
MSO De�nable Text Languages

?

Hendrik Jan Hoogeboom and Paulien ten Pas

Leiden University, Department of Computer Science

P.O.Box 9512, 2300 RA Leiden, The Netherlands

fhjh,pasg@rulwinw.leidenuniv.nl

Abstract. A text is a word together with an (additional) linear order-

ing. Each text has a generic tree representation, called its shape. We

consider texts in a logical and an algebraic framework, and we prove

that the classes of monadic second order de�nable and of recognizable

text languages coincide. In particular we demonstrate that the construc-

tion of the shape of a text can be formalized in terms of our monadic

second-order logic. We brie
y consider right-linear grammars for texts.

Introduction

The theory of 2-structures, introduced in [7], studies modular decompositions

of graph-like structures. In this framework texts appear as representations for

a certain subclass of 2-structures, see [8]. A text is in essence a word extended

with an (additional) linear ordering of its positions.

In previous work grammars generating context-free text languages were stud-

ied [10]. The question addressed in this paper is: which text languages constitute

the class of \regular" text languages? We give a logical de�nition of \regular"

text languages, and show that the obtained class may equivalently be de�ned in

an algebraic and in a grammatical framework. Crucial in our approach is that

each text allows a hierarchical representation by a tree-structure, which indicates

how the text is built from certain basic building blocks. Such a tree representa-

tion in general is not unique. There exists however a generic tree representation,

called the shape, that can be constructed from the text. By associating to each

text language K the tree language sh(K) of corresponding shapes, we obtain a

strong connection between text languages and tree languages.

The following theorem summarizes our results (where TXT

�

(�) denotes the

set of all texts over the alphabet � and basic building blocks from a �nite set

�, see Section 1).

Main Theorem Let K � TXT

�

(�) be a text language. Equivalent are:

(i) K is mso de�nable.

(ii) K is recognizable.

(iii) K is right-linear.

(iv) sh(K) is regular.

?

To appear in the proceedings of MFCS'94, Ko�sice, Slovakia, 22-26 August 1994.

Research supported by the EBRA Working Group ASMICS 2.

1



For recognizable (or regular) word languages and tree languages there exist

characterizations analogous to (i-iii) above, see [1, 6, 16, 18]. Since every word

is a speci�c text, our Main Theorem generalizes the analogous result for word

languages. Its proof, however, is based on the corresponding result for tree lan-

guages. The generalization is non-trivial: the underlying words of a recognizable

text language do not necessarily form a regular word language (in fact they form

a context-free language).

One may view texts as speci�c graphs, obtained by combining two linear

orders. For graph languages in general there does not seem to be such a \stable"

notion of recognizability, in the sense that it has an equivalent grammatical or

logical characterization. These matters are discussed extensively by Courcelle in

[4], where he conjectures that (i) and (ii) are equivalent for graph languages of

bounded tree-width. In support of this conjecture he shows that recognizability

and mso de�nability are equivalent within certain \parsable" sets of graphs [4,

Theorem 4.8], and he gives examples of sets of graphs for which this property

holds. Using this terminology, we show that each set TXT

�

(�) is another exam-

ple of a parsable set (Theorem 2.4). We may not apply the cited result to obtain

the equivalence of (i) and (ii), as our respective algebraic frameworks di�er.

In Section 2 we show that a text language K is mso de�nable i� the corre-

sponding tree language sh(K) is mso de�nable. Then, in Section 3, we observe

that K is right-linear i� sh(K) is regular. The equivalence of (i) and (iii) follows

from the characterization of regular tree languages. Finally, we use an additional

result from universal algebra in connecting the text language K with the set of

all trees representing texts from K in the case of recognizability, which then will

imply the equivalence of (i) and (ii).

1 Texts and Trees

In this preliminary section we present results on texts, and trees representing

them, that are needed for this paper. We refer to [8, 9, 10] for more details.

We view a linear order as a non-empty sequence of distinct elements, which

form the domain of the linear order. For a linear order � = (x

1

; : : : ; x

n

), n � 1,

a segment of � is a set fx

j

; x

j+1

; : : : ; x

k

g with j � k. A su�x of � is a segment

containing x

n

. If i < j then we say that x

i

precedes x

j

in �.

