
Integration of the Di�erent Elements

of Object-Oriented Software Engineering

into a Conceptual Framework:

The 3D-Model

Andreas Zamperoni

Leiden University

Dept. of Computer Science

Niels Bohrweg 2

NL-2333 CA Leiden

Tel.: ++31 - 71 - 27 7103

Fax.: ++31 - 71 - 27 6985

email: zamper@wi.leidenuniv.nl

May 1994

Abstract

This report describes a conceptual framework for supporting software engineering. The ap-

proach relies on object-oriented concepts, but is not limited to object-oriented software engi-

neering. The basic idea is the notion of a three-dimensional graph structure, which serves to

capture and to classify development activities and their resulting documents (the elements of

software engineering). The three dimensions - views, components, development process - of a

(software) system serve as fundamental organizing principles, according to which all elements

are placed into a uniform, intuitive, but formal meta-structure. From this meta-structure -

the so-called 3D-model - relevant development elements (activities, speci�cations) and their

relationships with other elements can be derived, together with suitable notations and a pro-

cess. Hence, the 3D-model o�ers a mechanism to de�ne an e�ective and tailored software

development process, which o�ers freedom to select its notations, methods, architectures,

briey, all its essential ingredients, to �t in the current development situation.

Contents

1 Introduction 2

2 The 3D-Model of Software Engineering 5

2.1 Overview of the three dimensions : 5

2.2 One-dimensional integration : 7

2.3 Three-dimensional integration : 8

2.4 The \ingredients" of a software engineering element : : : : : : : : : : : : : : 9

2.5 Decomposition: A fourth dimension? : 10

2.6 Applying the 3D-model : 12

3 The Dimensions 14

3.1 The Views Dimension : 15

3.1.1 Constituents of the Views Dimension : : : : : : : : : : : : : : : : : : : 16

3.1.2 Integration of the Views Dimension Constituents : : : : : : : : : : : : 18

3.1.3 Examples : 19

3.2 The Process Dimension : 20

3.2.1 Constituents of the Development Process Dimension : : : : : : : : : : 21

3.2.2 Integration of the Development Process Constituents : : : : : : : : : : 23

3.2.3 Examples : 25

3.3 The System Components Dimension : 26

3.3.1 Constituents of the System Components Dimension : : : : : : : : : : 26

3.3.2 Integration of the Constituents of the System Components Dimension 28

3.3.3 Examples : 28

4 A First Case Study 31

4.1 Case 1: DEF : 31

4.2 Case 2: GEOMOD : 36

5 Conclusions 50

Bibliography 51

1

Chapter 1

Introduction

In the last years, two related subjects have gained more and more importance in the software

engineering world:

� the maturing of the object-oriented paradigm in development and programming

and, with that new approach

� the emerging need for new software processes which match the particularities of the

object-oriented paradigm.

Many textbooks and other publications on software engineering introduce new, object-

oriented development methodologies [Boo91, JCJO92, RBP

+

91, SM88, SM92, NGT92,

CAB

+

94]. But experience shows that if a developer has decided for and adopts one of these

textbook methodologies, he will inevitably come to a point when the chosen methodology fails

to capture certain aspects important in the speci�c development situation or environment. On

the other hand, he might be forced to stress certain details of the development, e.g., produce

certain speci�cations, although they are not relevant for his actual development e�ort. This

holds especially for the development of innovative, experimental software products, where

requirements and design might not be complete before coding starts [Ger93]. An example

for such a development situation is given at TNO Institute of Applied Geo-Science, Research

Group for Information Systems for Oil & Gas Exploration, which funded this study.

Developing software is quite an individual process, depending on the application domain,

the structure of the organization, its management style, the relative importance of the vari-

ous software qualities, the team involved, the expertise about the problem domain, and other

factors, as described in [REE89]. As consequence, the need for a framework which is tai-

lorable in the selection of its notations, methods, architectures - briey in all its essential

ingredients - arises.

Example: The concept of 'static structure' of a system is an example for the variety of concepts

in software engineering. Static structure, i.e., the set of objects and relationships between objects

can be looked at and described from di�erent perspectives. Inheritance, generalization/specialization

structures can be the focus of the description of static structure, but also synchronous and asynchronous

communication. The choice which of these two di�erent types of relationships - hence perspectives - to

emphasize is biased by factors like the application domain, the development stage, or the type of target

system.

2

3

Most of the o�ered software engineering methods are biased by the particular life cycle of

their authors' development situation. Such amethodology bias can be di�cult to overcome,

especially if a software engineering environment, which supports a speci�c method through the

whole life cycle, is used. On the other hand, approaches, which try to describe the development

from a more independent point of view, are often too abstract to provide more than guidelines

of how to proceed and succeed in software development. In those approaches, terms like the

traditional waterfall model or the spiral model represent only models, i.e., abstractions, of

software engineering, not practicable methods or standards, which are needed for successful

large-scale software development.

Recently, e�orts to realize this approach of variability in software engineering have been

undertaken by providing tool sets which support multiple methods. These e�orts can be

summarized by the term meta-CASE technology. By o�ering a larger range of tools,

meta-CASE tries to provide the developer with an enhanced means of software development

(e.g., ObjectMaker, TBK [Ald91]). The problem is that by providing a tool that supports

di�erent notations, the underlying idea of an enhanced approach to software engineering is

not automatically supported. The same variability in selecting also the suitable software

development process and the proper software engineering principles is required, but goes

beyond the state-of-the-art meta-CASE. An integral approach to adaptable software

engineering would enable a developer to identify from a larger set precisely those activities

and elements (e.g., views of the system, software architectures, etc.) he regarded as important

in his development situation, and a mechanism would:

a. o�er him possible, suitable notations to specify those elements, and

b. show him how the identi�ed elements are related to each other, i.e., how they depend

from other speci�cations within the development.

This mechanism is, at �rst place, a conceptual framework of software engineering, but,

analogously to the meta-CASE tools, serves as conceptual basis for a system that supports

the developer in his engineering work.

Developing such a conceptual mechanism for the issues of software engineering takes sev-

eral steps. The basic units of development and the activities to produce them have to be

identi�ed, classi�ed and described. They form the constituents of the software development.

Subsequently, the potential constituents have to be integrated into a framework that captures

them all in a uniform way. This framework can be modeled in terms of a graph, where the

nodes represent the constituents of the software development, and therefore also the activities

to realize those constituents. The edges represent the relationships between the constituents,

and therefore indicate di�erent types of dependencies between the constituents. From this

framework, a sound set of constituents and activities for a certain application area can be

derived by specifying a subset of the above mentioned graph. Using a graph to model the

network of activities and dependencies in software development is a sound basis for the re-

alization of the conceptual framework. Furthermore, di�erent types of reuse are supported.

Reusing object descriptions or components is done by reusing the respective nodes and the

information they contain. But also whole sub-paths or sub-graph structures can be reused

which corresponds to reusing fragments of the development process.

4 CHAPTER 1. INTRODUCTION

This report focuses on several issues:

1. describing the model used to express the framework of constituents and relationships in

terms of a \three-dimensional" graph structure, the so-called 3D-model (chapt. 2),

2. establishing a �rst set of constituents and categories for these constituents (chapt. 3),

3. describing how the constituents are treated in known textbooks, and how they are

integrated to software engineering methodologies (sec. 3.1.3,3.2.3, and 3.3.3),

4. giving two case studies that show which and how constituents have been addressed in

recent software development projects at TNO (chapt. 4).

More interesting topics that are part of the 3D-model, but not treated in this report, are:

� categorizing or formalizing the relationships between the constituents,

� describing precisely the contents of a 3D-model node,

� formalizing the graph structure of the 3D-model,

� deriving a sound software engineering approach for a certain application area from that

graph structure,

� many more open problems.

Chapter 2

The 3D-Model of Software

Engineering

When software systems grow in size and complexity, their development extends beyond the

question of algorithms and data structures. Suitable units of decomposition (or composition)

have to be de�ned in order to divide the various development tasks into pieces of manageable

size. This separation of concerns does not only apply to 1) the components of a system,

but also to 2) its life cycle and to 3) the perspectives from which a system is described.

These three categories, called dimensions in the following, form the basis to specify and

categorize the various issues of software engineering separately from each other, especially

separately from issues of other dimensions (cf. �g. 2.1). The units of decomposition of each

dimension will be called constituents. Describing the three dimensions is possible and useful

on di�erent levels of granularity regarding the system. The di�erent categories apply to

the coarse grain units of a software system (the software architecture) as well as to the �ner

decomposition units as e.g., subsystems, modules (processing units), and even single classes.

The term \dimension" was chosen to stress that a certain software development approach

derived from the 3D-model could be modi�ed within one dimension, without that such a

change necessarily a�ects the development regarding one of the other dimensions. To prevent

ambiguity, the term three-dimensional grid will be used to indicate that the arrangement of

the constituents of a dimension doesn't imply any (temporal or other) order, but only serves

to categorize and structure the development within the three-dimensional space.

Example: A software process includes the speci�cation of an object communication diagram (views

dimension) of the high level system components (components dimension) in the design phase (process

dimension). Changing the set of components should have no inuence on the other two dimensions,

i.e, on the requirement of producing an object communication diagram in the design phase.

2.1 Overview of the three dimensions

The �rst two dimensions - views of the system and development process - have already been

mentioned in the introduction. They are complemented by a third dimension, the components

of a system. This distinction of a third dimension will be motivated later. All three dimension

are introduced here and broken down into more detail in chapt. 3.

5

6 CHAPTER 2. THE 3D-MODEL OF SOFTWARE ENGINEERING

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

Figure 2.1: The dimensions of software development. The labels at the axes show basic con-

stituents of the dimensions.

The �rst dimension is

1. views of the system

The three basic views (or also: perspectives) from which a system can be described are

the structural view which describes the static structure of a system, i.e, its parts (objects)

and their relationships , the behavioral view which describes the behavior of a system, and

the functional view which describes the processing units of a system and the ow of the data

along them.

The second dimension is

2. development process

The \classical" software development process distinguishes three consecutive development

phases: analysis , design, and implementation. This distinction of three development phases

can be adopted for the development process dimension at �rst sight, and is applied in most

object-oriented software development methods, too. But it has to be taken into account, that

the object-oriented paradigm allows a relatively independent development of components, and

supports also evolutionary prototyping. This is an indication that the development process

dimension has to take into account also forms of organization of the phases other than the

classical one.

The independence of components and their development, mentioned above, leads to the

identi�cation of a third dimension, the dimension of

2.2. ONE-DIMENSIONAL INTEGRATION 7

3. system components

This dimension goes beyond agreeing on a standard set of system components or their

functionality, as proposed in certain software frameworks , as e.g., in [Nat91]. The system

components dimension gives a generic classi�cation to capture components that build up an

arbitrary system. In the other dimensions, the constituents (of a dimension) represent funda-

mental principles of organization and classi�cation which apply to all levels of speci�cation.

In the same way, constituents of the system components dimension should give a generic

classi�cation of the logical parts of a system, where \system" ranges from a whole software

product to a single class.

The generic organizing principle for systems, used in this context, adapts the organization

of a class of the object-oriented approach. It incorporates the component categories interface

(comparable to the public features of a class), repository (the encapsulated data structures),

process (the private part or body that realizes the functionality on top of the data structures),

and control (which in class de�nitions can be expressed e.g. by pre- and postconditions of

methods). The idea behind this categorization is that di�erent parts, i.e., system components,

of the system provide di�erent sets of services, comparable to the MVC-Concept [KP88].

Are the more dimensions?

