
tain network that has to solve a certain problem, has local minima or not (and
if they exist, how to avoid them) is investigated by many researchers [e.g. 6,
7, 8, 9]. Most researchers did numerical experiments, which gave a strong
intuitive feeling of the existence of local minima, but not a real proof. Lisboa
and Perantonis [8] claim a local minimum, for example, for the XOR net-
work with two hidden units and without connections from the inputs to the
output, with the weights from the hidden units to the output unit equal to
zero, while by similar techniques as used in this paper it can be shown that
such a point is a saddle point amat a local minimum. In contrast to Lisboa
and Perantonis, who suggest that the simplest XOR network has local
minima, this paper will analyticallprove that the error surface of the sim-
plest XOR network haso local minima.

The global minimum, with zero error, is not a strict minimum, since a
3-dimensional region in weight space exists with zero error. All points in a
neighbourhood of each point of this region have error values whiafmoare

1. We do not count the input as a layer of the network.



lessthan the error in that point. Ins&rict minimum, however, it is necessary
that all points in a neighbourhood give error vallegger than the error
value in that point. There exist more stationary points (i.e. points where the
gradient of the error is zero), but we were able to prove that all these points
are saddle points. Saddle points are stationary points where for each neigh-
bourhood both points with larger error values and with smaller error values
can be found. Also we proved that the global minimum contains the only
points with a gradient equal to zero for the error of all patterns individually.
We call such a point stablestationary point. The saddle points have a zero
gradient for the error of a fixed training set of patterns, but not for the error of
the patterns individually, so on-line learning can probably escape from these
points.

For the standard XOR network with two hidden units, we already proved that
it has a stable global minimum with error zero, and that other minima can not
be stable. Results that on-line learning with a reasonably large learning
parameter leads best to avoiding such minima [6], can be explained from this
fact.

1.3 Generalization

The third point is the ability to generalize. The work of Denker, Schwartz,
Solla et al. [4, 10, 11] suggests to investigate the a priori probability that a
network represents a certain function when the weights are chosen randomly.
We did some calculations for the XOR networks with treshold units and did
some numerical experiments for the networks with a sigmoid transfer func-
tion, to determine the a priori probability of the network to represent (an
approximation of) the XOR function, relatively to the probability of repre-
senting one of the other boolean functions of two inputs. Our results tell that
this probability is very smal=0.005 for the simplest network, ar6.0013

for the network with two hidden units). Thus, if less than four patterns of the
XOR problem are used to train the network, almost always one of the other
boolean functions corresponding to those patterns will be learned, and not
the XOR function. However, this also suggests that more regular functions
like AND and OR are preferred, if possible, above the XOR function. In a
forthcoming paper we will publish our results of several measurements of a
priori probabilities for several functions.

The remainder of the paper consists of the following sections: In section 2
the XOR problem and the network that is used to implement it are given.
Section 3 contains some properties and equalities concerning the transfer
function. In section 4 it is proven that a 3-dimensional region of the weight
space exist with zero error. In section 5 it is proven that all finite points with
nonzero error are unstable, i.e. the gradient of the error with respect to one



single pattern is unequal to zero, and that local minima can occur only for
finite values of the weights. Section 6 consists of the proof that all points
with nonzero error and zero gradient (averaged for a training set) are saddle
points. Finally section 7 contains our conclusions. An appendix is added with
some more theorems and proofs used in the paper.

2 The XOR problem and the simplest network solving it
&)

Ug

Xo:1 Xl X2
Figure 2. The simplest XOR networl

The network in figure 2 with one hidden unit H is studied. This network con-
sists of one treshold unitgXwith constant value 1, two inputs; Xnd >,

one hidden unit H and the output unit Y. There are seven weights which are
labelled as follows:

» the weightsw; (i = 0..2) are the weights of the connections from the inputs
X to the hidden unit H;

» the weightsy; (i = 0..2) belong to the connections from the inpyteXhe
output unit Y, and

» the weightv corresponds to the connection from the hidden unit H to the
output unit Y.

If each unit uses a sigmoid transfer functieathe commonly used transfer
functionf(x) = 1/(1+€%) is discussed in the next section—the output of this
network is, as function of the inputs &nd X:
Y (X X,) = f(ug+u X, +u,X, +vi(wy +w X, +w,X,))
02 02 0 (2.1)
=f DZ u X, + vf DZ w. X LT
0 Oo& 1 m
1=0 =0

Table 1 shows the patterns for the XOR problem which have to be learned.
The errorE of the network when training a training set contairapdimes
the patterrP;, g; > 0,i,j U {0,1} is:



E = %aoo(y(o, 0) —0.1)2+%a01(y(0, 1) -0.9)2%+

1 2 .1 2 (2.2)
éalo(y(l, 0) -0.9 + éall(y(l, 1) -0.1)

with y (X4,X5) given in equation (2.1).

We will consider learning algorithms based on gradient-descent learning,
both on-line and batch. During on-line learning the weights are updated after
each training example, corresponding to the error for that example. With
batch learning the updating of the weights is done after all training examples
have been seen and all errors are summed. The weights will be adjusted pro-
portional to—CJE and the learning will end wherE = 0.