De�nition 1.1 Let � be an alphabet. A text � (over �) is a triple (�; �

1

; �

2

),

where �

1

and �

2

are linear orders such that the domain of �

1

equals the domain

of �

2

, and � is a labeling function from this common domain to �. ut

For a text � = (�; �

1

; �

2

), the pair (�

1

; �

2

) determines its structural prop-

erties; such a pair (�

1

; �

2

) of linear orders with a common domain is called a

bi-order. The common domain of �

1

and �

2

is the domain of the text � , denoted

by dom(� ). If �

1

= (x

1

; : : : ; x

n

), then the word of � is the word �(x

1

) � � � �(x

n

).

By the length of a text (or bi-order) we mean the number of elements in its

domain. For our purposes the identities of these elements are not important.

Therefore, we usually assume that the domain of a text (or bi-order) of length

2



n equals f1; : : : ; ng, and that the �rst order is (1; : : : ; n); we refer to this as the

standard form of a text or bi-order. We may then represent a bi-order by its

second order (i

1

; : : : ; i

n

) and a text by the pair (w; (i

1

; : : : ; i

n

)), where w is the

word of the text.

For a bi-order � of lengthm and texts �

1

; : : : ; �

m

, the substitution of �

1

; : : : ; �

m

into �, denoted by [�  (�

1

; : : : ; �

m

)], is the text constructed as follows: let �

be in standard form, take copies of �

1

; : : : ; �

m

with mutually disjoint domains

X

1

; : : : ;X

m

, and de�ne the substitution text on the domain

S

m

i=1

X

i

such that

the label of x from X

i

is the label of x in �

i

, and for k 2 f1; 2g, x 2 X

i

precedes

y 2 X

j

in the k-th order if either i precedes j in the k-th order of �, or i = j

and x precedes y in the k-th order of �

i

.

Note that the above X

i

's become segments of both the �rst and the second

order of the constructed text. For an arbitrary text � , a non-empty set X �

dom(� ) that is a segment in both the �rst and the second order of � is called a

clan of � . Clearly, for each text � , dom(� ) is a clan of � and fxg is a clan of �

for each x 2 dom(� ). These clans are called the trivial clans. If the only clans

of a text are the trivial clans, then the text is called primitive. We also speak

of primitive bi-orders. Note that the two bi-orders of length 2, in standard form

given by (1; 2) and (2; 1), respectively, are both primitive; they will be denoted

by �

f

(f for \forward") and �

b

(b for \backward").

One might say that a text � is \decomposable" if it can be obtained as

the substitution of some (proper) subtexts into a bi-order �, or, equivalently,

if the domains of these subtexts are clans forming a partition of the domain

(� giving their relative �rst and second ordering). Clearly, primitive texts only

allow such decomposition into singletons. By exhaustively decomposing subtexts,

we obtain a tree-structure for a given text, called a primitive representation of

the text, which indicates how it is built up from singletons and primitive (i.e.,

indecomposable) bi-orders.

Example 1.2 Let � be the text (acabaacbc; (5; 2; 4; 1; 3; 6; 7; 8; 9)). In Fig. 1 two

primitive representations of � are given, where � is the primitive bi-order given by

(2; 4; 1; 3) in standard form. Consider the left tree t. At the root � is decomposed

into the subtexts corresponding with the clans f1; 2; 3; 4; 5g and f6; 7; 8; 9g, in

standard form (acaba; (5; 2; 4; 1; 3)) and (acbc; (1; 2; 3; 4)), respectively; note that

� is reobtained by substituting these subtexts into the root label �

f

which gives

the relative orderings of the two clans. At the left child of the root the subtext

(acaba; (5; 2; 4; 1; 3)) is decomposed into the subtexts corresponding with clans

f1; 2; 3; 4g and f5g relatively ordered by �

b

; the subtext corresponding with

f1; 2; 3; 4g is primitive with underlying bi-order �.

For each internal node of a primitive representation t its label provides two

orderings on its children, where the �rst order is assumed to be the left-to-right

order. In this way t is a \doubly" ordered tree, and we can recover the standard

form of � from t as follows: the word of � is the yield of t, and the (second) order

on the positions of this word is the ordering on the leaves induced by the local

second orders in the obvious way, assuming that the leaves are named 1; : : : ; 9

from left to right. ut

3



�

f

@

@

�

�

�

b

A

A

�

�

� a

�

f

C

C

�

�

S

S

�

�

a c a

b

S

S

�

�

�

f

�

f

A

A

�

�

a c

A

A

�

�

b

c

�

f

@

@

�

�

�

b

A

A

�

�

� a

�

f

C

C

�

�

S

S

�

�

a c a

b

A

A

�

�

�

f
a

A

A

�

�

c

�

f

A

A

�

�

b

c

Fig. 1. Two primitive representations of �

The trees used in this paper are directed ordered trees with node-labels.