Potentially, software engineering encapsulates also other principles which could be used

as categorizing dimension. The di�erent application areas and software product families

clearly have an inuence on the appearance of the 3D-model graph and hence are candidate

for the constituents of another dimension. The same holds for the set of notations with which

the elements are described. But extending the 3D-model with an \applications domain" di-

mension and with a \notations" dimension would unnecessarily decrease its understandability.

Therefore, these two specializations are rather regarded as applying the generic 3D-model for

a speci�c development e�ort rather than as new \dimensions". By limiting the number of

dimensions to three, the fundamental structuring mechanism is kept as simple and basic as

possible. The choice of the three dimensions introduced above guarantees a well-structured

software engineering approach.

2.2 One-dimensional integration

Each dimension deals with another aspect of the software system (perspective, time, compo-

nents). To come to a complete picture of a dimension, its constituents have to be related to

each other (cf. �g 2.2). A �rst step is to relate the constituents of one dimension to each

other. This holds within each of the three dimensions, as the following three examples show:

Example:

1. The structural view of the system is related to the behavioral view and to the functional view.

State transition diagrams (STDs) can describe the life cycles of the objects, (complex) activities

within the states of the STDs can be decomposed into processes. Processes involve ow of data,

which are objects themselves, thereby closing the circle (cf. sec. 3.1.2).

2. In the process dimension, objects identi�ed during analysis will be found back throughout the

whole life cycle of the system. This kind of \traceability" is often a requirement demanded from

the software engineering methodology. It indicates that constituents are related to each other

also in the process dimension.

8 CHAPTER 2. THE 3D-MODEL OF SOFTWARE ENGINEERING

3. The decomposition of a software system into a set of suitable subcomponents implies relation-

ships between these subcomponents on that (lower) level of decomposition. The speci�cation of

subcomponents of a system and their collaboration is addressed as \system architecture" in the

literature [STO89, Obj90, FkNO92, PW92, GS93] (cf. sec. 3.3.3).

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

BEGIN

END.

BEGIN

END..

.....

.....

.....

......

Figure 2.2: One-dimensional integration: Relationships between constituents of one dimension

integrate them within that dimension.

The one-dimensional integration sketched in �g. 2.2 results in a coherent description of

each dimension. This one-dimensional integration refers to the construction of (the static

structure of) the generic 3D-model, i.e., the generic dependencies between constituents within

each dimension. The construction of the generic 3D-model has no implications to the (dy-

namic) activities of a certain software development process modeled using the generic 3D-

model . which integrates the di�erent speci�cations that have to be worked out.

2.3 Three-dimensional integration

Extending integration to all dimensions captures the whole picture of software development.

This means that each speci�cation belonging to the software development combines one (or

more) constituents of each of the three dimensions. In terms of the 3D-model, we obtain a

sort of three-dimensional grid in which each cross point represents a certain combination

of constituents (cf. �g. 2.3).

This three-dimensional grid is the intuitive representation of a graph where each node

describes a certain view of a certain system component at a certain moment the development

process (the combination of constituents of all three dimension). The nodes will also be called

2.4. THE \INGREDIENTS" OF A SOFTWARE ENGINEERING ELEMENT 9

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

?

X

Y

Figure 2.3: An example for the combination of constituents from each of the three dimensions

making up one software engineering element (= node of the 3D-grid). Here, node X represents

the state model of the (user) interface component in the analysis phase, node Y the object model

of the system control component in the design phase. The question mark labeling the connection

between the two nodes indicates that a relationship between those two nodes might exist, but its

semantic is not speci�ed in this �gure.

elements in the following. A software engineering \element" is a triplet of constituents of each

of the dimensions. The edges between the nodes represent the dependencies, implications,

and other types of relationships between the 3D-model graph nodes.

2.4 The \ingredients" of a software engineering element

A 3D-model node is more than just a location in the 3D-model graph. The software engi-

neering element which is represented by such a node is a \container" for relevant engineering

information, development constraints, knowledge, etc.. A �rst tentative to depict the \ingre-

dients" of a software engineering element in the scope of the 3D-model results in the following

list:

10 CHAPTER 2. THE 3D-MODEL OF SOFTWARE ENGINEERING

� the combination of constituents of each dimension of the 3D-model that

places the respective node at the appropriate place in the software development

+ a document, or deliverable that might capture a speci�cation

+ its (possible) speci�cation formalism(s)

+ an activity to produce the speci�cation

+ a tool to support the speci�cation process

+ a commitment (personnel, resources, i.e, management aspects)

+ a list of versions of the speci�cation as result of iterations in the speci�cation

process

+ a set of outgoing and incoming dependency edges, that relate the respective

node to other nodes, and hence the underlying element to other elements or

decompositions of that element.

The di�erent \ingredients" of an element of the 3D-model don't fall all in the same cate-

gory. While the �rst (combination of constituents) and the last (dependency edges) determine

the structure or the 3D-model graph, the other ones can be seen as attributes of the nodes.

2.5 Decomposition: A fourth dimension?

The 3D-model describes a system at a certain level of granularity. As mentioned before,

in software development the notion of \system" might extend from the coarse-grain system

architecture of a whole software system to the detailed speci�cation of certain components

to the speci�cation of single classes. This has as consequence that each of the elements of a

3D-model, i.e., each of the nodes of the graph, may be decomposed and represented by its

own \3D-model" (cf. �g. 2.4).

Decomposition can occur concerning all the three views of the system, and repeats recur-

sively to an appropriate level.

Example:

1. Functional decomposition is known from SADT [YC79, You89]. It means decomposing the pro-

cesses that represent the system functionality.

2. Structural decomposition partitions a system into its subcomponents which consequently are

treated as \systems" of their own.

3. An example of behavioral decomposition is the transition from \black-box" state transition di-

agrams which describe the behavior of a system as perceived from the outside (e.g., by users)

to the behavioral description by \white-box" state transition diagrams, where the control ow

between the di�erent parts of the system and their individual actions are distinguished.

Decomposition can follow di�erent decomposition principles. A node can be specialized

into subtypes of that node, applying inheritance, or it can be split up into subcomponents by

aggregation. In both cases, decomposition means to go from an abstract level of speci�cation

of a node to a more detailed level, but the semantics of the decomposition relation is di�erent

for both types of decomposition.

Whether a certain node has to be decomposed, i.e., has to be speci�ed in more detail on

a lower level, or not, depends on a variety of factors, such as e.g.,

� to what degree that element is already available (e.g., as commercial product)

2.5. DECOMPOSITION: A FOURTH DIMENSION? 11

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

BEGIN

END.

BEGIN

END..

.....

.....

.....

......

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

BEGIN

END.

BEGIN

END..

.....

.....

.....

......

X

X1

X2

...

Figure 2.4: The description of a system (\X") in terms of the 3D-model at a certain level of

granularity might be decomposed into more �ne-grain 3D-model descriptions of its sub-subsystems

(\X1", \X2", : : :).

� to what degree that element is understood, complex, or trivial

� what the scope of the element is (e.g., give a �rst overview or specify in detail all aspects

of it)

The granularity levels, i.e., the step-size of the decomposition, are also not generally pre-

de�ned, but may be variable.

Example: A certain part of the software system might be described only super�cially at the beginning

of the development. In that case, the related node of the 3D-model, i.e., the speci�cation connected

to that node, would not be decomposed. Instead, a related node, representing the same part at a later

stage of development, would be decomposed.

12 CHAPTER 2. THE 3D-MODEL OF SOFTWARE ENGINEERING

2.6 Applying the 3D-model

Up to now, the 3D-model only represents an abstraction of software development. But as

mentioned in the introduction, the goal is to employ a model such as the 3D-model to derive

a practical framework for software development which de�nes the necessary activities and

guides the developer through the whole abstraction cycle.

Modeling software development by a graph allows parallel, non-sequential, and non-

deterministic development activities. The graph notion itself, doesn't imply a speci�c software

process, i.e., no total ordering of the activities (the production of documents) to obtain the

system, but leaves it open to use the edges of the graph to de�ne a development process.

Instead of life cycle, the term abstraction cycle seems more appropriate to describe inte-

gration in the development process dimension. This indicates that the unities of the process

dimension \axis" are levels of abstraction from the problem domain towards a software prod-

uct rather than chronologically ordered.

To derive a framework for a speci�c development situation from the generic 3D-model,

three steps have to be performed:

1. Potentially, the 3D-model grid implies a large number of possible elements, more pre-

cisely, the power set of possible combinations fSYSTEM COMPONENTS � VIEWS

� DEVELOPMENT PROCESSg. So, the �rst step is to chose which of the ele-

ments, i.e., nodes of the 3D-model grid, are relevant for the development of a

speci�c software product, or better, for a whole class of software products (e.g., for

the development of GIS's).

Example: For the speci�cation of a database, only the static structure of the data might be of

interest in the analysis phase. In that case, the node with \functionality", or \behavior" in their

views dimension would not have to be �lled in (cf. sec. 4.1).

Identifying the relevant elements means to select those speci�cations that are meaningful

in the context of a certain application (area).

2. The next step is to �ll in the \attributes" of the 3D-model nodes, selected in the

�rst step. Concerning the software engineering elements, this means to determine their

\ingredients", i.e., to give activities, notations, commitments, etc. to be used when

treating that element.

3. A software process has to be established. This means to formalize the course of

activities encapsulated in the software engineering elements, i.e., to produce all required

speci�cations. The course of activities is described and constrained by the various types

of relationships that can exist between the elements of software engineering, i.e., between

the nodes of the 3D-model graph, and by what is de�ned in the elements. As mentioned

above, the relationships between the elements can de�ne di�erent types of dependencies

between the various documents or their production. These dependencies imply a partial

ordering of the activities, indicated by the direction of the edges of the related 3D-model

graph.

Example: A dependency edge from node A and node B could be labeled \is implemented by".

That would imply that the speci�cation represented by node A will be implemented by module

represented by node B.

2.6. APPLYING THE 3D-MODEL 13

Other types of relationships between elements might not imply a �xed ordering of the

activities to produce the underlying speci�cations.

Example: Decomposing di�erent system components of a system can mostly be performed inde-

pendently.

This report doesn't focus on the possible types of relationships. Attempts to catego-

rize relationship types between software development activities can be found e.g. in

[SIWyS93].

The software process can be derived individually from the (non-coherent) paths of the

3D-model graph, because they constrain only partially the order of the related activities.

By covering all relevant nodes in the order constraint by the relationships among them,

a full software process is described.

Chapter 3

The Dimensions

In this chapter, each of the three dimensions introduced in the previous chapter will be

described in more detail. As no formal language will be used to specify formally the 3D-

model graph in this report, the descriptions will more or less represent an \extended tour

through the dimensions". The concepts, classi�cations, and integration principles described

represent generalizations from established methodologies and evaluated projects

and not formal de�nitions. Before the 3D-model can be speci�ed formally, it has to be

understood intuitively. Therefore, apart from presenting the dimensions of the 3D-model,

another important purpose of this �rst description of the dimensions is to gain an overview

of the requirements for a suitable formalism to describe the 3D-model graph.

As stated in the introduction, existing software engineering methodologies are often biased

by their authors, i.e., by their working context. This doesn't mean that they are not suitable

in any other context, but their usage is often limited by implicit integration and valuation

of aspects that then are combined in one speci�cation document. The result is that di�erent

methods di�er in their focus on di�erent aspects and principles of integration.

Example: [SM92] describes very detailed and formally the transformation from analysis to design,

while [Boo91] gives only heuristics for that transformation. Concerning the integration of constituents

in the development process dimension). [RBP

+

91] gives guidelines for the integration of system compo-

nents (\prototypical architectures" - system components dimension), while [SM92] describes extensively

integration of views (views dimension).