Table 1: Patternsfor the XOR problem

Pattern X1 X5 desired output
Poo 0 0 0.1
Po1 0 1 0.9
Pio 1 0 0.9
= 1 1 0.1

3 Thetransfer function f

This section contains formula’s expressing properties of the sigmoid transfer
functionf and its derivatives needed in the remainder of this paper. Figure 3
below shows the shape fof ' andf ".

1
0.6 F

a: (%)

-4 3
f"(x)
Figure 3. The transfer function and its derivatives

The transfer function used is:

1

f =
(x) 17 o=

(3.1)

On the interval £, ) this function is strictly monotonously increasing
from O to 1. Hence

0<f(x) <1



lim f(x) =0

X —» —00

lim f(x) =1

X —» 00
From the monotonicity dfit is clear that
f(a) =f(b) =a=nb
Furthermore this function has the following properties:

(=) = 1-F(x) (3.2)
F0 = ) (1=F(x) (3.3)
fr(x) = (x) (1-2f(x)) =f(x) (1-F(x)) (1-2f(x))

0<f'(x) s%

lim f'(x) = lim f'(x) =0

X - —0 X - ©

(0 =32

(%) = () (3.4)
f"(x) =0=x =0 (3.5
£7(0) #0 (3.6)

The derivativef’(x) is strictly monotonously increasing oreq,0], and
strictly monotonously decreasing ond), thus using the symmetry (3.12)
gives:

f'(a) = f'(b) = a=bOa=-b (3.7)
The functionf has an inverse function:

f ) = |ogE,i—f-;E if0<x<1 (3.8)

4 The minimum E = 0 can occur

In this section it is shown that a 3-dimensional region in the 7-dimensional
weight space exists for which the error is exactly zero. The Erconsists

of four quadratic terms, 96 = 0 holds only if all terms are zero. The four
equations for the weights thus obtained are considered. From these equations
four linear equations for the three weigbgsu; andu, in terms of the other
weights are found. It is shown that for almost all values of the three weights
Wp, Wy andws it is possible to find a value wfsuch that the equations fay;

u; andu, have a (unique) solution. This results in a 3-dimensional region
depending omvg, wy andw,. We will distinguish two kinds of minima for the
errork:



* Minima that remain stable during on-line learning independent of the cho-
sen training sequence; these minima have the property that no pattern will
lead to an error that can be decreased by a local chance of the weights.
These minima will be callestable minima

* Minima that depend on the given training set. For batch learning this is a
minimum, but during on-line learning the weights will continue to change
in a neighbourhood of such a minimum, since it is not a minimum for all
patterns separately. These minima will be callestable minima

If Eis equal to zero for all patterns that are in the training set, given a certain
set of weights, a stable minimum is fouidcan become equal to zero if and
only if values of the weightsg, uy, Uy, Wo, Wy, W, andv exist such that the
following four equations hold:

f(ug+vf(wy)) =01

f(uy+u, +vi(w,+w,)) = 0.9

(4.2)
f(uy+u +vi(wy+w,)) = 0.9
f(ug+uy +u, +vi(wy+w; +w,)) =01
Application of the inverse functioii on both sides of these equations leads
to:

ug +vi(wy) = f1(0.1) =-2.197
Ug+ Uy +vE(wy +w,) = f71(0.9) =2.197 4.2)
U+ Uy +V(wy+w,) = f2(0.9) =2.197 '
Ug+ Uy +U, +VE(wy+w, +w,) = f71(0.1) ~-2.197

We will show below that for each value of the weighgsw,; andw, where

f(wg) —f(wy+wy) —f(wy+w,) +f(wy+w, +w,) #0 4.3)

unique values of the other weighis u;, u, andv can be found such that alll
equations of (4.2) hold. Let us first investigate the equation:
f(wg) —f(wy+wy) —f(wy+w,) +f(wy+w, +w,) =0 (4.4)
We calculated by using equation (3.1) and by substituting tempopafdy
-W. . . . . .
e ' (i=0..2) that this equation is equivalent to:

111 .1
1+py 1+pgp; 1+pgp, 1+pypyP,

P (P; —1) (P, —1) (P3P,P,—1)

(1+pg) (1+pgpy) (1+pyhy) (1+pPyhehy) (4.5)
Wy [] —W, 1] —w, 1 —2W0—W1—W2 0
e [ -lae -1k =10 0

4 ~Wo[ 1] — Wy —Wo =Wy —W,[]

-w, [T — Wy —W,[T]
l+e [Til+e ‘Tl+e ° ‘mi+e



Sincee* > 0 equation (4.5) has the solutions:
w, =0 Or w, =0 OF 2wy+w, +w, =0 (4.6)

So equation (4.3) holds everywhere with exception from the three hyper-
planes given in (4.6). The equations (4.2) are 4 linear equations in the
weightsug, u; andu,. In order that these equations have a solution they have
to be linearly dependent. This leads to the condition

v(F(wy) —F(wy+wy) —f(wy+w,) +f(wy+w; +w,)) = —4f_l(0.9)
Thus givenwg, wy andw, such that (4.3) holds, we find far

. —4£71(0.9)
f(wg) —f(wy+wy) —f(wy+w,) +f(wy+w, +w,)

andug, u; andu, can be uniquely solved from the first three equations in
(4.2). Since the inequality (4.3) holds for all poiws wq, w,, which are not

on the hyperplanes given in (4.6), we will find a 3-dimensional region in the
7-dimensional weight space, whéte= 0. Since the dimension of the region
whereE = 0 is higher than zero, it is clear that the minimum vElge0 can-

not be a strict minimum since there are always points in a neighbourhood of
a point withE = 0 where the error is also equal to zero. It is cleaEhad is

a global minimum, since for all points=0 holds,E being a positive sum of
quadratic terms.

