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Abstract

The artificial neural network with one hidden unit and the input nodes connected
to the output node is considered. It is proven that the error surface of this net-
work for the patterns of the XOR problem has minimum values with zero error
and that all other stationary points of the error surface are saddle points. Also,
the volume of the regions in weight space with saddle points is zero, hence train-
ing this network, using e.g. backpropagation with momentum, on the four pat-
terns of the XOR problem, the correct solution with error zero will be reached in
the limit with probability one.

1 Introduction

A central theme in neural network research is to find the right network (archi-
tecture and learning algorithm) for a problem. Some learning algorithms also
influence the architecture (pruning and construction, see e.g. [5, 7]). In our
research [1, 2, 3] we are trying to generate good architectures for neural net-
works using a genetic algorithm which works on strings containing coded pro-
duction rules of a graph grammar (L-systems). These production rules result in
an architecture and training of the architecture on a given problem results in a
fitness for the given string, which is used by the genetic algorithm. In order to
be able to decide objectively which architecture is better, a distinction is made
between the following aspects:

• representation,

• learning and

• generalization.

The representation aspect considers whether a network is able to represent a
solution of the problem. The learning aspect concerns the ability of a network
to learn a solution of the problem. If the network is able to learn a solution, how
fast, with what probability and how accurate will that solution be learned? The
last point is whether the network is able to generalize, i.e. does the network
give reasonable output for patterns that were not in the training set?
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In order to learn more about these aspects we considered some simple networks
for boolean functions. This paper is concerned with the simplest network that
can represent the XOR function: one hidden unit and connections from the
input units to the output unit (see figure 2). As training algorithm we take some

Figure 1.  The simplest XOR network

gradient-based algorithm, e.g. backpropa-
gation with momentum. The error
depends on the training pattern(s) and the
weights. With a fixed training set the
error is a function of the weights: the
error surface. In the backpropagation
algorithm the error in the output is
reduced by changing the weight vector in
the direction opposite to the gradient of

the error with respect to the weights. So each weightwij  is updated according
to: ∆wij(t) = −α ∂E/∂wij + β ∆wij(t−1), with learning parameterα and momen-
tum parameterβ. This has the effect that the weights are updated such that a
point on the error surface is reached with a smaller error value. Distinction can
be made between batch learning and on-line learning. During batch learning the
weights are updated after the whole training set is seen and the errors of the
individual patterns are summed to the total error, while during on-line learning
the weights are corrected after each pattern, with respect to the error for the pat-
tern just seen by the network.

1.1 Representation

First we looked at the representational power of the simplest XOR network. It
is well known that this network with a threshold transfer function can represent
the XOR function and that such a network with a sigmoid transfer function can
approximate a solution of the XOR function. In this paper we will show that
such a network with a sigmoid transfer function can represent the XOR func-
tion exactly if TRUE ~ 0.9 and FALSE ~ 0.1 (the values 0.9 and 0.1 are used,
but all values 1-δ andδ, for some small positive numberδ, can also be used).
This result is not trivial, since for a one-layer network1 for the AND function, it
is possible to find an approximate representation, but it is not possible to solve
the AND function exactly.

1.2 Learning

The next step is: what about learning? When we assume that some kind of gra-
dient-based learning algorithm is used, then the shape of the error surface is
very important. The ideal error surface has one minimum value (ideally zero)
corresponding to an acceptable solution and in each other point a nonzero gra-
dient. With such an error surface each gradient-based learning algorithm will
approximate the minimum, and so find a reasonable solution. However if the

1. We do not count the input as a layer of the network.
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error surface has so-called local minima, then the learning algorithm can wind
up in such a local minimum and reach a suboptimal solution. From experiments
by Rumelhart et al. [9] it seems that the simplest XOR network does not have
such local minima in contrast to the XOR network with two hidden units and
without connections from the inputs to the output. The problem whether an
error surface for a certain network that has to solve a certain problem, has local
minima or not (and if they exist, how to avoid them) is investigated by many
researchers [e.g. 6, 7, 8, 9]. Most researchers did numerical experiments, which
gave a strong intuitive feeling of the existence of local minima, but not a real
proof. Lisboa and Perantonis [8] give a local minimum, for example, for the
XOR network with two hidden units and without connections from the inputs
to the output, with the weights from the hidden units to the output unit equal to
zero, while by similar techniques as used by Sprinkhuizen-Kuyper and Boers
[12] it can be shown that such a point is a saddle point andnot a local mini-
mum. In contrast to Lisboa and Perantonis, who suggest that the simplest XOR
network has local minima, this paper will analyticallyprove that the error sur-
face of the simplest XOR network hasno local minima.