A higher level of abstraction reveals the basic, generic constituents of each dimension

of the 3D-model which later combine to the elements of software engineering. The con-

stituents will be described in the following, illustrated by examples from known textbook

methodologies.

Example: In the views dimension, a list of identi�ed entities, an object model, and a class hierarchy

are concepts to describe a system ranging from the same point of view, i.e., the structural view of the

system, but at di�erent points in the abstraction cycle (from the �rst requirements speci�cation to the

implementation). Hence \structural view" of a system is present along the whole development process

dimension (cf. �g. 3.1).

This holds analogously for the system components dimension. The description of static structure

is important for every component, for the repository (the structure of the persistent data), as well as

for the interface (e.g., the structure of the user interface windows), etc. . \Structural view" is also

present in the whole system component dimension.

14

3.1. THE VIEWS DIMENSION 15

Static structure is consequently an \invariant" in the development process dimension as well as in

the system components dimension. This invariance is a hint that the \static structure" is a candidate

for a constituent of the views dimension.

X

X1

X2

X

X1 X2

class X {
 public:
 ...
 }

template Y {
...

analysis design implementation

development
 process

views

system components

structural (static)

functionality

behavior

interface

control

process

repository

Figure 3.1: The necessity of static structure description is independent from the system

components and development process dimensions.

While it does not seem di�cult to recognize the static structure as constituent of the views

dimension, other constituents are not so easy to identify. Even with the static structure, the

case is not unambiguous. Looking at di�erent methodologies, the speci�cation of the static

structure includes di�erent aspects, the border to other constituents of the same dimension

is sometimes blurred.

Example: [Boo91] distinguishes between class structure and object structure. While class diagrams

capture the static design of a system, object diagrams are used to represent structure snapshots in time

as results of operations. Other methods, like [RBP

+

91], don't make that distinction.

The following three sections try to identify the basic constituents of the three dimensions

of the 3D-model. OMT [RBP

+

91] is used to illustrate graphically the concepts, and how they

are related to each other.

3.1 The Views Dimension

The views dimension deals with the di�erent perspectives from which a software system can

be described, mainly:

� static structure,

16 CHAPTER 3. THE DIMENSIONS

� functionality (processes and data ow), and

� (time-dependent) behavior of the system and objects in it.

The description of each of these views can further be split up into several di�erent sub-

views to emphasize certain aspects of modeling. None of the views is regarded as more

important as the others a priori.

In the next section, the concepts of structural, behavioral, and functional modeling will

be introduced.

3.1.1 Constituents of the Views Dimension

The Structural Perspective

Figure 3.2 gives an overview of concepts that can be found in structural system descrip-

tions. The concepts are not always clearly distinguishable, this depends also form the language

chosen for speci�cation.

Example: Informal text, which is often chosen for describing a system (cf. sec. 4.2), and program

code are two examples for languages where the concepts of structural description are not (always) so

clearly distinguishable as, e.g., when a language as in OMT [RBP

+

91] is used.

Object Class

Feature

Attribute Operation Relationship Type

part_of has_
constituent

subclass_of subtype_ofis_a

instance_of member_of

decomposition gen/spec class/object

association

free

has

structural view

Figure 3.2: Concepts used for describing the static structure of a system

Contents of the static structure is the description of the objects classes and objects of a

system (or of a part of a system), together with the various relationships among them. Object

classes are characterized by their features , i.e., by their instance variables (attributes), and

by the operations (methods) they provide. Several types of relationships among objects and

object classes are possible. The list of concepts and relationships of the structural view is

3.1. THE VIEWS DIMENSION 17

mainly inspired by the object-oriented paradigm, because this paradigm is an excellent means

to structure and modularize a system in a natural way.

The characteristics and purposes of the shown relationship types are:

free associations: \Free" means that the semantics of this kind of relationship is arbitrary,

and is speci�ed explicitly (e.g., by labeling them). Free associations are symmetrical

and can include one or more objects of one or more object classes.

part of : to model decomposition among objects.

has constituent: to model aggregation among objects. In contrast to the part of relationship

where component objects are not necessarily depending from composed objects, the

existence of aggregated objects depends from the existence of the constituting objects.

is a: to model generalization/specialization structures among objects.

subtype of : to model generalization/specialization among object classes.

subclass of : to model inheritance of features on implementation level.

instance of : to relate objects (instances) directly to object classes.

member of : to relate objects (indirectly) to all super-classes of the class to which the object

is related directly through an \instance of" relationship; this kind of relationship is used

in systems where objects can only be \instance of" one object class.

The Functional Perspective

In object-oriented development methodologies and programming, the functionality of a sys-

tem, i.e., its available and identi�able operations, is closely attached to the objects. Func-

tionality is provided by the objects of the system, and therefore often speci�ed together with

the structure of the system. Nevertheless, a separate speci�cation of functionality as an au-

tonomous view of a system should be kept if necessary. Investigating the functionality of an

application can be a useful and important part of the analysis [RG92, JCJO92].

Concepts of the functional view describe (for example) the units of processing (pro-

cesses) and the intercommunication (data and control ows) between them [SM92]. It shows

how output values (of a processing unit) are generated from (external) input values, and how

data ows, intermediate processes, and data stores (as persistent data objects) are involved

in the computation (cf. �g. 3.3).

Here, the same observation as for the static structure description holds: depending from

the language chosen, the concepts cannot always be distinguished so clearly.

The Behavioral Perspective

In \classical" behavior modeling, the behavior of a system can be speci�ed from two view-

points: the behavior of a system as it is perceivable from the outside of the system, e.g., by a

user (black box perspective), and the ow of control, the interactions, and the sequence of ac-

tivities within a system (white box perspective). As a matter of facts, these two perspectives

are not fundamentally di�erent, but rather represent only di�erent levels of granularity in the

18 CHAPTER 3. THE DIMENSIONS

Functional View
output

output input

input

Process

Control Flow

Data Flow

Data Store

source sink

1+

Figure 3.3: Concepts used to describe the functional perspective of a system

description of behavior. It should be remembered that the term \system" applies to di�erent

levels of granularity of the software system. So, the black-box perspective of the behavior of

a lower-level \system", which is a subsystem of a higher-level system, is an essential part of

the white-box perspective of the behavior of that higher-level system. The two speci�cations

are mutually related because they express how the behavior of system and subsystem relate

to each other.

Concepts to specify behavior of a system or its interacting parts are (for example)

the states in which a system can be, the transitions between states, conditions for transitions

(e.g., events as conditions for transitions triggered from outside the system), and actions (i.e.,

collection of operations) that are connected either to the states or to transitions. Timing and

synchronization aspects can extend the behavioral view for special purposes (cf. �g. 3.4).

regular expr. timing synchronize

Behavioral View
State

Action

Transition

connected_toconnected_to

Condition

has_condition

Figure 3.4: Concepts of behavioral perspective description

Here again, distinction of concepts might not always be so easy or possible, depending

from the speci�cation formalism.

3.1.2 Integration of the Views Dimension Constituents

The complementing views of a system described above can be integrated to provide an \over-

all" perspective of the system to be speci�ed. This integration is necessary to ensure con-

3.1. THE VIEWS DIMENSION 19

sistency between structure, functionality, and behavior of the system description (cf.

�g. 3.5).

Object Model

Structural View

Object
. . .

Action

State Model

Behavioral View

State
. . .

Functional Model

Functional View

ProcessData

. . .
Operation

input

output

has_a

is_a

defines

Figure 3.5: Integration of the di�erent perspectives of the views dimension

Starting with the structural view, the behavior of objects (as instances of the object

classes) with a non-trivial life cycle can be described with a4 behavioral view description.

For every object class, the behavior of its objects is speci�ed by, e.g., a state model. The

actions which occur within the states of such a state model or during the transitions can

be so complex that they might have to be speci�ed in more detail with a functional view

description. The functional model can be used also to describe the behavior of operations of

the object classes de�ned in the structural view.

3.1.3 Examples

This section contains a collection of examples of notations for the views dimension of a system.

They represent possible notations to describe the di�erent views of the view dimension.

As the focus is on the describing possible notations for the views dimension, the notations

mentioned are listed outside their context, i.e., they may be taken from di�erent development

phases or suitable for di�erent levels of granularity.

Structural perspective:

OMT [RBP

+

91]: Object Model (Diagram), Data Dictionary

20 CHAPTER 3. THE DIMENSIONS

Booch [Boo91]: Class Diagram, Object Diagram, Module Diagram, Process Diagram

Shlaer/Mellor [SM88, SM92]: Information Structure Diagram, Object and Attribute De-

scriptions, Relationship Descriptions, Class Diagram, Dependency Diagram, Domain

Chart

Use Cases [JCJO92]: Structural Model, Entity Object Model, Subsystem

Fusion [CAB

+

94]: Object Model, System Object Model, Object Interaction Graphs, Visi-

bility Graphs, Class Descriptions, Inheritance Graphs

Behavioral perspective:

OMT [RBP

+

91]: State Diagram, Event Flow Diagram

Booch [Boo91]: State Transition Diagram, Timing Diagram

Shlaer/Mellor [SM88, SM92]: State Model, Event List, Object Communication Model

Use Cases [JCJO92]: Interaction Diagram

Fusion [CAB

+

94]: Life Cycle Model, Scenarios

Functional perspective:

OMT [RBP

+

91]: Data Flow Diagram

Booch [Boo91]: -

Shlaer/Mellor [SM88, SM92]: Object Access Model, Action Data Flow Diagram, State

Process Table, Process Description

Use Cases [JCJO92]: Use cases

Fusion [CAB

+

94]: Operational Model

3.2 The Process Dimension

There is no cookbook process to follow when developing software. Especially with object-

oriented methods, where systems can evolve incrementally, idioms such as \waterfall model",

\bottom-up" or \top-down", can't be applied strictly and exclusively to the software engi-

neering process. It is only from the management perspective that software system, which are

designed and constructed in a cyclic way, have to be phased sequentially in order to support

time frame-driven project management [Ger93].

3.2. THE PROCESS DIMENSION 21

3.2.1 Constituents of the Development Process Dimension

In the literature, system development is subdivided in di�erent sequences of phases, depending

from the proposing authors. Some examples of classi�cations are:

� OMT [RBP

+

91]: analysis, system design, object design, implementation

� Booch [Boo91]: analysis, design, evolution, modi�cation

� OOAD [SM92]: analysis, design, implementation

� Use-case driven design [JCJO92]: analysis, construction, testing

� Fusion [CAB

+

94]: analysis, design, implementation

All approaches distinguish three main phases from the problem statement to the \�nal-

ization" of the system. OMT, the �rst of these approaches, also distinguishes between the

overall design of the system and the detailed design, reecting the importance of identifying

a proper system architecture as a substantial part of the design process.

It is notable that many methodologies, while generally recognizing the need or presence

of some kind of testing and/or maintenance phase, include such a phase only very informally

in their proposed categorizations of software development phases.

The names of the constituents of the development process dimension (i.e., the main

development phases) used here in this section di�er a little from the traditional phasing, i.e.,

analysis, design, implementation, also used in sec. 2.1. The names used here reect the

potential incorporation of evolutionary prototyping in the development, therefore analysis ,

evolution (= design), and �nalization (= implementation) have been chosen. The phases are

accompanied by the types of speci�cations (indicated by a \!") that will result from, or be

modi�ed by, the activities belonging to the phases. In sec. 3.2.3, some examples of possible

notations to be used in the di�erent phases are given.

In order to keep the �rst approach simple, this abstraction cycle describes only the de-

velopment of the software system until completion. Therefore, the description of phases ends

with the delivery of a new release. Although maintenance or extension of the system are not

included in this report, they are important phases of the software life cycle and have to be

considered in the development process dimension as well.