5 The minimum E = 0 isthe unique stable minimum

In order to obtain a stable minimum, it is necessary that the gradient of the
error for each pattern is zero. Consideration of the derivative of the error
with respect tayg for finite values of the input of the output unit (thus the
output is not equal to zero or one) shows that all patterns have to be learned
exactly in this case, leading to an error value of zero, which is the absolute
minimum. The derivative of the error with respectige@an also go to zero if

the output goes to zero or one for one or more patterns and the other patterns
are learned exactly. It is shown that these cases do not result in a minimum,
so the only stable minimum is the minimum with error zero for all patterns.

Let us consider the partial derivativefvith respect taly. Writing R;; for
the terms depending on pattétpwe obtain:

oE _
aug Roo* Ro1 *Rig* Ry (5.1)

with



Rog = o (f (ug +vi(wy)) —0.2) f' (uy + vi(wy) )
Rp1 = @gq (F(ug + u, +vi(wy +w,)) —0.9) f' (uy + u, + vi(w, +w,))
Rip = @40 (f(up+uy +vi(wy+w,)) —0.9 f (uy+uy +vi(w,+w,)) (5.2)
Ry = a1 (F(uy+uy +u, +vi(wy+w, +w,)) —0.1) [
f'(Uup +uy +u, +vi(wy +w; +w,))
The derivativedE/du,, is only equal to zero for each training set if
Roo = Ros = Ryp = Ryy = 0. (5.3)

So all stable stationary points satisfy (5.3). The condition (5.3) is not only a
necessary condition for a stable stationary point, but it is also sufficient, since
if it holds then the partial derivatives Bfwith respect to the other weights

will be zero too. Clearly the points such that the equations (4.1) hold and thus
the points withE = O are stable stationary points. Other stable stationary
points can be found when one or more of the arguments of the derivative of
the transfer function in (5.3) (see also (5.2)) appraach . The correspond-
ing outputs go to zero or one. We will show that if such a point is
approached, it is always possible to leave the neighbourhood of such a point
via a path with decreasing error.

Stationary pointswith output O or 1 for oneor more patterns

First let us consider the case that three of the patterns are learned exactly in
the limit and the fourth pattern has output O or 1. So consider e.g.:

-1
U+ Vvf(Wy) =qgp — f 7(0.2)
Ug+ Uy +VE(Wy + W) = gy f_1(0.9)

(5.4)
Ug+ Uy +vE(wy+w,) =g~ f_1(0.9)

U+ Uq + U, +vE(wy+wy +w,) = gy - oo
Since these equationsug, u; andu, are linearly dependent, it follows that
v (f(wy) —f(wy+wy) —f(wy+w,) +f(wy+w, +w,)) =

Ogo~ Y1~ Y10t dyg — *®

in a point in the neighbourhood of the stationary point. Thus in such a point
condition (4.3) holds. 1§;, <f0.1) orgy; > 0, then decreasingin abso-

lute value, while keepingj, w; andw, constant, and changing, u; andu,

such that the first three patterns keep resulting in the same output, will have
the result that the error of the fourth pattern decreases, while those of the
other patterns remain constant. So the total error decreases and a stationary
point as given by the equations (5.4) is not a minimum. The same argument
holds if the output of one of the other patterns goes to zero or one.

10



When more outputs are going to zero or one a similar argument can be given
as long as condition (4.3) holds. So we have yet to consider the cases where
it is not obvious that this condition holds.

For example consider the case thgg — f(0.1),09; — f %(0.9), 019 —
+o0 andg;; — *e. The equations (5.4) make clear, thatdgs> f ~1(0.9) and
Q1 > f"1(0.1) decreasing the value of, while keeping the other weights
constant, will result in a lower error value for b&k, andPq;. If g9 <
f"1(0.9) andgqq <f ‘1(0.1) then increasing the valuewsfleads to a decreas-
ing total error too.

If ggg — ®, Ggg — F 2(0.9), g1 — f1(0.9) andgy; — —w, then the error is
decreased by decreasingand increasing,; andu, equally, such thaiy+u,
andug+u, remain constant.

The other cases with two patterns leading to an output O or 1 are treated sim-
ilar. If three patterns have an output in the neighbourhood of O or 1 the
weights can similarly be adjusted to reach points with lower error values.
The cases where all four patterns give an output almost O or 1 can only be
reached via a path with increasing error: these points are (local) maxima.

Conclusion: The unique stable minimum for the considered network for
the XOR problem is a 3-dimensional region in weight space with E = 0.