The global minimum, with zero error, is not a strict minimum, since a 3-dimen-
sional region in the weight space exists with zero error. All points in a neigh-
bourhood of each point of this region have error values which arenot less than
the error in that point. In astrict minimum, however, it is necessary that all
points in a neighbourhood give error valueslarger than the error value in that
point. There exist more stationary points (i.e. points where the gradient of the
error is zero), but we were able to prove that all these points are saddle points.
Saddle points are stationary points where for each neighbourhood both points
with larger error values and with smaller error values can be found. Also we
proved that the global minimum contains the only points with a gradient equal
to zero for the error of all patterns individually. We call such a point astable
stationary point. The saddle points have a zero gradient for the error of a fixed
training set of patterns, but not for the error of the patterns individually, so on-
line learning can probably escape from these points.

For the standard XOR network with two hidden units, we already proved that it
has zero as stable global minimum, and that other minima can not be stable.
Results that on-line learning with a reasonably large learning parameter leads
best to avoiding such minima [6], can be explained from this fact.

1.3 Generalization

The third point is the ability to generalize. The work of Denker, Schwartz, Solla
et al. [4, 10, 11] suggests to investigate the a priori probability that a network
represents a certain function when the weights are chosen randomly. We did
some computations for the XOR networks with threshold units and numerically
determined the a priori probability of the network to represent an approxima-
tion of the XOR function, relatively to the probability of representing one of
the other boolean functions of two inputs. Our results tell that this probability is
very small (≈0.005 for the simplest network, and≈0.0013 for the network with
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two hidden units). Thus, if less than four patterns of the XOR problem are used
to train the network, almost always one of the other boolean functions corre-
sponding to that pattern will be learned, and not the XOR function. However,
this also suggests that more regular functions like AND and OR are preferred,
if possible, above the XOR function. In a forthcoming paper we will publish
our results of several measurements of a priori probabilities for several func-
tions.

The remainder of the paper consists of the following sections: In section 2 the
XOR problem and the network that is used to implement it are given. In section
3 the proof is sketched that a 3-dimensional region of the weight space exist
with zero error. In section 4 it is shown that all finite points with nonzero error
are unstable, i.e. the gradient of the error with respect to one single pattern is
unequal to zero, and that local minima can occur only for finite values of the
weights. Section 5 exists of the proof that all points with nonzero error and zero
gradient (averaged for a training set) are saddle points. Finally section 6 con-
tains the conclusions. This paper contains only a rough sketch of most proofs,
elsewhere we give the complete proofs [12].

2 The XOR problem and the simplest network solving it

The network in figure 2 with one hidden unit H is studied. This network con-

sists of one threshold unit X0, with constant value 1, two inputs X1 and X2, one
hidden unit H and the output unit Y. There are seven weights which are labelled
u0, u1, u2, w0, w1, w2 andv (see figure 2). If each unit uses a sigmoid transfer
function f—the used transfer function isf(x) = 1/(1+e-x)—then the output of
this network is, as function of the inputs X1 and X2:

(2.1)

Table 1 shows the patterns for the XOR problem which have to be learned. The
errorE of the network when training a training set containingaij  times the pat-
ternPij , aij > 0, i,j ∈ {0,1} is:

v
u0

u2

w0
w1 w2

X0=1 X1 X2

Y

H

u1

Figure 2.  The simplest XOR network

y X1 X2,( ) f u0 u1X1 u2X2 vf w0 w1X1 w2X2+ +( )+ + +( )=
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(2.2)

with y(X1,X2) given in equation (2.1).

3 The minimum E = 0 can occur

It can be shown that a 3-dimensional region in the 7-dimensional weight space
exists for which the error is exactly zero. The errorE consists of four quadratic
terms, soE = 0 holds only if all terms are zero. The four equations for the
weights thus obtained are considered. From these equations four linear equa-
tions for the three weightsu0, u1 andu2 in terms of the other weights are found.
It is shown that for almost all values of the three weightsw0, w1 andw2 it is
possible to find a value ofv such that the equations foru0, u1 andu2 have a
(unique) solution. This results in a 3-dimensional region depending onw0, w1
andw2. We will distinguish two kinds of minima for the errorE:

• Minima that remain stable during on-line learning independent of the chosen
training sequence; these minima have the property that no pattern will lead
to an error that can be decreased by a local chance of the weights. These
minima will be calledstable minima.

• Minima that depend on the given training set. For batch learning this is a
minimum, but during on-line learning the weights will continue to change in
a neighbourhood of such a minimum, since it is not a minimum for all pat-
terns separately. These minima will be calledunstable minima.