Therefore, they can be represented as terms over a ranked alphabet (cf. the

de�nition of trees in [14]). A ranked alphabet � is a �nite alphabet of operator

symbols, where each operator symbol � 2 � has a rank, which is a natural

number. The set of �-terms, denoted by F

�

, is the smallest set of words over �

and the auxiliary symbols h and i such that � 2 F

�

for every � 2 � of rank 0, and

�ht

1

� � � t

m

i 2 F

�

for all � 2 � of rank m > 0 and t

1

; : : : ; t

m

2 F

�

. For primitive

representations we use ranked alphabets of the following speci�c form. For a

�nite set � of primitive bi-orders of length � 2, and an alphabet �, let � be the

ranked alphabet�[� such that the rank of each � 2 � is its length and the rank

of each a 2 � is 0. Each tree t in F

�

is then a primitive representation; the text

represented by t is denoted by txt(t) and is recursively de�ned by txt(a) = (a; (1))

for a 2 �, and txt(�ht

1

� � � t

n

i) = [�  (txt(t

1

); : : : ; txt(t

n

))] for � 2 � of length

n � 2, and t

1

; : : : ; t

n

2 F

�

.

The di�erence between primitive representations of one text is limited to

binary subtrees containing only the operator symbol �

f

and binary subtrees

containing only �

b

. This is a consequence of general results from the decompo-

sition theory for 2-structures.

Proposition 1.3 Two primitive representations of the same text di�er only in

binary subtrees.

We �x one speci�c primitive representation for each text � , called the r-shape

of � , denoted by sh(� ), by demanding that each binary subtree is in a right-most

form, i.e., the r-shape of a text is the primitive representation such that it has no

subtree of the form �

f

h�

f

ht

1

t

2

it

3

i or �

b

h�

b

ht

1

t

2

it

3

i. E.g., the r-shape of the text

� from Example 1.2 is the right tree in Fig. 1. (Note that the r-shape slightly

di�ers from the usual shape in [7].)

The r-shape of a text can be characterized in terms of clans. First observe

that the nodes of a given primitive representation t correspond with clans of

txt(t), viz., the clans used in the decomposition re
ected by t. A clan of a text

� is a prime clan if it is not overlapping with any other clan of � , where sets X

and Y are overlapping if X \ Y 6= ;, X � Y 6= ;, and Y �X 6= ;.

4



Proposition 1.4 A primitive representation t is the r-shape of a text � i� the

clans of � corresponding with the nodes of t are precisely all clans of � that are

su�xes (w.r.t. the �rst order) of prime clans of � .

For a ranked alphabet � = � [� as described above, we use TXT

�

(�) to

denote the set of texts over � that have a primitive representation in F

�

; the

subset of F

�

consisting of the r-shapes of these texts is denoted by SH

�

(�);

TXT(�) denotes the set of all texts over �.

2 MSO De�nable Text Languages

In this section we view texts, and trees representing them, as graphs. We use

monadic second-order logic on graphs to de�ne the class of mso de�nable text

languages, rather than introducing a separate logic for texts.

Let 
 and � be alphabets. A graph over 
 and � is a triple g = (V;E; �),

where V is the set of nodes, E � V � � � V the set of edges, and � : V ! 


the node labelling. The set of all graphs over 
 and � is denoted by GR(
;� ).

The monadic second order logic MSO(
;� ) expresses properties of graphs

over 
 and � . The logic allows both �rst order variables x; y; : : : ranging over

nodes, and (monadic) second order variables X;Y; : : : ranging over sets of nodes.

There are four types of atomic formulas: x = y, expressing that nodes x and y

are equal; x 2 X, expressing x is an element of X; lab

a

(x), expressing node x

has label a (with a 2 
); and edge




(x; y); expressing there is an edge from x to

y with label 
 (with 
 2 � ).

Formulas are built from atomic formulas with the propositional connectives

:;^;_;!, using the quanti�ers 8 and 9 both for node-variables and node set-

variables. For better readability we use abbreviations like X � Y andX\Y = ;.