6 All unstable stationary points are saddle points

In this section it is proved that all unstable stationary points are saddle
points. Examination of the equations fdE = O leads to three equations
(6.8), (6.9) and (6.10) which have to be satisfied by the considered points.
The proof is separated into the cases where the weigh@ and the cases
wherev £ 0. In the cases wheve= 0 all partial derivatives of the error with
respect tavg, wy andw, are zero. It is proved that the first partial derivative

of the error of the fornd"™ *1E/aw;'dw,Jav which is unequal to zero deter-
mines that these points are saddle points. The caseswhBrare solved by
considering the behaviour of the error on some carefully selected curves.
Also some pictures are added showing some of the saddle points, visualized
with Mathematica.

We have to investigate all points in the weight space Mk 0, not treated
in the previous section. The component§i&fare:

aug Roo* Ror + Rig*Ryy (6.1)
0E _
au; Rio*Ry; (6.2)

11



OE

o, = Ry, + Ry, (6.3)

9B RV (Wy) +RopvE" (W + W) +RyvF (Wy+w,) +

ow, (6.4)
RV (Wy +w,; +w,)

%E - R v (w, + + R, VI (W, +w, + (6.5)

ow, 10V (Wo +Wyp) + Ry VI (Wo + Wy +wy) :

O _ R i (Wt w,) + R VE (Wt W+ (6.6)

ow, 01VF' (Wo +Wo) + Ry v (Wo +wy +w,) :

oE

3y = Roof (Wo) + Royf (Wo + W) +Rygf (o +wy) +Ryyf (W +wy +wp) (6.7)

If OE = 0 then it is concluded from equations (6.1), (6.2) and (6.3) that

Roo = Ro1 = Rio = Ry (6.8)
From equations (6.4), (6.5), (6.6) and (6.8) it follows that

R, VI (W) = RV (Wy+w,) =

) ot O ©9)
Equation (6.7), finally, leads together with equation (6.8) to:

Roo (F (Wg) —f (W +wW,) —f (Wy+w,) +f(wy+w, +w,)) =0 (6.10)

Since we are looking for unstable minima, we only have to consider here the
caseRyg# 0. (The cases wheRy = 0 are already considered in the previous
section.) Equations (6.9) and (6.10) then simplify to the following equations:

v (wy) = v (wy+w,) = VI (Wy+w,) = v (wy+w, +w,) (6.11)
and
f(wy) —f(Wy+w,) —f(wy+w,) +f(wy+w, +w,) =0 (6.12)

So we will investigate all points satisfying equations (6.8), (6.11) and (6.12),
which in addition are such th&t# 0, in order to prove that all points where

OE = 0 and where no stable minimum is attained, are saddle points. Remark
that equation (6.12) is identical to equation (4.4) and has the solutjoné

or wy, = 0 or 2vg+twy+w, = 0. From equation (6.11) it is clear that it makes
sense to distinguish between points where0 and points whenez 0.
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6.1 Thecasev=0
In this case equations (6.8), (6.11) and (6.12) lead to:

Roo = 8go(f(up) —0.1)f'(uy) =
=g (f(uy+uy) —0.9)f' (uy +uy)

' (6.13)
=, (f(uy+uy) =09 f'(uy+uy) =
ayq (f(uy+u; +uy) 0.5 f" (uy+u, +u,) 20
f(wg) —f(wy+w,) —f(wg+w,) +f(wy+w, +w,) =0 (6.14)

If agg=ap; =a19=2a11 = 1 then it follows from equations (3.2) and (3.4) that
equation (6.13) is equivalent to:

Roo = (f(ug) =0.)f"(uy) =
(f(-up—uy) =0.1) " (-uy—u,)
(f(-ug—u,) =0.1)f'(-uy—u,) =
(f(ug+u; +u,) =0.) f'(uy+u; +u,) #0

(6.15)

In theorem A.1 of the appendix we derive that this equation has exactly nine
solutions forug, u; and u,. There are three possible error levels: 0.32,
0.407392 and 0.403321 (see the remark after theorem A.1). From theorem
A.litis also clear thaRy > 0 and thaE = 0 cannot occur ¥ = 0.
Let us consider the behaviour of the error in the neighbourhood of a point
with v = 0 satisfying (6.13) and (6.14) for small variationswpfandv (the
other weights are kept constant). Consided&®w, (equation (6.5)), it is
clear that each term contains a fastowhich will not disappear by taking
the partial derivative with respect @, again. Thus it is clear that also
0°E/dw, = 0. Computation 0d’E/dw,dv, using equation (6.13) results in:

oE _ , .

m = Ryo (—F" (W +wy) +f"(wy+w, +w,))

v=0

Henced?E/ow;dv # 0 if f'(wgtw,) # f'(wgtwy+ws). Given equation (3.7),
this holds if and only ifw, # 0 andw, # —2wg-2w;. From theorem A.2,
which is given and proved in the appendix, watk w; andb = v it follows
thatE attains a saddle pointafE/dw,dv # 0.

Conclusion: If E# 0,0E =0, w, # 0 and w # —2w;—2wj; then E has a
saddle point, and not a minimum.

