
Limited Area Numerical Weather Forecasting

on a Massively Parallel Computer

Lex Wolters

�

High Performance Computing Division,

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

llexx@cs.leidenuniv.nl

Gerard Cats

Royal Netherlands Meteorological Institute

P.O. Box 201, 3730 AE De Bilt, The Netherlands

cats@knmi.nl

Nils Gustafsson

Swedish Meteorological and Hydrological Institute

S-60176 Norrk�oping, Sweden

ngustafsson@smhi.se

Abstract

A data-parallel implementation on a SIMD platform of an op-

erational numerical weather forecast model is presented. The

performances of two popular numerical techniques within these

models are discussed, namely �nite di�erence (gridpoint) meth-

ods and spectral methods. In this paper in particular the per-

formance achieved for a full production run is investigated. Also

the price/performance ratios of several compute platforms for this

forecast model are shown.

1 Introduction

Numerical models of the atmosphere have much contributed

to our general understanding of atmospheric processes. The

use of such models has resulted in improved weather fore-

casts, with important economical impact; also these models

are now being used as components in climate simulation

models.

The horizontal and vertical resolution of atmospheric

models is an important factor determining the accuracy of

the models. Present day computer power limits the num-

ber of gridpoints and thus the resolution to values that are

unsatisfactory from a physics point of view. For example,

the number of oating point operations is proportional to

(some power of) the number of gridpoints; and the calcula-

tions have to be completed within some reasonable elapsed

time: for weather forecasting, the forecasts must be available

within a fraction of the time that they may be considered

valid; and for climate simulation, the simulated periods may

cover several centuries, yet the calculations should be done

within months. From these considerations it follows that

continuous attempts are being made to run the models on

the fastest available computer platforms.

�

Support was provided by the Esprit EC Agency CEC-DGXIII

under Grant No. APPARC 6634 BRA III.

Published in proceedings of the 8

th

ACM International

Conference on Supercomputing, July 1994, Manchester,

England, pp. 289{296.

A general distinction can be made between global and

local models. Local models (`limited area models') have the

advantage of a lower number of gridpoints at the same res-

olution as global models. The disadvantage, on the other

hand, is that they require lateral boundary conditions. As-

suming the boundary conditions are generated by a lower

resolution global model, the time range over which the higher

resolution results from the local model are valid is roughly

limited to the time it takes the lower resolution boundary

conditions to penetrate into the central part of the limited

area.

A modern atmospheric model consists of two main parts.

The �rst is called the `dynamics'; its task is to solve the equa-

tions of motion discretized to the model gridpoints. The

second part is called the `physics'; it describes the aggre-

gate e�ect of the physical processes with scales smaller than

the model resolution, on the larger, resolved, scales. Some

physical processes like radiation, not directly described by

the basic model equations, are also parameterized.

If the model is to be used for weather forecasting, it is

to start from initial conditions that represent a very recent

state of the atmosphere. Therefore, weather forecasting sys-

tems always consist of an analysis scheme, which is a system

to generate the initial conditions from observations, and of

the actual forecast model. These two components are sup-

ported by sophisticated systems to collect observations and

to distribute the results.

In concept, the actual forecast model solves identical

equations of motion on a large number of gridpoints. There-

fore in theory, it should not be too di�cult to code it for

high e�ciency on either scalar, vector or parallel comput-

ers. Current codes have almost invariably been optimized

for vector architectures. With this research we intend to �nd

out how much work is involved to convert vector code to par-

allel code; how cost-e�ective massive parallel machines can

be for weather forecasting; and how meteorological models

should be coded in future to achieve maximum portabil-

ity between di�erent hardware architectures (from SIMD to

MIMD).

As an initial step, the HIRLAM

1

forecast model was cho-

sen for the application to be implemented, and the hardware

1

The HIRLAM system was developed by the HIRLAM-project

group, a cooperative project of Denmark, Finland, Iceland, Ireland,

The Netherlands, Norway, and Sweden.

1

platform we selected was a MasPar system.

2 The HIRLAM Forecast Model

The HIRLAM forecast model [7] is coded in standard For-

tran 77. The core of the model are the subroutines to do the

dynamics and to do the physics. All model parameters are

kept in core memory. The three-dimensional �elds (temper-

ature, wind, water vapour and liquid water) are stored as

two-dimensional arrays; the �rst dimension runs over all hor-

izontal gridpoints, the second over the layers in the vertical.

The two-dimensional �elds (surface pressure and several soil

parameters like land-sea mask) are kept as one-dimensional

arrays. The physics routines are coded as one-dimensional

loops over all horizontal gridpoints. Because almost all phys-

ical processes are in one-dimensional vertical columns, with-

out mutual communications, the model physics can be de-

scribed as N disjunct processes, where N is the number of

gridpoints in the horizontal.

The solution of the dynamics of the model, on the other

hand, requires horizontal communications between the dif-

ferent columns. The amount of communications depends on

the solution method for the dynamics. The method that cur-

rently is in use at several of the meteorological services par-

ticipating in the HIRLAM project for their routine weather

forecasting procedures is the so-called semi-implicit Eulerian

gridpoint method. Other existing integration schemes are

the fully explicit methods, semi-Lagrangian methods, and

spectral methods. The semi-implicit schemes are coded as

relatively small corrections to the explicit methods. The

semi-Lagrangian method has still too many numerical prob-

lems, and therefore we will not investigate this further. In

the next paragraphs the other integration methods are com-

pared for their amount of horizontal communications.