Analysis

1. Preparation

! software project management plan (SPMP)

! quality assurance plan (SQAP)

! global test plan

2. Concepts & ideas

! basic concepts

3. Requirements analysis (Primary analysis)

Sub-activities:

22 CHAPTER 3. THE DIMENSIONS

(a) general system constraints, development constraints

(b) identify (interacting) entities

(c) describe interactions

(d) identify processes, services with initiators, participants, pre-/postconditions

! global system requirements speci�cation (global SRS)

(e) extract object model from (interacting) entities (hierarchical and contractual OM)

(f) specify object dynamics

� life cycle

� functionality

! system requirements speci�cation (�rst SRS)

4. Global system design

Sub-activities:

(a) identify available system components and their interfaces

(b) associate results of SRS (objects, processes, services, actions (of state models) to

available system components

(c) de�ne the overall system architecture and place available components using refer-

ential components and architectures

! global system design document (global SDD))

(d) build �rst version prototype

! (�rst prototype)

(e) identify \delta-design", i.e.:

� components that have been identi�ed as required for the system, but which

are not part of the referential architecture

� components that are part of the referential architecture but not identi�ed as

required for the system

Evolution

1. Requirement analysis

Sub-activities:

(a) modify SRS according to evaluation of prototype

! system requirements speci�cation (modi�ed SRS)

2. Object Design

Sub-activities:

(a) design oo class hierarchy

(b) describe features of the classes

! system design document (SDD))

! detailed test plan

3.2. THE PROCESS DIMENSION 23

3. Prototyping

! (modi�ed) prototype

Finalization

1. Finalization of Code

! alpha release

! alpha test plan

2. Alpha Testing

! beta release

! beta test plan

3. Beta Testing

! new release

! maintenance plan

3.2.2 Integration of the Development Process Constituents

When de�ning the steps and phases of system development, it has to be taken into account

that a clear distinction of phases that results in a sequential ordering of activities and

speci�cations is not always possible or desirable, because:

� Object-oriented development and programming environments support an independent

development of the individual components of a system. As consequence, di�erent parts

of the system may be in principle in di�erent stages of completion.

� Especially in the development of experimental software, as is the case at TNO, system

requirements and design evolve during the course of a project. Knowledge of the sys-

tem grows progressively as work progresses. Prototyping can facilitate the evaluation of

intermediate stages of the system, as it allows the developer to focus on certain proper-

ties of the system, and to allow them to experiment with a number of di�erent design

options.

Consequence could be an incremental and iterative development of the system, where

switching between activities is normal. Nevertheless, this working style has to be underlaid

by a sound and ordered process in order to prevent chaos. It is important to draw a line

between development phases, and to design development cycles that �t in the frame of se-

quential software engineering phases. Thereby, stages should be established which do not

require changing the results of earlier documents when later documents are changed. In other

words: while iteration in the productions of the documents of one phase is promoted, iteration

between the (main) phases should be avoided. Especially, it is important to know at least the

full range of requirements, and to have a picture of the global system design, i.e., the system

architecture, before starting any detailed design activities. This level of maturity is required

particularly when certain system components are already in an elaborated stage (due to reuse

or commercial availability), in order to avoid redundant development activities.

In the proposed software process, some of the activities and documents play a special,

exposed role. When a prototyping approach is chosen, they serve as \links" between the

24 CHAPTER 3. THE DIMENSIONS

phases, i.e., they appear in more than one phase. This holds primarily for the prototype

itself, of course. But also the requirements speci�cation and parts of the system design are

activities - and result in documents - that transgress the border between development phases.

In \traditional" software development life cycles, the documents of the current phase

are obtained by transforming/translating completed speci�cations of a former phase into the

formalisms of the current phase (cf. �g. 3.6a). With prototyping, certain speci�cations are

directly carried into the next phase and used there as basis for further development (cf.

�g. 3.6b). This imposes special requirements concerning quality, traceability, and evolvability

to these speci�cations. Although these special requirements for the speci�cations look like

implying a substantial increase of document production (i.e., work to do), this isn't the case,

because documents are taken directly to the next phase, where they are extended or elaborated

in more detail - they don't have to be worked out from scratch.

Analysis

Design
class X
is
 subclass
of ...

Class X
 {
...
}

SDD

code

SRS

Implementation

transformation

transformation

Analysis

Evolution

Finalization

class X
is
 subclass
of ...

Class X
 {
...
}

SRS (1.) G-SDD Protot. (1.)

class X
is
 subclass
of ...

Class X
 {
...
}

SRS

SDD

Protot.

Evolution

 documents are carried to the next phase

Class X
 {
...
}

code
 documents are carried to the next phase

a. b.

Figure 3.6: document progression in a) \traditional" software engineering, b) prototyping

An alternative integration approach without prototyping:

From the process outlined above and in �g. 3.6b, a software process without prototyping

can be obtained, too, by \�ltering" out a di�erent subset of the constituents of the develop-

ment process dimension. In order to achieve this, the activities presented in sec. 3.2.1 have to

be integrated in a di�erent way (cf. �g. 3.7). The system requirements speci�cation (SRS) is

not carried into the evolution phase, but completed in the analysis phase. The evolution phase

is not cyclic, but rather \linear", i.e., system design is the main speci�cation document of the

middle phase. This middle phase, the design terminates with the completion of the SDD. Of

course, there is no evolving prototype, so \prototyping" as coding activity is dropped, and

3.2. THE PROCESS DIMENSION 25

coding can not be found before the �nalization phase which becomes an \implementation"

phase. By then, system requirements and system design are stable.

Analysis

[Evolution]

Finalization

class X
is
 subclass
of ...

Class X
 {
...
}

SRS
G-SDD

class X
is
 subclass
of ...

Class X
 {
...
}

SDD

Class X
 {
...
}

code

Figure 3.7: Integration without prototyping implies a di�erent integration of development activi-

ties, but can be \derived" from the evolutionary development process

3.2.3 Examples

The distinction of phases and related document productions suggested in section 3.2.1 is

realized in the PROBE-project [Ger93]. This process seems to match well the requirements

of the development of experimental software. Prototyping takes a central role in the design

of the system. Within the design phase, changes of the requirements speci�cation and the

system design are possible as consequence of the evaluation of the current prototype. Here,

the prototype is not used as \toy" to visualize certain properties of the system (e.g., to

illustrate the user interface), but evolves incrementally until it captures the whole range of

system requirements and functionality. Thus, the \implementation" phase is reduced to the

\cleaning-up" and optimization of the code.

The O-O-O methodology [HS93] replaces the traditional abstraction of the \waterfall

model" by a fountain model . This model assumes a \pure" object-oriented development life

cycle, i.e., a development process which uses the object-oriented paradigm in all its phases.

The graphic image of a \fountain", where water rises in the middle, but falls back and is

re-entrained at intermediate levels, is used to capture the iterative character of all activities

which lead to the development of a software system. The O-O-O methodology distinguishes

between seven basic activities which essentially cover the life cycle as far as the �nal production

of the software product and release to the customer. Because the object-oriented paradigm

is applied, the various parts of the system can be in di�erent stages of development.

26 CHAPTER 3. THE DIMENSIONS

Some notations for the various development process constituents proposed in section 3.2.1

are:

Requirement analysis:

(b) \shopping list" with classi�cation of the entities [RBP

+

91]

(c) Scenarios, Scripts [RG92], Use Cases [JCJO92]

(d) Glossaries [RG92])

(e) Object Model [RBP

+

91], Information Structure Diagram [SM92]

(f) � State Model, Object Communication Model, Event List [SM92]

� Action Data Flow Diagram, Object Access Model [SM92]

Global System Design:

(b) architectural frameworks [Nat91, Obj90]

(c) referential system architectures [RBP

+

91, GS93]

Object Design:

(a) Class Diagram, Dependency Diagram [SM92]

(b) Object Interaction Graph, Visibility Graph, Class Description, Inheritance Graph

[CAB

+

94]

3.3 The System Components Dimension

A key property of a (software) system is the quality of its internal architecture. A good

architecture makes the system easy to understand, change, test and maintain. The archi-

tecture of the system has inuence on the development process, because the selection and

structure of the components of the system predetermine which components can be reused or

adapted (from previous projects), which components have to be developed from scratch, and

how these components have to be integrated into a homogeneous system.

3.3.1 Constituents of the System Components Dimension

As the 3D-model is suited to describe systems on di�erent level of granularity, this has to be

taken into account when identifying the generic components. The classi�cation of the generic

constituents of the system components dimension has to be valid for the description of the

system on di�erent levels of granularity.

The categorization used here follows the object-oriented paradigm, adopting the class con-

cept to describe the constituents of a system in general. This implies that every system,

subsystem, module, etc., can also be seen as object and part of a superior system (speci�ca-

tion). As consequence, the speci�cation of each \system" can be decomposed for all its parts,

so that every part might be described by its own \3D-model" again (cf. sec. 2.5).

Interface is a constituent of the system components dimension for the purpose of com-

municating with other systems, or the outside world, corresponding to the public features

3.3. THE SYSTEM COMPONENTS DIMENSION 27

System

ControlRepository Process Interface

system components

communcicates_with_other

Figure 3.8: The constituents of the system components dimension. The semantics of the asso-

ciation links between the constituents is not speci�ed in detail. At this stage, they just indicate

communication between the components.

of a class. In the scope of the \system" abstraction, user interface and interfaces to other

(sub)systems fall into the same system component category, because purpose of both is to

delimit the communication with, and access to, the rest of the system. As consequence, a

system description can have several, very di�erent interface components.

Example: A software system can have a user interface which can be quite extensive to develop,

with an own development life cycle - a complete software subsystem of its own. Such a user interface

itself has two \interfaces": the one to the users (the windows, buttons, etc.), and an interface to the

rest of the software system, which triggers the system's reaction.

Repository is the equivalent to the data structure part of a class. In the context of this

classi�cation, \repository" can comprise whole (sub-)systems like persistent data stores, e.g.,

database components (of software systems).

A process component realizes the functionality on top of the data structures, comparable to

the body of a class. In many systems, this part is identical with what is called the application

speci�c part.

Control is often encapsulated in the methods in class descriptions, but is realized by extra

components (modules, etc.) in systems of a larger scale than a class.

Each of the system components types described above has its own purpose and provides

one speci�c set of services within a system.

Example: The MVC-concept [KP88] is another example for a classi�cation framework for system

components according to their speci�c task within the system. MVC distinguishes the component types

\model" (comparable to \repository" + \process" in the system components dimension of the 3D-

model), \view" (comparable to \interface"), and \control" (comparable to \control").

The semantics of the associations in �g. 3.8, representing various types of relationships

between the system components, as well as the actual number of system components within a

system is up to now not further speci�ed. This problem will be addressed further in sec. 3.3.2.

In the following table, the constituents of the system components dimension are matched

to the speci�c terminology used on di�erent granularity levels of granularity of system speci-

�cation:

28 CHAPTER 3. THE DIMENSIONS

Concept: software system: component/library: object class:

Interface subsystem API public features

Control e.g., ORB - e.g., pre/post conditions

Processing application part functions body

Repository database repository data structures, instance variables

3.3.2 Integration of the Constituents of the System Components Dimen-

sion

Integrating the di�erent components of a (software) system means to specify the (software)

system architecture. To formalize which components build up a system, and how these

components work together, gains more and more importance with increasing size and complex-

ity of the systems. This is reected by the large amount of activities in this area of computer

science. These activities have produced a number of approaches to describe (generic) system

architectures, but most of them concentrate on the components, rather than on (the much

more di�cult) question of collaboration and integration.