From symmetry with respect W, andw, we conclude that:

Conclusion: If E#0,0E =0, wy # 0 and w # —2wy—2w, then E has a
saddle point, and not a minimum.
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The remaining case that has to be investigated i is thus the case with
#0,0E =0, vy = 0 orw, = —2wg—2w;) and (v; = 0 orw; = —2wp—2w,). In
order to solve this case we will considieas function ofv,, w, andv (keep-
ing Wp, Ug, Uy andu, constant). I = 0 all partial derivatives d& of the form
0™ E/ow,'ow,} with i+j > 0 are zero because of at least one factédiso
0%E/dw,dv = 9°E/ow,0v = 0. But computation of the third order derivative
03E/ow,0W,0v leads to:

63E/ awlawzav‘v 0 = Ryof (W +w,; +w,)
So because of equation (3.5) cIeaﬁ@E/anawzav Z0if v=0 and
Wotwy+w, Z 0. If, however, i, = 0 orw, = —2wg-2w4) and (v; = 0 orw, =
—2Wgp—2w,) andwgtwy+w, = 0 thenwy = wy = wy, = 0. From theorem A.3
(see appendix) witln = wy, b = w, andc = v it follows thus that all cases
wherelJE = 0 andv = 0 are saddle points except for the cage w; =w, =
0, which has to be studied further.
This last case is decided by considering

0"E/ aw’ow,dv = Ryyf"(0) 20 (6.16)

vV=w,=w; =w, =0

Application of equation (3.6) and theorem A.4 proofs that even this point is a
saddle point. Figure 4 shows that indeed the error surface behaves as a saddle
point when in a neighbourhood of the point with all weights zero, the
weightswg, wy, W, andv are varied such th#@iwg = Aw; = Aw, andAv is

very small with respect thw;.

Figure 4. The error surface in the neighbourhoaghefu; = u, =wj
=w; =W, =v = 0. This picture is obtained by varyimg, w; andw,
equally from-0.5 to 0.5 and from -0.0005 to 0.0005.
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So we conclude that the case 0 can only lead to saddle points, sice 0
IS not possible i = 0. Thus we have proved the following theorem:

Theorem 6.0 If v =0 then all points wherglE = 0 are saddle points.

6.1 The case v unequal to zero
If E£0,0E =0 andv#0, equation (6.11) leads to:

fr(wg) = f'(wy+w,) = (wy+w) = (wy+w, +w,) (6.17)

and we have to consider solutions of equations (6.8), (6.12) and (6.17). The
solutions of equation (6.12) are givenvsy= 0 orw, = 0 orw;+w,+2wg = 0.
Substituting these solutions in equations (6.17) and applying the relation
(3.7) results in the following four cases satisfying both (6.17) and (6.12):

» Case 1. wy=w;=w,=0,

« Case 2: w=w,=0,wy#0,

e Case 3: W = 0,W1:_2W0, Woio,

e Case 4. W = 0,W2:_2W0, Woio.

We will show that the first three cases lead to possibilities to attain points in
the neighbourhood with smaller values fér The fourth case follows
directly from the third case by using the symmetryijnandw,. Since it is

also easy to show that points exist in the neighbourhood of such points with
greater values, it follows that these points are saddle points (and no
extremes).

In order to prove that the points corresponding to cases 1 to 3 are saddle
points, we started to investigate the stationary points corresponding to case 1.
If agg=ap1 =ajg=ay; = 1, the points withvg =w; =w, =u; =u, = 0 andug

= —-vf(0) belong to this case, since for these points also equation (6.8) holds.
For this special case we found the following expression for the second order
part of the Taylor series expansion of the eEor

AE/{f(0)} 2= (Auy + V' (0) Aw,) 2+ (Au, + vi'(0) Aw,) 2 +

(28uy + Auy +Au, +2vf' (0) Aw, + v’ (0) Aw, +vf'(0) Aw, +2f(0) Av) 2 (6.18)
This second order part contains three quadratic terms, but that is not enough
to prove thatE has a minimum here; the Hessian is not positive definite.
Contrarily we looked for and indeed found ways to proveHEHtas a saddle
point here.
Inspired by (6.18) we investigated the error surface for all stationary points
of cases 1 to 3 by considering curves in the weight space through those
points in directions such thau,+vf'(wg)Aw; = 0, Au,+vf'(wg)Aw, = 0 and
Augtvf'(wg)Awg = 0. Finally we found the following three curves, which
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together proof thdE has saddle points for all stationary points in the consid-
ered cases 1, 2 and 3.

Curve 1:This curve is parametrized bysuch thafiwg = X, Aw, = —X, Aug =
ax, andAu, = —ax, whilea = -vf'(wg). Using equation (2.2) this leads to:

1 2
E = éaoo(f(uo+0(x+vf(w0+x)) -0.) "+
Lo (f f 0.9 2
5301( (ug + U, +vf(wy +w,)) —0.9) " +
1 (6.19)
éalo(f(uo+u1+o(x+vf(wo+wl+x))—0.9)2+
1 2
éall(f(uo+u1+ u, +vf(wy +w, +w,)) —0.1)

Calculation using equation (6.8) results in:

2

E n n
— = Ryov (" (wp) —f"(wy+w,))

0X x=0

(o3

Thus for the stationary points of casewg € —2w) the sign 0fd’E/dx? on

curve 1 is equal to the sign af”(wp) (note thaRRyy > 0 because of theorem
A.1). So ifvf"(wp) < 0 in case 3 thel has points in the neighbourhood with
smaller values, since if in a point the first derivative of a function is zero and
the second derivative is negative, this function attains a maximum in such a
point.