Example 2.1 A predicate � claiming the existence of a path from x to y:

x � y � 8X[x 2 X ^ 8u8v(u 2 X ^ edge(u; v)! v 2 X)! y 2 X]

where edge(u; v) �

W


2�

edge




(u; v). This example is from [18]. ut

Given a closed formula ' of MSO(
;� ), and a graph g from GR(
;� ) we

write g j= ' if g satis�es ', i.e., if ' is true when interpreted over g. Now ' de�nes

the graph language of all graphs satisfying ': L(') = fg 2 GR(
;� ) j g j= 'g.

Such a graph language is said to be mso de�nable.

To represent ordered trees as graphs we use edge-labels to explicitly deter-

mine the relative ordering of the children of each node: the natural numbers

1; : : : ;m label the outgoing edges of a node of arity m. Thus, for the ranked al-

phabet �, trees in F

�

are identi�ed with speci�c graphs in GR(�; f1; : : : ;Mg),

where M is the maximal rank of symbols in �.

Also texts have natural representations as graphs. We use edges to rep-

resent the two linear orders of the text, with edge-labels to identify the or-

dering. Formally, a text � = (�; �

1

; �

2

) over � is identi�ed with the graph

5



g = (V;E; �) over � and f1; 2g, where V = dom(� ), and E = f(x; i; y) j x; y 2

V; x precedes y in �

i

; i 2 f1; 2gg. Thus, a text language is mso de�nable if it is

mso de�nable as set of graphs over GR(�; f1; 2g).

The set of texts TXT(�) in GR(�; f1; 2g) is easily seen to be mso de�nable,

as we only have to specify the fact that the edges with each label form a linear

ordering. Unfortunately, the de�nability of TXT

�

(�) within GR(�; f1; 2g) is

less transparent. We solve this problem in the proof of Theorem 2.4. On the

other hand, both F

�

and the set SH

�

(�) of r-shapes in F

�

, where � = � [�

is a ranked alphabet for primitive representations, are mso de�nable.

An mso de�nable function f , see [5, 11], speci�es the construction of a new

graph g

0

from a graph g using mso formulas. The construction starts by taking k

copies of the nodes of g (k is �xed by f). Then for each copy, and each label a of

g

0

, a formula '

i

a

(x) determines whether the i-th copy x

i

of node x of g is present

in g

0

and has label a. Similarly, for each pair of copies and each edge label 
 of

g

0

, a formula '

i;j




(x; y) determines whether an edge with label 
 is leading from

the i-th copy x

i

of x to the j-th copy y

j

of y.

De�nition 2.2 An mso de�nable function f : GR(
;� ) ! GR(


0

; �

0

) is speci-

�ed by a domain formula '

dom

, a constant k � 1, node formulas '

i

a

(x), for every

a 2 


0

and every i 2 f1; : : : ; kg, and edge formulas '

i;j




(x; y) for every 
 2 �

0

and all i; j 2 f1; : : : ; kg; all formulas are in MSO(
;� ).

For g 2 L('

dom

) with node set V

g

, the image f(g) is (

S

i2f1;:::;kg

V

i

; E; �),

where for i 2 f1; : : : ; kg,

- V

i

= fx

i

j x 2 V

g

; there is exactly one a 2 


0

such that g j= '

i

a

(x)g,

- E = f(x

i

; 
; y

j

) j x

i

2 V

i

; y

j

2 V

j

; i; j 2 f1; : : : ; kg; g j= '

i;j




(x; y)g, and

- �(x

i

) = a if g j= '

i

a

(x), for x

i

2 V

i

, i 2 f1; : : : ; kg. ut

Proposition 2.3 ([5]) Let f : GR(
;� ) ! GR(


0

; �

0

) be an mso de�nable

function. If L � GR(


0

; �

0

) is mso de�nable, then f

�1

(L) = fg 2 GR(
;� ) j

f(g) 2 Lg is mso de�nable.

We verify that the function txt : GR(�; f1; : : : ;Mg) ! GR(�; f1; 2g), that

assigns to each tree in F

�

the text it represents, is mso de�nable, like the trans-

lation from shape to 2-structure, see [13, Section 4.3]. Start with a single copy

of each node of the tree. Internal nodes are removed (selecting nodes with labels

in �) and the edges between a pair of nodes in the text are determined using

the label associated to the least common ancestor of these nodes in the tree.