[GS93] use existing program organizations to extract abstractions, the so-called \proto-

typical" architectures (cf. sec. 3.3.3).

[Nat91] gives a framework for the functionality of a software engineering environment (a

special software system therefore).

[STO89] describe systems in terms of a \corporation model" to illuminate aspects of

collaboration between software components.

Another approach to the integration of components via a formalized framework is the

Common Object Request Broker Architecture (CORBA) [Obj91], a framework for

controlling the collaboration and interaction of objects within an object-oriented software

system. As CORBA is also based on the object-oriented paradigm, it seems to be a good

starting point to specify formally the integration of components in the system components

dimension.

3.3.3 Examples

System components and Use Cases:

A comparable, granularity level-independent classi�cation of a system can be found in

Jacobson's Use Case methodology [JCJO92]. In that methodology, the functionality of

a system is described by means of \use cases", which model actors and their sequences of

interactions with a potential system. Such use cases serve as models for the structure and

the use of a (software) system or parts of it. The use cases are then analyzed and structured

using di�erent types of objects which represent the di�erent component types of the system.

Jacobson distinguishes between:

� entity objects to handle the information that a system will use over a longer time,

� interface objects to handle communication with the environment of the system,

� control objects which are needed in complex cases when control of the system can't be

naturally placed into the other categories.

3.3. THE SYSTEM COMPONENTS DIMENSION 29

This categorization is very similar to the one proposed in sec. 3.3.1 (cf. �g. 3.9).

3D-model approach Use case driven approach

interface component interface objects

repository component entity objects

control component control objects

processing component (the body of entity and control objects)

Figure 3.9: Use Cases and system components

System components and the ECMA/NIST reference model

The so-called Reference Model for Frameworks of Software Engineering Envi-

ronments [Nat91] serves as reference for building standard components, together with the

services they should provide. The ECMA/NIST reference model speci�cally addresses the

development of software engineering environment, which are, in fact, a special group of soft-

ware systems. In �g. 3.10, the standard components proposed in the ECMA/NIST reference

model are related to the system components dimension of the 3D-model.

Object Management: logical modeling and

physical storage of objects; includes de�ni-

tion, storage, maintenance, access of data

entities or objects and the relationships

between them

repository component

User Interface: provides presentation fea-

tures between the system and the user of

the system

interface component

Tools: facilities that are useful in many

application domains; support for various

\composite functional elements"

processing component, interface compo-

nent (e.g., if it is a UI toolkit)

Communication: exchange of informa-

tion between components & subsystem by

mechanisms of messages, process invoca-

tion, and remote procedure call, or data

sharing

control component, interface component

(e.g., if the communication is with the en-

vironment of the system)

Process Management: unambiguous de�-

nition and performance of activities across

the system

processing component, control component

Figure 3.10: ECMA/NIST and system components

The fact that the interface component can be found in three of the �ve ECMA/NIST

service groups indicates that the categorization of system components as proposed in the

3D-model might not always be so strictly applicable to existing software components.

30 CHAPTER 3. THE DIMENSIONS

Integration - Prototypical Architectures

Examples of architectural integration can be found in [RBP

+

91] and in [GS93], where so-

called Prototypical Architectures (architectural idioms) are proposed. They represent

abstractions from heuristics, and capture some basic structural models and computational

principles. Architectural idioms in [RBP

+

91] include:

1. batch transformation

2. pipes and �lters

3. call-and-return

4. event systems

5. blackboard pattern

6. interactive interface

Chapter 4

A First Case Study

The two case studies presented in the following describe the development of systems developed

at TNO in the recent past. The purpose of these case studies is to identify in existing

projects the abstract elements of software engineering as introduced in the previous chapters.

Furthermore, �rst examples of (intuitive) 3D-model graph representation are given.

4.1 Case 1: DEF

Goal of theDEF

1

project was the proposal of a standard exchange format for geo-scienti�c 3D

subsurface model data. The standard exchange format had to be applicable for both tapes

and computer networks, and is supposed to use as basis for software development in geo-

scienti�c projects. Basis for the evaluation of the DEF project was TNO-report OS 92-83A

[PRK92].

In the following two cases, reference to the nodes of the 3D-model are indicated by a [: : :]-

notation, specifying the \coordinates" in terms of the three 3D-model dimensions. [SC: : :]

stands for the system components dimension, [V: : :] for the views dimension, and [DP: : :]

for the development process dimension. If the coordinates can't be given precisely, intuitive

terms are given, as, e.g., in [analysis] which expresses that the related software engineering

element is located in the analysis section of the development process dimension (more pre-

cisely: on a plane characterized by the value \analysis" for the development process dimension

coordinate).

Contents:

Overview p. 32

Analysis p. 32

Analysis: details p. 33

Design p. 34

Possible decomposition of subcomponents p. 35

Conclusion p. 36

1

DEF stands for Data Exchange Format

31

32 CHAPTER 4. A FIRST CASE STUDY

Overview

Concerning the development process dimension [DP], only the �rst two phases (anal-

ysis, design) are present, because the de�nition of the standard data format didn't involve

any implementation/coding. DEF can be seen as software system-independent analysis and

design activity to specify the data structure part for following projects (cf. sec. 4.2).

Only these two main phases are distinguished: conceptual modeling [analysis] and a

translation to relational/hierarchical structures [design].

Development Phases:

[DP-1] [analysis] Standard logical model de�nition (= conceptual

modeling)

[DP-2] [design] (Translation to) relational/hierarchical structures

The (standard) logical model relates only to one particular system component [SC] of

the 3D-model: the repository [SC-1]. This repository has some subcomponents though. In

the following table, the second column indicates again the component category concerning

the system components dimension. All subcomponents of [SC-1] belong to the repository

category again.

Subcomponents of [SC-1]:

[SC-1.1] [repository] Semantic Part of a 3D subsurface model

[SC-1.2] [repository] Structure for topology / geometry for irregular and

regular (grid) representations

[SC-1.3] [repository] Extra info

DEF describes only one view [V] throughout its whole life cycle: the structural view

[V-1].

Views:

[V-1] [structural] Data model

Altogether, the whole trajectory of this project can be described as a \at" graph ex-

tending on the \structure plane" of the 3D-model grid, i.e., the plane that extends above the

[V-1] coordinate of the view dimension (cf. �g. 4.1). The 3D-model graph of DEF has no

view coordinate other than \structure" [V-1]), i.e., consists only of structural description.

Analysis

The conceptual modeling phase can be subdivided into four sub-phases: identi�cation of

the objects [DP-1.1], NIAM schemes [DP-1.2], description of relationships and constraints

[DP-1.3], and determining an object type catalogue [DP-1.4]. To establish and stabilize the

results of [DP-1.1] to [DP-1.3], iteration was used, but after stepping further to sub-phase

[DP-1.4], no iteration back to the previous phase was done (cf. �g. 4.1). This particularity

of the development process couldn't be retrieved from the documents. The course of the

sub-phases was inquired by interviewing members of the project.

4.1. CASE 1: DEF 33

analysis design implement.structure

functionality

behavior

views [V]

components [SC]

process [DP]
control

repository

process

interface

[DP-1] [DP-2][V-1]

[SC-1]

 1.1 1.2 1.3 1.4 2.1 2.2

1.3

1.2

1.1

DP

SC

analysis design

r
e
p
o
s
i
t
o
r
y

Figure 4.1: The plane representing the speci�cation trajectory of DEF.

Sub-phases of the analysis [DP-1]:

[DP-1.1] list of all objects & their de�nitions

[DP-1.2] NIAM schemes

[DP-1.3] description of relationships and constraints

[DP-1.4] object type catalogue

Details of the analysis

[DP-1.1] List of all objects & their de�nition:

The result of this sub-phase is a list of all (non-lexical) objects, including de�nition,

synonyms, and attributes. The three subcomponents [SC-1.1] to [SC-1.3] are not yet

distinguished.

Notation: structured text

NOLOT : : :

Definition : : :

Synonyms : : :

LOT's : : :

�! 3D-model node:[DP-1.1|SC-*|V-1]

2

2

The '*' indicates that the node covers all the three subcomponents [SC-1] to [SC-3], and therefore all

speci�ed nodes of the components dimension.

34 CHAPTER 4. A FIRST CASE STUDY

[DP-1.2] NIAM schemes:

Drawing the NIAM-schemes included decomposition of the application domain into the

three subcomponents [SC-1] to [SC-3]. Relationships were added. Due to the NIAM

concept, there is no straightforward hierarchization or aggregation of the entities, i.e.,

these two special types of relationships are not (easily) identi�able in the schemes.

Notation: NIAM schemes

�! 3D-model node:[DP-1.2|SC-1|V-1]

[DP-1.2|SC-2|V-1]

[DP-1.2|SC-3|V-1]

[DP-1.3] Description of relationships and constraints:

The decomposition into three distinct subcomponents ([SC-1] to [SC-3]), performed

in the phase before ([DP-1.2]) was not carried into this phase. The description of

relationships and constraints is not subdivided into the subcomponents.

Notation: (formalized) text

�! 3D-model node:[DP-1.3|SC-*|V-1]

[DP-1.4] Object type catalogue:

The object type catalogue meant de�ning an subtype hierarchy between the identi-

�ed entities. The subtypes are distinguished by a \LOT" (lexical object type, i.e., an

attribute) related to the super-type.

Notation: structured text

e.g., NOLOT: Model --- LOT: Model Type

Geophysical types: visco-elastic/rheologic

aroustic

mechanical

: : :

Geological types: tectonostratigraphic

age

sedimentologic environments

: : :

�! 3D-model node:[DP-1.4|SC-*|V-1]

Design

The design phase consisted of two translations of the conceptual data model to 5th-

order normal form relational tables [DP-2.1] and to a hierarchical description [DP-2.2]. The

two translations don't represent two distinct sub-phases of the design phase, but rather two

4.1. CASE 1: DEF 35

documents in two di�erent (design) notations that have been produced consecutively in two

\sub-activities". Each of the two sub-activities results also in a description of �le formats to

organize the relational and hierarchical models (the results of this phase) into at (ASCII)

�les.

[DP-2.1]: Translation to 5th-order normal form relations; no distinction of subcomponents.

Notation: \relations diagrams"

e.g.: <----------------->

||SSM-Name||SSM-Type|CSY-Type|

�! 3D-model node:[DP-2.1.1|SC-*|V-1]

The de�nition of the at �le format for the relational descriptions of the models can

be seen as a meta model description, because the at �le format doesn't describe the

geo-scienti�c models themselves, but in general the structure of the relational tables

kept in at �les.

Notation: \structured text"

e.g.: - file header

- data dictionary ------ table/record id code string

- table data records -record length

- field start pos.

�! 3D-model node:[DP-2.1.2|SC-*|V-1]

[DP-2.2]: Translation to hierarchical structures [DP-2.2.1|SC-*|V-1] took place using the re-

lational description, adding and describing some extra constraints [DP-2.2.2|SC-*|V-1].

Again, there is no distinction of subcomponents. Here too, a at �le storage format is

de�ned for storing the hierarchical models [DP-2.2.3|SC-*|V-1].

Notation: \hierarchical diagrams" (cf. [DP-2.1])

�! 3D-model node:[DP-2.2.1|SC-*|V-1]

[DP-2.2.2|SC-*|V-2]

[DP-2.2.3|SC-*|V-1]

Decomposition of subcomponents

The subcomponents [SC-1.1] to [SC-1.3] could be decomposed into one more level of

detail, i.e., into the level of single entity types and relationship types for the analysis

phase (respectively single relations for the design phase).