Curve 2:This curve is parametrized lysuch thattw; = x, Aw, = —x, Au; =
ax, andAu, = —ax, whilea =-vf'(wg). This leads analogously to:

=RyV (—F" (W +wy) =" (wy+w,))
x=0

In case 2f; = w, = 0) the sign 0B?E/dx? on curve 2 is equal to the sign of
=vf"(Wp). So ifvf"(wg) > 0 in case 2 thel has points in the neighbourhood
with smaller values.

Curve 3:This curve is parametrized bysuch thatiw, = Aw, = x, Au; = Au,
= ax, wherea = -vf'(wp). This leads analogously to:
oE
— = Ry (" (wg +wyp) —F" (wy+w,) + 4f" (wy+w, +w,))

0x x=0

In case 3w, = 0,w; =-2wp) the sign 0B2E/dx? on curve 3 is equal to the
sign of—vf"(wp). So ifvf"(wg) > 0 in case 3 theB has points in the neigh-
bourhood with smaller values. Combination with the results from curve 1,
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tells us that in case 3 always points can be found where the error becomes
smaller.

In case 2y, = w, = 0) the sign 00%E/dx? on curve 3 is equal to the sign of
vi"(wp). So ifvf"(wg) < 0 in case 2 thek has points in the neighbourhood
with smaller values. This completes the proof that case 2 is not a minimum.
In figure 5 one of these saddle points is visualized: the downward bow is

0. 32005

0.31995

0.02 0.04

_0.04 -0.02 0
Figure 5. The error surface in the neighbourhood of the pgmt
-f(0.5),u; =up, = 0,wg = 0.5,w; =w, = 0,v = 1. The downward
bow of the saddle is obtained by varyiwg, w,, u; andu, such
that Au; = Au, = —f'(0)Aw, = —=f'(0)Aw,. The other direction is
given by varyingnvg andug such thatdug = f '(0)Awg.

obtained from the parametrizing of curve 3, the upward bow is inspired by
equation (6.18).
The remaining case that has to be investigated is case tywitlv, = w, =
0. Sincef "(0) = 0 it follows that in this case on curve 3:
62E

ax2

=0

x=0

Computation of the third derivative on curve 3 results in:

3
a E —_— nr
—3 =6Ry,vf" (0)
0x

x=0

This is unequal to zero and thus also in case 1 it is possible to find a direction
to obtain lower values fdt. One of these saddle points is shown in figure 6.
In figure 7 it is shown that if the error surface is only considered in the direc-
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0.32002

0. 32001

0.31999

0 0.05 -0.01 0

Figure 6. The saddle point in the neighbourhoodycf —f(0), u;

= U, = 0,wp=w; =W, = 0 andv = 1. This picture is obtained by
plotting the error against; = u, = —f'(0)wy = —f '(O)w, andug =
f'(O)wp. The weightw; runs from-0.1 to 0.1 and the weightg
runs from-0.02 to 0.02.

0.5 1 1.5

Figure 7. The error as function of each of the weights in the neigh-

bourhood otug =-0.5,u; =u, = 0,wg=w; =w, =0 andv=1. The

curves foiw, andw, and those fou; andu, are identical. This pic-

ture gives the (false) impression that the error has a local minimum

if ug=-0.5,u; =u, = 0,Wg=w; =w, = 0 andv = 1. Figure 6

showed already that this point is a saddle point.
tion of each of the weights it is suggested that such a point is a local mini-
mum. So it is essential to vary the weights in the right combination, as is
done in figure 6 in order to be able to conclude that this point is a saddle
point.
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Thus also the case# 0 will not result in local minima, and we have proven
the following theorem:

Theorem 6.1 If E # 0 and v# 0, then all points wherEE = 0 are saddle
points.

7 Conclusions

The error surface of the network with one hidden unit for the XOR function
has no local minima, only one global minimum with zero error. This mini-
mum value is attained in a 3-dimensional region of the 7-dimensional weight
space. Also a number of low dimensional regions exist where the error sur-
face behaves as a saddle point (dimension 2 for thevea@gand dimension

1 for the other cases). The levels of the error surface in the saddle points are
0.32, 0.407392 and 0.403321, respectively, for a training set with exactly one
example of each pattern. When training is started with small weights, only a
saddle point with error level 0.32 is possibly reached. The probability that
the learning process will start in a saddle point or will end up in a saddle
point is (theoretically) zero since the dimension of the region consisting of
saddle points is at most 2, so its volume as part of the 7-dimensional weight
space is zero.

When a saddle point is encountered, a batch learning process with zero
momentum term can wind up in such a saddle point, but an on-line learning
process can probably escape from such a saddle point, since the error surface
is not horizontal for each individual pattern, only the average error surface
for all patterns is horizontal. So a small change of the weights in the right
direction will decrease the error, moving away from the saddle point. We did
some experiments starting on-line learning exactly in the saddle point with
all weights equal to zero and found that even with a small value of the learn-
ing parameter (0.01) and no momentum term the learning algorithm escaped
from the saddle point and reached a solution with (almost) zero error in finite
time. Using batch learning no progress was made to escape from the saddle
point.