Formally, txt is �xed by a domain formula de�ning F

�

, constant k = 1,

node formulas '

a

(x) � lab

a

(x), for a 2 �, and, for m 2 f1; 2g, edge formulas

'

m

(x; y) �

_

�2�

_

i<

�

m

j

[9z9x

1

9y

1

(lab

�

(z) ^ edge

i

(z; x

1

) ^ edge

j

(z; y

1

) ^ x

1

� x ^ y

1

� y)]

where x � y expresses that there is a path from x to y (cf. Example 2.1), and

i <

�

m

j abbreviates \i precedes j in the m-th order of �". Note that i; j 2

f1; : : : ;Mg, hence the second disjunction is �nite.

6



We now consider our key result: the construction of the r-shape from a text is

an mso de�nable function. We start by giving formulas that de�ne the structure

of the r-shape of a text, identifying the nodes of the r-shape with clans of the

text. By Proposition 1.4, the nodes then are exactly the su�xes of prime clans.

nodes. A set X is a clan of a text i� it is a segment in both orderings, which can

easily be expressed as an mso formula clan(X). Prime clans are by de�nition

those clans that do not overlap other clans. We obtain the formulas:

prim(X) � clan(X) ^ 8Y [clan(Y )! (X \ Y = ; _X � Y _ Y � X)]

node(X) � clan(X) ^ 9Z(prim(Z) ^ su�

1

(X;Z))

where su�

1

(X;Z) expresses that X is a su�x of Z as segments in the �rst order.

The usual child-parent relation child(X;Y ) can be expressed using set inclusion.

node labels. The label of the (internal) node X in the r-shape is determined

by the quotient bi-order of X with respect to its children, i.e. by the relative

ordering of the children of X in the �rst and second ordering of the text. Thus,

X has the associated bi-order � = (i

1

; : : : ; i

n

) in standard form, if the following

predicate, denoted quot

�

(X), is satis�ed:

9X

1

: : : X

n

[(X =

n

[

j=1

X

j

)^

n

^

j=1

child(X

j

;X)^ (X

1

<

1

: : :X

n

)^ (X

i

1

<

2

: : :X

i

n

)]

where X <

i

Y abbreviates 8x8y(x 2 X ^ y 2 Y ! edge

i

(x; y)), meaning that

X precedes Y as a segment in the i-th order.

edges. The r-shape has edges connecting nodes to their children as usual in a tree.

To order the children of a node, the predicate child(X;Y ) has to be extended to

a predicate child

k

(X;Y ) meaning that X is the k-th child of Y .

Theorem 2.4 The mapping sh : GR(�; f1; 2g) ! GR(�; f1; : : : ;Mg), that as-

signs to each text in TXT

�

(�) its r-shape, is an mso de�nable function.

Proof. We avoid an unelegant duplication in our constructions by �rst consider-

ing the domain TXT(�) rather than TXT

�

(�). In a second step we show that

a proper domain formula, de�ning TXT

�

(�), exists.

de�ning the mapping. We formalize the construction of the r-shape as an mso

de�nable function. To this end we need to show how to obtain the nodes of the

r-shape by duplicating the positions of the text.

We associate with each internal node of the r-shape a position in the text or,

equivalently, we associate with each internal node a leaf (see also [17]). (Leaves

are the singleton clans of the text.) If position x is associated to the internal

node X, then the copy x

2

represents X, the �rst copy x

1

represents the leaf x.

The association we use is known (for binary trees) as the inorder successor

of the node: it is the leaf that is found by �rst moving to the last child, and then

repeatedly moving to the �rst child of the node visited. This gives an injective

mapping of internal nodes to leaves of the tree, expressible by an mso formula:

assoc(x;X) � 9Y (frst

1

(x; Y ) ^ child(Y;X) ^ su�

1

(Y;X))

7



where frst

1

(x; Y ) expresses that x is the �rst element of Y (in the �rst ordering).