Notation: (cf. the notations on the [: : :|SC-1.*|V-1]-level)

36 CHAPTER 4. A FIRST CASE STUDY

Subcomponents of [SC-1.1] to [SC-1.3]:

[DP-1.1|SC-1.*.x|V-1] objects of the application domain object list

[DP-1.2|SC-1.1.x|V-1] entity types and relationship types of the �rst

subcomponent (semantic part : : :)

[DP-1.2|SC-1.2.x|V-1] entity types and relationship types of the second

subcomponent (structure for topology : : :)

[DP-1.2|SC-1.3.x|V-1] entity types and relationship types of the third

subcomponent (extra info)

[DP-1.3|SC-1.*.x|V-1] relationships and constraints

[DP-1.4|SC-1.*.x|V-1] objects in the object type catalogue

[DP-2.1.1|SC-1.*.x|V-1] relations of the relational description

[DP-2.2.1|SC-1.*.x|V-1] relations of the hierarchical description

Conclusion

This case is rather simple to classify, as it consists only of one view (the structural) of

one subcomponent (the repository/data structure) of a system. As the �nal products are

only speci�cations of formats and not a software system, the life cycle of this project is

rather rudimentary, too. But it is exactly this simplicity that makes this case very suitable as

introduction of the classi�cation scheme of the 3D-model, and a useful pre-study for upcoming

cases.

4.2 Case 2: GEOMOD

Based on the standard exchange format developed in the DEF project (cf. sec. 4.1), GEOMOD

realizes a standard environment to support storage, import and export of 3D subsurface

model data for third party applications (e.g., well correlation, seismic picking, 2D and 3D

gridding/triangulation). The functionality of GEOMOD comprises exchange facilities for

model data �les of various formats, conversion functions to transform data in formats of the

same geometrical type, or to a point geometry format of the same degree in topology, or a

decreased topology degree. The system comprises a graphical user interface and an internal

meta data structure implemented in a relational database management system.

Several documents of the project documentation were used as input for this case study: the

Software Project Management Plan (SPMP) [Rit92], the Software Requirements Speci�cation

(SRS) [Flo92c], the Global Software Design Description (gSDD) [Flo92b], and the Detailed

Software Design Document (dSDD) [Flo92a]. Project sta� was interviewed, too.

Contents:

The Software Project Management Plan (SPMP) p. 37

SPMP: Development Phases p. 38

The Software Requirements Speci�cation (SRS) p. 40

SRS: User interface requirements p. 40

SRS: Technical constraints p. 40

SRS: Functional requirements p. 41

SRS: Logical model / database requirements p. 41

4.2. CASE 2: GEOMOD 37

The Global Software Design Description (gSDD) p. 42

gSDD: Development sub-phases p. 42

gSDD: The GEOMOD global system architecture p. 42

gSDD: Details of the subcomponents p. 43

Detailed Software Design Description (dSDD) p. 47

dSDD: Executables p. 48

dSDD: Additional �les p. 48

Further remarks & Conclusions p. 49

The Software Project Management Plan

In this case study, the software project management plan (SPMP) [Rit92] was mainly used

as a �rst overview to determine the intention of the project. The projected system is outlined

in terms of functionality and informally broken up into components that should realize the

di�erent parts of the functionality of the system.

Although the SPMP is one of the �rst documents of the project, already a number of

\hard" constraints are given, as e.g., the use of an RDBMS for the storage of meta data, or

the use of XFaceMaker as user interface builder.

From the SPMP, an overview of the (projected) system components can be derived, al-

though the assignment of each component to a particular category of the system components

dimension [SC] is sometimes ambiguous. The second column of the following table indicates

the assignments of components to system component categories.

Notation: informal text

�! 3D-model node:[DP-1|SC-x|(functional/structural)]

3

Subsystems identi�ed in the SPMP:

[SC-1] [process] exchange facilities

[SC-2] [interface]/[process] data loading subsystem

[SC-3] [interface]/[process] export subsystem

[SC-4] [interface] user interface

[SC-5] [repository] internal data structures

With exchange facilities [SC-1], the conversion functions and related support functions

are meant, so it is appropriate to put them into the component category [process]. The

loading subsystem incorporates two sets of functionality: an interface to load data model

de�nitions and a processing part to convert them to relational data structures. Therefore,

this subsystem belongs to two system component categories. This holds analogically for the

export subsystem which produces GEOMOD compliant or other external exchange �les. The

ambiguity of multiple attribution can be \resolved" in this case, if the �le system, on

which the software works, is integrated in the notion of the GEOMOD \system". This is a

reasonable integration for two reasons:

1. The (NSF) �le system is mentioned anyway as repository for the data �les. In the

gSDD, not only the �le system itself, but also UNIX functions to access the �le system

3

As the description of the components in the SPMP is (very) informal, no real [V]-dimension is assigned

to those nodes.

38 CHAPTER 4. A FIRST CASE STUDY

will be mentioned. According to the object-oriented notion, the �le system plus UNIX

functions can be seen as an individual, high-level object (or subsystem, in the 3D-model

notion).

2. Ambiguities, such as the [process]/[interface] problem of the loading and export

subsystems can be resolved, because now those two components don't have an interface

to the outside of the system anymore, but only to another component of the system.

The multiple assignment of component categories to components is thereby shifted to

the decomposition of those ambiguous components, where this problem can be resolved

by an extra 3D-model for each component.

Subsystems identi�ed in the SPMP (revised):

[SC-1] [process] exchange facilities

[SC-2] [process] data loading subsystem

[SC-3] [process] export subsystem

[SC-4] [interface] user interface

[SC-5] [repository] internal data structures

[SC-6] [repository] NSF distributed environment

The user interface [SC-4] is supposed to have a graphical part (using XFaceMaker as

construction tool and as widget resource) and also a character-based part. To store the

internal (meta) data structures [SC-5], the use of a relational DBMS (ORACLE) is planned.

Development Phases

In the SPMP [Rit92], a number of development phases [DP] are de�ned (the resulting

documents/products are given in the third column of the following table):

Development phases of GEOMOD:

[DP-1] preparation proposal, SPMP, SQAP, contracts

[DP-2] requirements speci�cation software requirements speci�cation

[DP-3] prototyping prototype report

4

[DP-4] design global/detailed software design description, test

plan

[DP-5] implementation code, user documentation

[DP-6] testing test report

[DP-7] case study (benchmark) benchmark test report

[DP-8] installation & checkout installation manual

In some phases, a number of di�erent documents had to be produced. Those di�erent

documents describe di�erent views, or subcomponents of the system at that particular devel-

opment phase. Hence, they result in di�erent nodes in the 3D-model graph, although they

could as well be considered as di�erent documents to produce within one speci�c node.

4

The prototype itself is a deliverable of the prototyping phase, too, but is not mentioned here, as it was

not made available to the customers.

4.2. CASE 2: GEOMOD 39

analysis design implement.structure

functionality

behavior

views [V]

components [SC]

process [DP]
control

repository

process

interface

preparation req. spec. prototyp. design implement. testing case st. install.

process [DP]

[DP-1] [DP-2] [DP-3] [DP-4] [DP-5] [DP-6] [DP-7] [DP-8]

global SD detailed SD
[DP-4.1] [DP-4.2]

Figure 4.2: The development phases of GEOMOD

Further constraints are de�ned in the SPMP:

� Methods & Standards:

{ Yourdon Structured Design

{ NIAM / Extended ER

{ C (TNO Coding Standards)

{ SQL

{ Motif Style Guide (UI design)

{ ANSI/IEEE standards based testing

� Tools:

{ STP

{ X-NIAM

{ XFaceMaker (UI design)

These technical constraints have to be attributed as \constraints of realization" to the

appropriate node of the 3D-model graph. \XFaceMaker" for example, can be attributed

to two di�erent nodes. It is a tool constraint for the prototyping phase [DP-3], because

XFaceMaker is used to prototype/construct the user interface. But it is also an implemen-

tation constraint for the implementation phase [DP-5] because the implementation of the

user interface uses XFaceMaker classes and objects.

40 CHAPTER 4. A FIRST CASE STUDY

The node of the 3D-model representing the preparation phase [DP-1] can, in principle, be

subdivided into 3 \sub-nodes". The proposal [DP-1.1] evolved into two distinct documents

concerning two viewpoints of the project: the SPMP which describes strategic and technical

aspects [DP-1.2.1], and the contracts which describe the legal and �nancial aspects of the

project [DP-1.2.2].

The Software Requirements Speci�cation

Apart from the functional requirements, the Software Requirements Speci�cation (SRS)

[Flo92c] also presents the application domain, refers to the logical data model (DEF, cf.

sec. 4.1) and (informally) describes user interface characteristics and some more technical

constraints. These sections (of the SRS) can be seen as distinct nodes of the 3D-model, too.

User interface requirements:

Two types of user interfaces are required: a textual user interface which works with

input sentences (commands), and a graphical user interface which allows the user to specify

commands and parameters via a menu structure. The way the UI works, i.e., its behavior

(syntax checking + parsing), is described, and the foreseen commands are listed in a sketch

of a pull-down menu bar. This list of commands can be interpreted as list of potential events

(provided by the user) that trigger the behavior of the system. The behavior is further

not speci�ed formally (e.g., via state transition diagrams), but was validated later via the

prototype and described implicitly, together with other aspects for the rest.

Notation: text, (informal) diagrams

�! 3D-model node:[DP-2|SC-3/4|V-1]

6

[DP-2|SC-3/4|V-3]

7

Technical Constraints:

Additional technical constraints are given in the SRS:

� OSF-Motif Style Guide, POSC E& P Style Guide for the looks of the user interface

� single site, single user, single job

� Unix workstations, DEC-5000

� OSF-Motif Window Manager

� C

� ASCII �les (as external data �les)

6

[SC-3/4] are the 'edit �le' and 'exchange format de�nition' components, de�ned in the functional re-

quirements of the SRS (cf. below). [V-1] is the structural view of the system.

7

[V-3] is the behavioral view of the system.

4.2. CASE 2: GEOMOD 41

� ORACLE (for the relational (meta) database), embedded SQL

� �le exchange through NFS protocol

These are all constraints that have to be attributed to the appropriate nodes (once they

are all established).

Functional requirements:

An important section of the SRS is the (formal) speci�cation of the functional require-

ments. The main functions are decomposed (cf. the following table), and the functions on

the lowest level of decomposition are described.

Notation: data ow diagrams, structured text,

Main functions of the system:

[SC-1] [process] Exchange

[SC-2] [control] File management action

[SC-3] [interface] Edit �le

[SC-4] [interface], ([process]) Exchange format de�nition

[SC-5] [control] Event handler

�! 3D-model node:[DP-2|SC-x|V-2]

8

It is notable that this list of 5 subcomponents di�ers essentially from the arrangement of

subcomponents in the SPMP. This can be attributed to the di�erent viewpoint that was taken

here (functionality [: : :|: : :|V-2]) in comparison to the SPMP (structure [: : :|: : :|V-1]).

Logical model / database requirements:

The meta model, i.e., the de�nition of the standard exchange format was scheduled to be

stored in a relational database (ORACLE). The basis/input for the relational tables of that

relational database is the so-called logical data model which is de�ned in terms of ER-diagrams

and object de�nitions (i.e., description their attributes and attribute values). The logical

data model is based on the results of the DEF-project (cf. sec. 4.1), where the speci�cation

technique NIAM was used. Here, ER-diagrams were used because of the constraints imposed

by one of the project partners.