In this paper distinction is made between stable minima (minima for each
pattern) and unstable minima (minima for a training set of patterns, but not
for each pattern separately). This distinction is relevant, since if an exact
solution can be represented by the network, then only the absolute minima
with E = 0 are stable minima and all other (local) minima are unstable.

The fact that all local minima are unstable can be exploited by the learning
algorithm to escape from these minima. Also the shape of the error surface at
a minimum (narrow or wide) might determine how easy it is to escape from
this minimum. Further research is necessary to examine this.
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Another possible use of looking at the shape of the error surface when an
exact representation of a problem is not possible (e.g. when noise is present),
is finding an estimator for the generalization of a given weight configuration.
We expect that very narrow minima will show a worse generalization than
very wide minima with the same residual error on the training patterns. Fur-
ther research is necessary to find a good measure for the shape of a minimum
(especially considering the fact that several scaling factors are present) and
to obtain experimental and theoretical results in this direction.

In this paper we used the quadratic error function

E =12y B XeE-F
a

wherea is the index of the pattern atftlis the desired output. In the litera-
ture [e.g. 7, 8] also the error function

Oya ol Oya ol

% L U1 —ypX,, Xo i

R— Dxl’lejm O, .« Y A2l
E' = %t IogD ta D+ 1-t Elogmm—l_ta 5

is used. All computations needed to prove that the pointsBwtB are sad-

dle points also hold when usirfj instead ofE. Thus also with this error
function it is true that only one global minimum value of the error exists. The
only difference in the computations is that in the coeffici€tthe factor
containing the derivative of the transfer function disappears. A consequence
of this alteration is that the equatiBgy = —Ry; = —Ryg = Ry1 for UE = 0 has
exactly one solution and not 9 as in the case considered here.
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APPENDI X: Some proofs and theorems

This section starts with a theorem concerning the transfer furfdtiah gives more insight

in the values for which saddle points can be found. As a result this theorem gives as possible
levels for the error corresponding to the saddle points the levels 0.32, 0.407392 and
0.403321. Furthermore some theorems are proved on the behaviour of a function in the
neighbourhood of a point where the gradient is equal to zero. These results are derived by
considering the Taylor series expansion of the function in the neighbourhood of such a point.
Only results that are needed for the proofs in section 6 are considered.

A result on thetransfer function and the error levels of the saddle points

If agg =ag; = a9 = a1 = 1 thenRyq, Ryq, Ryg andRy4 all have the formf(x)-0.1)f '(x) with
x depending on the weights. So we defiged = (f(x)—0.1) '(x). Carefully considering the
cases wherglE = 0 makes clear that in all these cases equation (6.8) results in:

g(a) =g(-a-b) =g(-a-c) =g(atb+g (A1)
with a, b andc functions of the weights. So we investigated this equation a bit deeper and
derived the following theorem:

Theorem A.1 Let g(x) = (f(x)-0.1)f'(x), and let R = -1.16139 and RP= -1.96745 be the
nonzero solutions of the equatiop() = g(x) — g(-3x), then the set of equations (A.1) has
nine solutions which are given in table 2 ¢éfands for R and B, respectively). For all solu-
tions g(a)d {g(0), g(P), 9(P,)} = {0.1, 0.025132, 0.0024389} holds.

Table 2: Solutions of equation (A.1)

a b C -a-b -a—c atbtc

0 0 0 0 0 0

P; -2P;, 2P, P; P; -3P,

P; 2P, 2P P; -3P, P;

P; 2P, 2P,  -3P P; P;
-3p, 2P 2P, P; P; P;

The error levels corresponding to points with valuesafdr andc given in terms of 0Py
andP, are 0.32, 0.407392 and 0.403321, respectively.
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Proof of theorem A.1:
The valuesa = b = ¢ = 0 certainly result in a solution. Consider the grapf(xf, given in
figure 8. From the definition @i(x) and equation (3.3) it follows that

g(¥ = (f(x) -0.)f(x) (1-f(x)) (A.2)
Sincef(x) is monotonously increasing from 0 to 1, it is clear t{&} has exactly one zero

point, wheref(x) = 0, and one maximum and one minimum and thrat g(x) = 0
X — foo

0.1

2(x)

05 |

Figure 8. The functiong(x) = (f(x)—0.1) '(x), hy(x) = g(X) — g(—X)
andhy(x) = g(x) — g(—3x).

For each value of(a) at most two different point® andQ exist such thag(P) = g(Q) =
g(a) (and thus, —a—b, —a—c, at+b+c all have to be equal either Boor to Q). Let us investi-
gate all possibilities except for those that do not result in new possible solutions. So only the
possible solutions with = P are considered, and possible solutions which are obtained by
interchanging the values of b and c in an already considered solution are not studied sepa-
rately. All possibilities are tested on the equadity (a+b+c) = —((—a—b) + (-a—c)), which
results in conditions oR andQ. In order to obtain an extra solution it is obliged that either
for some value ok # 0 the relatiorg(x) = g(—x) or g(x) = g(—3x) holds. From the graph of
h(X) = g(¥)—9(—x) (see figure 8) it is clear thhi(x) is not equal to zero ¥ # 0. The func-
tion ho(X)=g(X)—9(-3x) (see figure 8) is equal to zero if and onlx it equal to one of the
values in the set {€;,P;} = {0, —1.16139,-1.96745}. Essentially only the region
f10.1) <x< —%f‘l(o.l) has to be investigated.
So we have the following possibilities:
* a=P-ab=P -ac=PBatbtc=P 2P=-2P « P=0- a=b=c=0.
+ a=P -ab=P -ac=Pa+b+tc=Q = Q=-3P = [X|g(x) = g(-3x). This again
leads to the solution witR = Q = 0 and to the solutions in the second row of the table.
Thus two extra solutions are obtained.