The mapping sh

0

is speci�ed as an mso de�nable function as follows:

a domain function '

dom

de�ning TXT(�), the constant k = 2,

for a 2 �, and � 2 �, the node formulas '

1

a

(x) � lab

a

(x), '

1

�

(x) � '

2

a

(x) �

false, and '

2

�

(x) � 9X(assoc(x;X) ^ quot

�

(X)),

for k 2 f1; : : : ;Mg, the edge formulas '

1;1

k

(x; y) � '

1;2

k

(x; y) � false,

'

2;1

k

(x; y) � 9X9Y (assoc(x;X) ^ (Y = fyg) ^ child

k

(Y;X)), and

'

2;2

k

(x; y) � 9X9Y (assoc(x;X) ^ assoc(y; Y ) ^ child

k

(Y;X))

de�ning the domain. The mso de�nable function sh

0

constructed above does not

have the proper domain. For texts in TXT

�

(�) it satis�es our needs. For other

texts in TXT(�) the labelling formulas are unde�ned for internal nodes of the r-

shape that are labelled by operations not in�. According to the de�nition of mso

de�nable functions, these nodes are then removed from the constructed graph,

leaving an unconnected graph. Hence, sh

0

constructs a tree if and only if the

input graph is an element of TXT

�

(�). Consequently, TXT

�

(�) = sh

0�1

(F

�

),

which, by Proposition 2.3, is an mso de�nable subset of GR(�; f1; 2g).

The �nal conclusion made in the above proof is interesting in its own right.

Corollary 2.5 TXT

�

(�) is an mso de�nable subset of GR(�; f1; 2g).

We are ready to prove the main result of this section.

Theorem 2.6 Let K � TXT

�

(�). K is mso de�nable i� sh(K) is mso de�n-

able i� txt

�1

(K) is mso de�nable.

Proof. The functions txt and sh are mso de�nable, and the mso de�nable sets

are closed under the Boolean operations. Thus, by Proposition 2.3, if K is mso

de�nable, then txt

�1

(K) is mso de�nable. The other implications follow from the

equalities sh(K) = txt

�1

(K) \ SH

�

(�) and K = sh

�1

(sh(K)) (sh is injective).

The structure of a text interpreted as graph is independent of node-labels.

Using [12] one obtains an operational characterization of the family of mso de�n-

able subsets of TXT

�

(�): it is the smallest family containing certain elementary

languages that is closed under intersection, di�erence, and (node) relabellings.

3 Recognizable and Right-linear Text Languages

Using the results from the previous section we now explain the equivalences

given in the Main Theorem.

We �rst de�ne the algebraic and grammatical notions involved in the Main

Theorem. We make use of the general de�nition of recognizability of subsets in

a �-algebra. For a ranked alphabet �, a �-algebra A is a pair (A;�), where A

is a set and each operator � 2 � of rank m � 0 de�nes a mapping �

A

: A

m

! A

(see, e.g., [2]). For a �-algebra A = (A;�), a subset K � A is recognizable if

8



there is a �nite �-algebra Q = (Q;�), a homomorphism h : A ! Q, and a

subset F � Q such that h

�1

(F ) = K.

This de�nition applies to tree languages in F

�

, being subsets of the �-algebra

of terms (F

�

; �), denoted by F

�

; the �nite algebra Q corresponds with a so-

called (deterministic) bottom-up tree recognizer.

To obtain an algebraic structure on texts we let � = �[� be a ranked alpha-

bet as before: the �-algebra T

�

= (TXT

�

(�); �) is de�ned by a

T

�

= (a; (1))

for a 2 �, and for � 2 � of rank m, �

1

; : : : ; �

m

2 TXT

�

(�), �

T

�

(�

1

; : : : ; �

m

) =

[� (�

1

; : : : ; �

m

)]. A text language K � TXT

�

(�) is recognizable if it is recog-

nizable in the �-algebra T

�

.

Note that the mapping txt : F

�

! TXT

�

(�) which assigns to each t 2 F

�

the text txt(t) is precisely the homomorphism evaluating terms of F

�

in T

�

. As

txt is surjective we may apply the more general result [3, Proposition 1.7] to the

algebra T

�

.

Proposition 3.1 Let K � TXT

�

(�). K is recognizable in T

�

i� txt

�1

(K) is

recognizable in F

�

.

Now we turn to grammars de�ning tree and text languages.

A regular tree grammar is a 4-tuple G = (N;�;P; S), where N is a set of

nonterminal symbols, � is a ranked alphabet, P consists of productions of the

form A ! t, where A 2 N and t 2 F

�[N

(interpreting the nonterminals as

operators of rank 0), and S 2 N is the startsymbol. G generates trees in F

�

starting from S, where in one step a tree t

0

2 F

�[N

is derived from a t 2 F

�[N

if there is a production A! u in P such that t

0

is obtained by attaching the tree

u at a leaf of t with label A. A tree language is called regular if it is generated

by a regular tree grammar.