Notation: ER-diagrams, structured text

�! 3D-model node:[DP-2|SC-4|V-1]

The process exchange format de�nition [SC-4] is only one possibility to attribute the

meta data structure to a system component of the analysis phase [DP-2]. It is not obvious

from the description of the functional requirements that this data structure belongs to the

exchange format de�nition subcomponent, because it is mentioned in the context of other

subcomponents, too. The logical data model can also be seen as a further development of

the internal data structures subcomponents mentioned in the SPMP [DP-1|SC-5|(V)] into

8

[V-3] is the functional view of the system.

42 CHAPTER 4. A FIRST CASE STUDY

a more elaborated node [DP-2|SC-5.(repository)|V-1]. The reason for ambiguities like this

is that the functional decomposition presented in the SRS does not lead to a de�nition of a

system architecture for this system.

The Global Software Design Description

The Global Software Design Description [Flo92b] establishes a �rst concrete picture of

a system architecture for the GEOMOD system. It explicitly de�nes "subsystems" and de-

scribes them (textually). Additionally, the database tables for the ORACLE meta database

are de�ned.

Development sub-phases of [DP-4] (design)

Design sub-phases:

[DP-4.1] global design gSDD [Flo92b]

[DP-4.2] detailed design dSDD [Flo92a]

The GEOMOD global system architecture

In this �rst part, the GEOMOD system is partitioned into nine subsystems. An overview of

the subsystems together with their interactions is presented in a �gure (sec. 3.2 of the gSDD),

then textually explained (sec. 3.3 of the gSDD). While the �gure sketches the structure of

the system [V-1], the textual descriptions mainly address functionality and behavior of the

components [V-2/3].

Notation: (informal) diagrams, text

Subcomponents of the GEOMOD system:

[SC-1] [interface] User interface

[SC-2] [control] Command handler

[SC-3] [control] Message handler

[SC-4] [control], [interface] File management and edit functions

[SC-5] [process] Exchange functions

[SC-6] [process] Utilities

[SC-7] [repository] Meta map functions

[SC-8] [repository] Initialize functions

[SC-9] [control] File handler

�! 3D-model node:[DP-4.1|SC-x|V-1]

The gSDD clearly distinguishes other system components than the SRS. So, an obvious

question is what the mapping in terms of 3D-model nodes between the 5 subcomponents (in

that case: subprocesses) identi�ed in the SRS [DP-2|SC-x|V-2] and the 9 subcomponents

listed here [DP-4.1|SC-x|V-1] is. The following table and �g. 4.3 give an overview:

4.2. CASE 2: GEOMOD 43

SPMP [DP-1] SRS [DP-2] global SDD [DP-4.1]

Exchange facilities [SC-1] Exchange [SC-1] Exchange functions [SC-5]

Utilities [SC-6]

(subprocess 1.4) Initialize [SC-8]

Loading subsystem [SC-2] File handler [SC-9]

Export/import subsystem

[SC-3]

File management action

[SC-2]

File management and edit

functions [SC-4]

Edit �le [SC-3]

Internal data structures

[SC-5]

Exchange format de�nition

[SC-4]

Metamap functions [SC-7]

Event handler [SC-5] Command handler [SC-2]

Message handler [SC-3]

User interface [SC-4] User interface [SC-1]

In �gure 4.3, the main speci�cation trajectory is indicated by the bold (vertical) speci�ca-

tion \lines" (a, b, c). The SRS (b) receives additional input from the informal descriptions of

functionality (a1) and behavior (a2) in the SPMP. Informal description of functionality and

behavior is also included in the detailed design description (c1, c2).

The user interface and the utility functions have not been (formally) functionally speci�ed

during the requirements speci�cation [DP-2], and they have not been speci�ed in the scope

of another subcomponent in that phase. The initialize functions can be traced back to the

subprocess 1.4 of the exchange process ([DP-2|SC-1|V-2]).

Details of the subcomponents [SC-1] to [SC-9]

In the global Software Design Description [Flo92b], after the �gure with the general system

architecture, more details for each subcomponent are given. The components are subdivided

into more speci�c subcomponents, and their behavior, functionality and interactions with

other subcomponents are described in some more detail. So these descriptions are not only

concerned with the �ne structure of the nine system components, but incorporate also their

functional and behavioral views, at least on an informal level (e.g., \[The command handler]

will parse the sentence to come up with a command and a number of arguments."). This means

that there is a change of \coordinate" (in terms of the 3D-model) in the views dimension [V],

when going from the global system architecture �gure to the descriptions of the subsystems,

thereby providing a \complete" picture of the views dimension.

Notation: (informal) diagrams, text

44 CHAPTER 4. A FIRST CASE STUDY

Views [V]

Development
Process [DP]

System
Components [SC]

structural

functional

behavioral

repository

process

control

interface

DP-1 DP-2 DP-4.1

a b c

SC-1

SC-2

SC-3

SC-5

SC-4

SC-1

SC-2

SC-3

SC-4

SC-5

SC-5

SC-6

SC-8

SC-9

SC-4

SC-7

SC-2

SC-3

SC-1

SRSSPMP gSDD

DP-1 DP-2 DP-4.1

a b c

DP-4.2

c1

c2

a1

a2

Figure 4.3: The subcomponents dimension along the phases

User interface [DP-4.1|SC-1]:

Subcomponents of the User interface component:

[SC-1.1] [interface] Graphical user interface

[SC-1.2] [interface] Textual user interface

[SC-1.3] [process] Syntax check

From the textual descriptions, several relationships/interactions with other system com-

ponents can be derived. These interactions are not always described as taking place between

two components on the same level of decomposition. Often, relationships are identi�ed be-

tween software components of di�erent granularity levels, e.g. between components of the

uppermost level ([SC-1] to [SC-9]), and the subcomponents of those components ([SC-x.y]).

4.2. CASE 2: GEOMOD 45

Relationships involving UI subcomponents:

[SC-1.1] triggers by sentences Parser [SC-2.1]

[SC-1.2] uses to check sentences [SC-1.3]

[SC-1.1] receives messages (text) from Error handler [SC-3.1]

[SC-1.1] receives messages (text) from Status handler [SC-3.2]

[SC-1.2] receives messages (text) from Error handler [SC-3.1]

[SC-1.2] receives messages (text) from Status handler [SC-3.2]

Command Handler [DP-4.1|SC-2]:

Subcomponents of the Command handler component:

[SC-2.1] [process] Parser

[SC-2.2] [control] Executor

Relationships involving Command Handler subcomponents:

[SC-2.2] evokes File manager [SC-4], Meta map functions

[SC-7], Exchange functions [SC-5], Utilities

[SC-6]

[SC-2.2] receives status from File manager [SC-4], Meta map functions

[SC-7], Exchange functions [SC-5], Utilities

[SC-6]

[SC-2] receives sentences from Graphical user interface [SC-1.1]

[SC-2] receives sentences from Textual user interface [SC-1.2]

[SC-2] triggers (error mess.) Error handler [SC-3.1]

In the descriptions, the generic term \evoking the appropriate function" is used, but more

details can be derived from sections describing the other components and from the architecture

diagram.

Message Handler [DP-4.1|SC-3]:

Subcomponents of the Message handler component:

[SC-3.1] [control] Error handler

[SC-3.2] [control] Status handler

Relationships involving Message handler subcomponents:

[SC-3.1] receives error code Executor [SC-2.2]

[SC-3.2] receives status code Executor [SC-2.2]

[SC-3.1] sends error message string to User interface [SC-1]

[SC-3.2] sends status message string to User interface [SC-1]

The error handler receives error codes via the executor (as return codes of functions in

other subsystems), but also directly from other subcomponents (for intermediate \pop-up

warnings"). The same holds for the status handler , which receives status codes from the

executor as well as directly from other subcomponents.

46 CHAPTER 4. A FIRST CASE STUDY

File management & edit functions [DP-4.1|SC-4]:

Subcomponents of the FM& E component:

[SC-4.1] [interface] Edit functions

[SC-4.2] [control] File management

This system component is realized by using UNIX functions, so this component isn't really

decomposed and described in this phase. Instead, details are postponed to the implementation

phase [DP-5].

Relationships involving FM& E subcomponents:

[SC-4] calls (UNIX functions)

[SC-4] receives status/error codes from (UNIX functions)

Exchange functions [DP-4.1|SC-5]:

Subcomponents of the Exchange functions component:

[SC-5.1] [interface] Load/save functions

[SC-5.2] [process] Translate functions

[SC-5.3] [interface] Item-level access functions

[SC-5.4] [repository] GEOMOD DB

[SC-5.5] [repository] UNIX �le system

The UNIX �le system [SC-5.5] is mentioned here as a component, because the system

uses the �le system as repository for data, i.e., external GEOMOD �les and third party

product �les.

Utilities [DP-4.1|SC-6]:

The utilities are a subsystem that was not explicitly mentioned before. It can be attributed

to the exchange subsystem of the preparation phase [DP-1|SC-1], though. The following table

gives an overview of the purpose of the utility functions.

Subcomponents of the Utilities component:

[SC-6.1] [process] Retrieve modeled objects

[SC-6.2] [process] Size of database

[SC-6.3] [process] Delete corrupted database

[SC-6.4] [process] Regular to irregular transformation

4.2. CASE 2: GEOMOD 47

Meta-map functions [DP-4.1|SC-7]:

Subcomponents of the Meta-map functions component:

[SC-7.1] [interface] Delete format de�nition

[SC-7.2] [interface] De�ne format de�nition

[SC-7.3] [interface] Edit format de�nition

[SC-7.4] [interface] Load/save format de�nition

[SC-7.5] [interface] View format de�nition

[SC-7.6] [repository] Meta DB (tables)

[SC-7.7] [repository] Translation table

[SC-7.8] [repository] Format descriptions

The GEOMOD data model descriptions are stored in the (ORACLE) meta database

(tables) and also in an external ASCII-�le [SC-7.6].

Initialize [DP-4.1|SC-8]:

The initialize function could also be attributed to the meta-map functions [SC-7], but

it was chosen to be put it apart, because it is not only used when manipulating the format

de�nitions, and also has two di�erent implementations (cf. dSDD [DP-4.2]).

Subcomponents of the Initialize component:

[SC-8.1] [interface] Get meta-data

Relationships involving Initialize subcomponents:

[SC-8.1] retrieves from Meta DB tables [SC-7.6]

File Handler [DP-4.1|SC-9]:

Subcomponents of the File handler component:

[SC-9.1] [interface] Get data

[SC-9.2] [interface] Put data

[SC-9.3] [repository] Internal GEOMOD binary �les

Again, the internal GEOMOD binary �les [SC-9.3] are rather objects within the UNIX

�le system \subcomponent" [SC-5.5] than a subcomponent of its own.

Relationships involving File handler subcomponents:

[SC-9.1] handles request from Load/save functions [SC-5.1], [5.3]

[SC-9.2] handles request from Load/save functions [SC-5.1], [5.3]

Detailed Software Design Description

In the Detailed Software Design Description [Flo92a] ([DP-4.2]), the subcomponents de-

scribed in the previous phase are grouped together into executables. These executables are

48 CHAPTER 4. A FIRST CASE STUDY

speci�ed, i.e., the functions they contain in terms of identi�cation, description, input/output

parameters, return values are de�ned, together with other �les that go along with them. Also

described are: the directory structure, environment variables, library modules, data entities,

data model template �les, functional ow.