e a=P-a-b=P -a—c=Q, atb+c =P = Q =-3P. This leads to the solutions in the third
row of table 2, on page 22. From symmetnbiandc also the solutions in the fourth
row of the table are found. Thus four extra solutions are obtained.

+ a=P-a-b=P -a—c=Q,a+b+c=Q = P=-Q = [x]|g(x) =g(-X). This results in the
known solution withP =Q = 0.
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* a=P -ab=Q,-a—c=Q, atb+c =P = P =-Q. No new solution is obtained.

e a=P -ab=0Q,-a—c=Q, ath+c =Q = P =-3Q. This results in the solutions in the
fourth row of the table. So the last two solutions of the nine solutions represented in the
table are found.

Conclusion: The nine solutions represented in table 2 are the only solutions of g(a) =
= g(-a-b) = g(-a—c) = g(at+b+c). O

Some theorems which provethat certain points are saddle points

Now some theorems follow deciding from certain higher order partial derivatives not being
zero that some points are saddle points. The theorems give those results that were needed in
section 6.

Theorem A.2 Con5|der the functlon q of two variables a and b in the neighbourhood of a
point whereldg = 0. If 0 q/aa = 0 andd q/aaab¢ 0 , then the function q attains a sad-
dle point and no extreme in that point.

Proof The behaviour of a function in the direct neighbourhood of a certain point is deter-
mined by the first (partial) derivative(s) that is (are) unequal to zero. So if for a function
g(a,b) of two variabled1q = 0 holds in a certain point, then the first approximation of this
function is given by the second and third order terms of the Taylor series expansion:

52 2 0
Ag = 2099 (pa) 2+ 99 (8a) (ab) +" q (Ab)2D+
Z'Da 2 b2
3 03 63 2 63q 3
(Aa) +3——(Aa) (Ab) +3 (Aa) (Ab) “+—— (Ab)~O
3'Da 3 da’ob dadh’ ob® 0

If azq/aa =0 and azq/aaab;t 0, then takingda = ax andAb = sz in this equation
results in:

(1.2
:;L'aq 33 +O|ij|— (XEL laqazEb( +OEX4E
da

2
0
Aq = q an + DaaabB 3 5

dadb

If azq/aaabat Othenvaluesobi 20 an@#0 can be found such that the coefficiedt of
is unequal to zero. Thusg  will attain values with opposite sigr 08 andx > 0. O

Theorem A.3 Let g be a function of three varlables a,bandc. Ifi |n a pomt Wtk 0,
0 tig/ealobl = 0, for 0 < i+j < 6 and 9°g/9adbdcz0 (or 8°q/9a’dc#0 or
63q/ab260¢ 0), then g attains a saddle point and not an extreme in that point.

Proof We will consider the behaviour of the Taylor series expansion as functionviih
Aa = ax, Ab = Bx andAc = yx3 This results in:

2

- D _q
3

O 5 3 O
q 3% 09 2,55
Esaazaca Y+ 66a6bacaﬁy+ SabzacB yE}x +0(x8)
If 62q/6a6c¢ Ooro q/6b6c¢ 0 then theorem A.2 tells that the considered point is a sad-
dle point. If3both tzerms are qual to zero, then the coefﬁmeﬁtlsfdemswe if it is unequal

to zero. Ifo"q/0a dc#0 , ord q/0dadbdoc#0 , ord q/ab dc#0 the coefficient of is

not identically zero and thus nonzero values b andy can be found such that the coeffi-
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cient of X is unequal to zero and thgscan attain both higher and lower values for small
values ofx and thus the point considered is a saddle point.

Theorem A.4 Let g be a function of three variables a, b and c. If in a point Wil O,

d' Tlgzaa'ab’ = 0, for 0 < i+j < 8 and 8%q/ da2dbdc# 0 , then q attains a saddlepoint and
not an extreme in that point.

Proof The proof is analogously to that of the previous theorem. We willXakeax, Ab =

Bx andAc = yx*, Ieading to the expansion:

= D _q Os.,

Wl N

DED Dgll:l

03q 2% 2%
2yl k6
5 2y + Gaaabacaﬁy +3 b acB yI]x +

a dc
q

o'q o'q 0'q g 2
+12-99 _q42py+12-29_qp2y 4499 p3y57 + 0 (5
Siac T P aanac PV Y2ateac B A BV O 00)

-blp

If the term withx® is unequal to zero, theorem A.2 can be applied. The termx@viting
not identically zero is solved by application of theorem A.3. The coefficiedtishot iden-
tically zero if 3%/ da20bdc# 0 , and thus the theorem is proved.
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