If E is equal to zero for all patterns that are in the training set, given a certain
set of weights, a stable minimum is found.E can become equal to zero if and
only if values of the weightsu0, u1, u2, w0, w1, w2 andv exist such that the fol-
lowing four equations hold:

(3.1)

Table 1: Patterns for the XOR problem

Pattern X1 X2 desired output

P00 0 0 0.1

P01 0 1 0.9

P10 1 0 0.9

P11 1 1 0.1

E
1
2
---a00 y 0 0,( ) 0.1–( ) 2 1

2
---a01 y 0 1,( ) 0.9–( ) 2

+ +=

1
2
---a10 y 1 0,( ) 0.9–( ) 2 1

2
---a11 y 1 1,( ) 0.1–( ) 2

+

f u0 vf w0( )+( ) 0.1=

f u0 u2 vf w0 w2+( )+ +( ) 0.9=

f u0 u1 vf w0 w1+( )+ +( ) 0.9=

f u0 u1 u2 vf w0 w1 w2+ +( )+ + +( ) 0.1=
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Application of the inverse functionf –1 on both sides of these equations leads
to:

(3.2)

It can be shown that for each value of the weightsw0, w1 andw2 where

(3.3)

unique values of the other weightsu0, u1, u2 andv can be found such that all
equations of (3.2) hold. The equation

(3.4)

has the solutions

or or . (3.5)

4 The minimum E = 0 is the unique stable minimum

In order to obtain a stable minimum, it is necessary that the gradient of the error
for each pattern is zero. Let us consider the partial derivative ofE with respect
to u0. Writing Rij  for the terms depending on patternPij we obtain:

(4.1)

with

The derivative  is only equal to zero for each training set if

. (4.2)

So all stable stationary points satisfy (4.2). The condition (4.2) is not only a
necessary condition for a stable stationary point, but it is also sufficient, since if
it holds then the partial derivatives ofE with respect to the other weights also
will be zero. Clearly the points such that the equations of (3.1) hold and thus
the points withE = 0 are stable stationary points. Other stable stationary points
can be found when one or more of the arguments of the derivative of the trans-
fer function approach . The corresponding outputs for those patterns go to
zero or one. We have shown that if such a point is approached, it is always pos-
sible to leave the neighbourhood of such a point via a path with decreasing
error.

u0 vf w0( )+ f 1– 0.1( ) 2.197–≈=

u0 u2 vf w0 w2+( )+ + f 1– 0.9( ) 2.197≈=

u0 u1 vf w0 w1+( )+ + f 1– 0.9( ) 2.197≈=

u0 u1 u2 vf w0 w1 w2+ +( )+ + + f 1– 0.1( ) 2.197–≈=

f w0( ) f w0 w1+( )– f w0 w2+( )– f w0 w1 w2+ +( )+ 0≠

f w0( ) f w0 w1+( )– f w0 w2+( )– f w0 w1 w2+ +( )+ 0=

w1 0= w2 0= w1 w2 2w0+ + 0=

u0∂
∂E

R00 R01 R10 R11+ + +=

R00 a00 f u0 vf w0( )+( ) 0.1–( ) f′ u0 vf w0( )+( )=

R01 a01 f u0 u2 vf w0 w2+( )+ +( ) 0.9–( ) f′ u0 u2 vf w0 w2+( )+ +( )=

R10 a10 f u0 u1 vf w0 w1+( )+ +( ) 0.9–( ) f′ u0 u1 vf w0 w1+( )+ +( )=

R11 a11 f u0 u1 u2 vf w0 w1 w2+ +( )+ + +( ) 0.1–( ) ⋅=

f′ u0 u1 u2 vf w0 w1 w2+ +( )+ + +( )

E∂ u0∂⁄
R00 R01 R10 R11 0= = = =

∞±
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5 All unstable stationary points with E ≠ 0 are saddle points

It is proved that all unstable stationary points withE ≠ 0 are saddle points.
Examination of the equations for∇E = 0 leads to three equations which have to
be satisfied by the considered points. The proof is splitted into the cases where
the weightv = 0 and the cases wherev ≠ 0. In the cases wherev = 0 all partial
derivatives of the error with respect tow0, w1 andw2 are zero. It is proved that
the first partial derivative of the error of the form∂i+j +1E/∂w1

i∂w2
j∂v which is

unequal to zero determines that these points are saddle points. The cases where
v ≠ 0 are solved by considering the behaviour of the error on some carefully
selected curves. The complete derivation is given elsewhere [12]. Here, some
pictures are given showing some of the saddle points, visualized with
Mathematica.