Executables:

Notation: (informal) diagrams, (informal) text, structured text (e.g., module descriptions)

Components of [DP-4.2] (= executables):

Relationship to components of [DP-4.1]:

[SC-1] start geomod -

[SC-2] geomod (kernel) [SC-1], [SC-2], [SC-3], [SC-4], [SC-7.1-5],

[SC-8.4]

[SC-3] transfer [SC-5.1], [SC-8.4], [SC-9.1-2]

[SC-4] translator [SC-5.2-3], [SC-9.1-2], [SC-8.4]

[SC-5] u functions [SC-6]

[SC-6] ge meta data [SC-8.4]

Two versions of get meta data exist: one is a function incorporated in various executables

to copy a meta-data �le to the right directory ([SC-2], [SC-3], [SC-4]), the other is an

independent executable [SC-6] to retrieves the meta-data from an ORACLE database.

The headers of each function in the executables are also speci�ed, but they are not listed

here to keep the size of the case study limited. They can be seen as re�nement of the

six components (executables) listed above ([DP-4.2|SC-x.y|V-1/V-2] - as both structure and

functionality are described).

Additional �les

Notation: (informal) text, structured text (e.g., module descriptions)

�le name: contents: belongs to:

geomod.cfg con�guration parameter start geomod [SC-1]

geomod error.txt error texts start geomod [SC-1]

geomod help.txt help texts start geomod [SC-1]

geomod setup script for setting environment

variables

start geomod [SC-1]

gmdpw encrypted password start geomod [SC-1]

geomod dm.dat ascii description of the GEO-

MOD data model

Meta database

[DP-4.1|SC-7.6]

geomod format.dat list of formats supported View format de�nition

[DP-4.2|SC-7.5]

geomod logo.bm GEOMOD logo bitmap start geomod [SC-1]

GEOMOD topAS X-resource �le start geomod [SC-1]

XFaceMaker2 library geomod (kernel) [SC-2], or

GUI [DP-4.1|SC-1.1]

libXfmExt.a (on top of XFaceMaker) geomod (kernel) [SC-2], or

GUI [DP-4.1|SC-1.1]

4.2. CASE 2: GEOMOD 49

libGeomod.a library of kernel object modu-

les

geomod (kernel) [SC-2]

libGeomodExt.a for linking translators, u func-

tions and get meta data mod-

ule [DP-4.1|SC-8.4]! trans-

lator [SC-4]

libTrans.a linking the loader/saver translator [SC-4]

ORACLE DBMS contains the GEOMOD data

model

get meta data [SC-6]

Further remarks & Conclusions

bf Prototyping was applied in the GEOMOD project, too, but is not documented in detail

here, because prototype and prototyping report were not available anymore. Furthermore,

rather than providing essential structural information about the system, prototyping served

to validate two very speci�c aspects of the system:

1. increase acceptance by getting feedback from users about a user interface prototype.

2. test the performance of at �le access vs. retrieval from a database for keeping the data

�les. On basis of the prototyping results, at �le access was chosen as storage format

for the data, a database for keeping the model meta-data.

In order to limit the size of this case study to �t into the scope of this report, no further

phases (and documents) have been included here. A more detailed case study is performed

on SISTRE, another software system developed at TNO, and can be found in [Rav94]. There,

also some of the aspects not treated here should be addressed.

Reecting the concepts introduced in this report, this case study concentrates on identify-

ing the nodes of the 3D-model which correspond to development activities and documents

of the GEOMOD project. It can be seen that

1. only a small part of the possible nodes, i.e., only a part of the possible activities has

been performed;

2. often, the descriptions of several constituents of a dimension (e.g., functionality and

behavior of the views dimension) have been integrated into one speci�cation, i.e., they

are described by one and the same piece of document;

3. until the coding phase, only very few speci�cation techniques or notations have been

used. Most of the speci�cation are given in (informal) text.

Furthermore, a considerable switch in views, from which the system is mainly described,

can be observed in the transition from preparation to analysis to design (cf. �g. 4.3). Software

quality metrics have to be de�ned to evaluate whether such a \zig-zag image" reects a good

and solid software development.

Chapter 5

Conclusions

This report introduced a model to structure software engineering in terms of independent

dimensions and their integration into a uniform framework , the \3D-model". This approach

is independent from any speci�c software engineering methodology, but allows to make use

of their techniques and notations to a desired extend for the speci�cation in the scope of an

actual software development e�ort. In this sense, the 3D-model is a meta-model of software

engineering which has to be adapted for real use. The advantages of using such a meta-model

are

� the better and clearer structuring of the elements of software engineering, and therefore

� an increased understanding of the elements of software engineering and their mutual

relationships, and

� more freedom and adaptability of customizing the software development for the actual

development situation.

But the concepts presented so far in this report are only a �rst approach to an integral

solution of meta-modeling software engineering. There are still a lot of open problems to

tackle in the future, as e.g.:

Formalizing the relationships between the 3D-model nodes:

The nodes of the 3D-model graph representing the various elements of software engineer-

ing have been introduced. They can described as combination of constituents of the three

dimensions (cf. chapt. 2). Now, the possible types of relationships (dependencies, etc.)

between those elements, i.e., the edges between the corresponding 3D-model nodes, have yet

to be captured. The relationships describe dependencies between the elements of software

engineering, and the edges formalize them in the scope of the 3D-model graph. They con-

strain the possible way of working, because they order and relate the activities connected to

the production of the speci�cations implied by the nodes.

A meta-meta-model:

The 3D-model self has to be speci�ed formally, using the notion of a \three-dimensional",

directed graph. As the 3D-model is a meta-model (of software engineering) itself, this formal-

ism will be ameta-meta-model. A �rst attempt to adapt an already established meta-model

50

51

[SIWyS93] to formalize the speci�cation of the 3D-model revealed that the concepts of the 3D-

model �rst have to be understood and captured thoroughly before a \meta-meta-model" can

be established. Nevertheless, �nding and using a formal (graph) language for the 3D-model

graph is an important prerequisite for capturing precisely the constituents, nodes, decompo-

sition, relationships, etc. of the 3D-model, without relying on pre-de�ned, generic categories

as done in this report.

Deriving a speci�c software engineering methodology:

The steps described in chapter 2 to come from a abstract framework of software engineering

(the \3D-model) to a practicable and tailored software engineering methodology (cf.

sec. 2.6 - Applying the 3D-model) have to be performed. Additional input for deriving the

proper elements, dependencies, notations, etc. has to be provided by performing more case

studies.

Bibliography

[Ald91] Albert Alderson. Meta-CASE Technology. In Albert Endres and Herbert We-

ber, editors, Software Development Environments and CASE Technology, Euro-

pean Symposium, volume 509 of Lecture Notes in Computer Science, pages 81{91,

Berlin, 1991. Springer.

[Boo91] Grady Booch. Object-Oriented Design with Applications. The Benjamin/Cum-

mings Publishing Company, Inc., 1991.

[CAB

+

94] Derek Coleman, Patrick Arnold, Stephanie Bodo�, Chris Dollin, Helena Gilchrist,

Fiona Hayes, and Paul Jeremaes, editors. Object-Oriented Development: The

FUSION Method. Prentice-Hall, Inc., 1994.

[FkNO92] Christer Fernstr�om, Kjell-H�akan N�arfelt, and Lennart Ohlsson. Software Factory

Principles, Architectures, and Experiments. IEEE Software, pages 36{44, March

1992.

[Flo92a] Frans J. T. Floris. GEOMOD: Data Exchange Software for 3D Subsurface Model

Data, Detailed Software Design Document V1.0. Technical Report OS 92-104C,

TNO Institute for Applied Geoscience, November 1992.

[Flo92b] Frans J. T. Floris. GEOMOD: Data Exchange Software for 3D Subsurface Model

Data, Global Software Design Description V1.0. Technical Report OS 92-67C,

TNO Institute for Applied Geoscience, July 1992.

[Flo92c] Frans J. T. Floris. GEOMOD: Data Exchange Software for 3D Subsurface Model

Data, Software Requirement Speci�cation V1.1. Technical Report OS 92-46C,

TNO Institute for Applied Geoscience, November 1992.

[Ger93] Bart Gerritsen. Probe - Software Quality Assurance Plan. Technical Report OS

93-52-C, TNO Institute for Applied Geoscience, 1993.

[GS93] David Garlan and Mary Shaw. Architectures for Software Systems. Tutorial

Notes, 15th International Conference on Software Engineering, Baltimore, June

1993.

[HS93] B. Henderson-Sellers. The O-O-O Methodology for the Onject-Oriented Life Cy-

cle. ACM Sigsoft, Software Engineering Notes, 18(4):54{60, October 1993.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar

�

Overgaard.

Object-Oriented Software Engineering. Addison-Wesley, 1992.

52

BIBLIOGRAPHY 53

[KP88] Herb Krasner and Stephen Pope. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented

Programming, pages 26{49, August 1988.

[Nat91] National Institute of Standards and Technology. Reference Model for Frameworks

of Software Engineering Environments, second edition, 1991. NIST Special Pub-

lication 500-201 (Technical Report ECMA TR/55.

[NGT92] Oscar Nierstrasz, Simon Gibbs, and Dennis Tschritzis. Component-Oriented Soft-

ware Development. Communications of the ACM, 35(9):160{165, September 1992.

[Obj90] Object Management Group, Inc. Object Management Architecture Guide, 1.0

edition, November 1990. OMG TC Document 90.9.1.

[Obj91] Object Management Group, Inc. The Common Object Request Broker: Architec-

ture and Speci�cation, 1.1 edition, December 1991. OMG Document 91.12.1.

[PRK92] Simon Pen, Ipo Ritsema, and Theo Kemme. Data Exchange Format (DEF) for

Geological and Geophysical 3D Subsurface Modelling Techniques. Technical Re-

port OS 92-83A, TNO Institute for Applied Geoscience, September 1992. reprint.

[PW92] D. Perry and A. Wolf. Foundations for the Study of Software Architecture. ACM

Sigsoft, Software Engineering Notes, 17(4):40{52, October 1992.

[Rav94] Jan Ravensberg. Applying the 3D-model of software engineering: An extensive,

evaluating case study (working title). Master's thesis, Leiden University (RUL),

August 1994. In preparation.

[RBP

+

91] James Rumbaugh, Michael Blaha, William Premberlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Inc.,

1991.

[REE89] R. Rock-Evans and B. Engelien. Analysis techniques for CASE: a Detailed Eval-

uation. Ovum Ltd., 1989.

[RG92] Kenneth S. Rubin and Adele Goldberg. Object Behavior Analysis. Communica-

tions of the ACM, 35(9):48{62, September 1992.

[Rit92] Ipo Ritsema. GEOMOD: Data Exchange Software for 3D Subsurface Model Data,

Software Project Management Plan V1.0. Technical Report OS 92-31C, TNO

Institute for Applied Geoscience, May 1992.

[SIWyS93] Motoshi Saeki, Kazuhisa Iguchi, Kuo Wen-yin, and Masanori Shinohara. A Meta-

Model Representing Software Speci�cation and Design Methods. Technical report,

Tokyo Institute of Technology, Dept. of Electrical & Electronical Engineering,

1993.

[SM88] Sally Shlaer and Stephen J. Mellor. Object-Oriented System Analysis: Modeling

the World in Data. Yourdon Press, 1988.

54 BIBLIOGRAPHY

[SM92] Sally Shlaer and Stephen J. Mellor. Object Lifecycles: Modeling the World in

States. Yourdon Press, 1992.

[STO89] Izhar Shy, Richard Taylor, and Leon Osterweil. A Metaphor and a Conceptual Ar-

chitecture for Software Development Environments. Technical report, University

of California, Dept. of Information and Comp. Science, July 1989.

[YC79] E. Yourdon and L.L. Constantine. Structured Design: Fundamentals of a Disci-

pline of Computer Program and Systems Design. Prentice-Hall, Inc., 1979.

[You89] E. Yourdon. Modern Structured Analysis. Yourdon Press, 1989.