For texts we have the notion of context-free text grammar (see [10]), which

is a 4-tuple G = (N;�;P; �

0

), where � is the alphabet of terminals, the pro-

ductions in P are of the form A ! � , where A 2 N and � 2 TXT(N [�), and

the startsymbol �

0

is a text of length 1 over N . For � , �

0

2 TXT(N [ �), �

derives �

0

(in G) if there is a production A ! � 2 P such that �

0

is obtained by

substituting � in � at a position with label A. The text language over � gener-

ated by such a context-free text grammar may be non-recognizable. Therefore,

we restrict ourselves to right-linear text grammars (generating right-linear text

languages), where each right-handside is primitive and there is neither a couple

of productions of the form A ! (BC; (1; 2)), B ! (DE; (1; 2)) nor a couple

A! (BC; (2; 1)), B ! (DE; (2; 1)).

From the compatibility of substitution for texts and for trees, and from the

observation that a right-linear text grammar corresponds with a regular tree

grammar that generates r-shapes, we obtain the following result (the equivalence

of (iii) and (iv) of the Main Theorem).

Theorem 3.2 Let K � TXT

�

(�). K is right-linear i� sh(K) is regular.

As to the remaining equivalences in the Main Theorem, these �nally follow

from well-known similar equivalences for tree languages.

9



Proposition 3.3 ([6, 16, 18]) Let T � F

�

. T is mso de�nable i� T is recog-

nizable i� T is regular.

By this proposition and by Theorem 2.6, Proposition 3.1 implies the equiv-

alence of (i) and (ii) of the Main Theorem, and Theorem 3.2 implies the equiv-

alence of (i) and (iii) of the Main Theorem. An independent proof of the latter

equivalence is given in [15], where for a right-linear text grammar a �nite �-

algebra recognizing its language is directly constructed.

References

1. J.R. B�uchi, Weak second-order arithmetic and �nite automata, Zeitschrift f�ur

Mathematik, Logic und Grundlagen der Mathematik 6 (1960) 66{92.

2. P.M. Cohn, Universal Algebra, Harper & Row, New York, 1965.

3. B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of

�nite graphs, Information and Computation 85 (1990) 12{75.

4. B. Courcelle, The monadic second-order logic of graphs V: on closing the gap

between de�nability and recognizability, Theoret. Comput. Sci. 80 (1991) 153{202.

5. B. Courcelle, Monadic second-order de�nable graph transductions, Lecture Notes

in Computer Science 581 (1992) 124{144.

6. J. Doner, Tree acceptors and some of their applications, J. of Comp. and System

Sci. 4 (1970) 406{451.

7. A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, Parts I and II, Theoret.

Comput. Sci. 70 (1990) 277{342.

8. A. Ehrenfeucht and G. Rozenberg, T-functions, T-structures, and texts, Theoret.

Comput. Sci. 116 (1993) 227{290.

9. A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Combinatorial properties of texts,

RAIRO, Theor. Inf. 27 (1993) 433{464.

10. A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Context-free text grammars, Acta

Informatica 31 (1994) 161{206.

11. J. Engelfriet, A characterization of context-free NCE graph languages by monadic

second-order logic on trees, Lecture Notes in Computer Science 532 (1991) 311{327.

12. J. Engelfriet, A regular characterization of graph languages de�nable in monadic

second-order, Theoret. Comput. Sci. 88 (1991) 139{150.

13. J. Engelfriet, T. Harju, A. Proskurowski, and G. Rozenberg, Survey on graphs

as 2-structures and parallel complexity of decomposition, Technical Report 93-06

(1993), Dept. of Comp. Sci, Leiden University.

14. F. Gecseg and M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.

15. H.J. Hoogeboom and P. ten Pas, Text languages in an algebraic framework, Fun-

damenta Informaticae, to appear.

16. J. Mezei and J.B. Wright, Algebraic automata and context-free sets, Information

and Control, 11 (1967) 3{29.

17. A. Pottho� and W. Thomas, Regular tree languages without unary symbols are

star-free, Lecture Notes in Computer Science 710 (1993) 396{405.

18. J.W. Thatcher, J.B. Wright, Generalized �nite automata theory with an applica-

tion to a decision problem of second-order logic, Math. Syst. Th. 2 (1968) 57{82.

10