Figure 3 shows that indeed the error surface behaves as a saddle point when in

a neighbourhood of the point with all weights zero, the weightsw0, w1, w2 and
v are varied such that∆w0 = ∆w1 = ∆w2 and∆v is very small with respect to
∆wi. Figure 4, 5 and 5 concern two of the saddle points withv = 0.

6 Conclusion

The error surface of the network with one hidden unit for the XOR function has
no local minima, only one global minimum with zero error. This minimum
value is attained in a 3-dimensional region of the 7-dimensional weight space.
Also a number of low dimensional regions exist where the error surface
behaves as a saddle point (dimension 2 for the casev = 0, and dimension 1 for
the other cases). The levels of the error surface in the saddle points are 0.32,
0.407392 and 0.403321, respectively, for a training set with exactly one exam-
ple of each pattern (see [12]). When training is started with small weights, only
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Figure 3.  The error surface in the neighbourhood ofu0 = u1 = u2 = w0
= w1 = w2 = v = 0. This picture is obtained by varyingw0, w1 andw2
equally from –0.5 to 0.5 andv from –0.0005 to 0.0005.



8

-0.1 -0.05 0 0.05 0.1

-0.04 -0.02 0 0.02 0.04

0.31995

0.32

0.32005

-0.1 -0.05 0 0.05 0.1

-0.04 -0.02 0 0.02 0.04

0.

0.

0.

Figure 4.  The error surface in the neighbourhood of the pointu0 =
–f(0.5),u1 = u2 = 0,w0 = 0.5,w1 = w2 = 0,v = 1. The downward
bow of the saddle is obtained by varyingw1, w2, u1 andu2 such
that ∆u1 = ∆u2 = –f ′(0)∆w1 = –f ′(0)∆w2. The other direction is
given by varyingw0 andu0 such that∆u0 = f ′(0)∆w0.
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Figure 5.  The saddle point in the neighbourhood ofu0 = –f(0), u1
= u2 = 0,w0 = w1 = w2 = 0 andv = 1. This picture is obtained by
plotting the error againstu1 = u2 = –f ′(0)w1 = –f ′(0)w2 andu0 =
f ′(0)w0. The weightw1 runs from –0.1 to 0.1 and the weightw0
runs from –0.02 to 0.02.
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a saddle point with error level 0.32 is possibly reached. The probability that the
learning process will start in a saddle point or will end up in a saddle point is
zero since the dimension of the region consisting of saddle points is at most 2,
so its volume as part of the 7-dimensional weight space is zero.

When a saddle point is encountered, a batch learning process with zero
momentum term can wind up in such a saddle point, but an on-line learning
process can probably escape from such a saddle point, since the error surface is
not horizontal for each individual pattern, only the average error surface for all
patterns is horizontal. So a small change of the weights in the right direction
will decrease the error, moving away from the saddle point. We did some
experiments starting on-line learning exactly in the saddle point with all
weights equal to zero and found that even with a small value of the learning
parameter (0.01) and no momentum term the learning algorithm escaped from
the saddle point and reached a solution with (almost) zero error. Using batch
learning no progress was made to escape from the saddle point.

In this paper distinction is made between stable minima (minima for each pat-
tern) and unstable minima (minima for a training set of patterns, but not for
each pattern separately). This distinction is relevant, since if an exact solution
can be represented by the network, then only the absolute minima withE = 0
are stable minima and all other (local) minima are unstable.

The fact that all local minima are unstable can be exploited by the learning
algorithm to escape from these minima. Also the shape of the error surface at a
minimum (narrow or wide) might determine how easy it is to escape from this
minimum. Further research is necessary to examine this.

-1 -0.5 0.5 1 1.5

0.325

0.33

0.335

0.34

0.345

0.35

Figure 6.  The error as function of each of the weights in the neigh-
bourhood ofu0 = –0.5,u1 = u2 = 0,w0 = w1 = w2 = 0 andv = 1. The
curves forw1 andw2 and those foru1 andu2 are identical. This pic-
ture gives the (false) impression that the error has a local minimum
if u0 = –0.5,u1 = u2 = 0, w0 = w1 = w2 = 0 andv = 1. Figure 5
showed already that this point is a saddle point.

u0

v

u1,2

w0

w1,2
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Another possible use of looking at the shape of the error surface when an exact
representation of a problem is not possible (e.g. when noise is present), is find-
ing an estimator for the generalization of a given weight configuration. We
expect that very narrow minima will show a worse generalization than very
wide minima with the same residual error on the training patterns. Further
research is necessary to find a good measure for the shape of a minimum (espe-
cially considering the fact that several scaling factors are present) and to obtain
experimental and theoretical results in this direction.
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