The explicit Eulerian gridpoint dynamics require nearest-

neighbour communications in the horizontal directions. The

integration is on a staggered grid [1], i.e., the wind vari-

ables are kept at points halfway in between the points where

the other variables are kept. At some place the �elds must

be destaggered, (e.g., before entering the physics routines).

Due to destaggering, there are some diagonal communica-

tions in the dynamics routines.

By application of semi-implicit corrections the integra-

tion scheme becomes more stable numerically, thus allowing

longer time steps, and saving a factor of the order �ve in

CP requirements. The calculation of the semi-implicit cor-

rections requires the solution of a set of Helmholtz equations.

On vector machines the solution of the Helmholtz equations

costs a negligible extra of CP time, but this may be di�er-

ent on multi-processor machines, because it requires global

communications.

The comparison between gridpoint and spectral methods

is of a di�erent kind: whereas semi-implicit methods were

developed mainly for reasons of numerical stability, spectral

methods o�er rather more physical advantages. The spec-

tral method itself is cheaper than the gridpoint formulation;

as an example we mention that the solution of the Helmholtz

equation for semi-implicit methods is almost free of costs in

the spectral formulation. But because the computation of

non-linear terms and the physics part of the model require

the �elds to be available in gridpoint space, the spectral

model requires transformations between spectral space and

gridpoint space, and vice versa, each time step. The costs

of these transformations are substantial. On multi-processor

machines this is even more relevant, because the transfor-

mations require global communications. In HIRLAM, the

transformations are Fourier transforms, and cost-e�ciency

of the spectral model heavily depends on the availability of

e�cient library routines for fast Fourier transforms.

So both the gridpoint as the spectral HIRLAM model

use the same basic dynamical equations, the same vertical

and temporal discretizations by �nite di�erences and the

same physical parameterization schemes. The di�erences

concern the horizontal discretization and solution technique,

of which the advantages and disadvantages will be discussed

in section 3.

3 Gridpoint Model versus Spectral Model

Two numerical techniques, the �nite di�erence or gridpoint

technique and the spectral transform technique, are most

commonly applied within the meteorological community. Fi-

nite element techniques have reached some popularity in re-

cent years too.

Let us illustrate the two most popular techniques by the

simple example of one-dimensional advection of tempera-

ture. In analytic form:

@T

@t

= u

@T

@x

: (1)

Introducing the most simple non-staggered horizontal grid,

the discretisized gridpoint version with a leap-frog time-

stepping will read:

T (x; t+�t) = T (x; t��t)+

�t

�x

u(x; t) (T (x+�x; t)� T (x��x; t)) ; (2)

where T (x; t) is the temperature in gridpoint x at time t,

u(x; t) is the wind-component in the x-direction in gridpoint

x at time t, �t is the time step, and �x is the grid-distance

in the x-direction.

For the spectral transform technique one will start the

integrations from spectral coe�cients

^

T and û, de�ned by

e.g.:

T (x; t) =

1

p

2�

X

k

^

T (k; t) exp(ikx) ; (3)

^

T (k; t) =

1

p

2�

X

x

T (x; t) exp(�ikx) : (4)

The computation of non-linear terms is carried out in grid-

point space and the gridpoint values of the �elds and their

derivatives are obtained by inverse transforms, e.g.:

@T

@x

=

1

p

2�

X

k

ik

^

T (k; t) exp(ikx) : (5)

Once, the gridpoint values of u and @T=@x have been ob-

tained in gridpoint space, it is easy to carry out the multi-

plication and then to do a transform back to spectral space

for d

^

T=dt. Note that we have transformed the partial dif-

ferential equation into an ordinary di�erential equation by

using the orthogonal space functions exp(ikx).

From the simple example above, it is clear that the grid-

point technique requires communications in the neighbour-

hood of each gridpoint only, while the spectral transform

technique requires communication over all the gridpoints

through the spectral transforms.

2

For a global geometry the spectral transformations are

straightforward, since this geometry allows for a natural pe-

riodic variation of all variables in both directions. Therefore

the spectral transform technique [3, 10] has attained a great

popularity for global numerical weather prediction.

Initial steps to apply the spectral transform technique to

a limited area were taken by Haugen and Machenhauer [6],

who developed a spectral limited area shallow water model

based on the idea of extending the limited area in the two

horizontal dimensions in order to obtain periodicity in these

two dimensions and to permit the use of e�cient Fast Fourier

Transforms. The same idea was implemented by Gustafs-

son [5] into the full multi-level HIRLAM framework.

There is yet no clear answer to the question whether it is

preferable to apply the spectral or the gridpoint technique

for a particular model con�guration and for particular com-

puter architecture. Considering only computational accu-

racy, it is generally agreed that for a gridpoint model based

on a second order horizontal di�erence scheme, the shortest

waves that can be forecasted with a similar accuracy as in

a spectral model are the 4 grid distance waves. The short-

est wave in a spectral model generally corresponds to 3 grid

distances in the transform grid. Thus, the number of hor-

izontal gridpoints in a gridpoint model should be roughly

twice (� (4=3)

2

) the number of transform gridpoints in a

spectral model to obtain a similar accuracy. There is not

a similar di�erence with regard to the vertical coordinate,

since spectral and gridpoint models normally use the same

�nite di�erence schemes in the vertical.

With regard to computational e�ciency of the spectral

HIRLAM versus the gridpoint HIRLAM, the need for an

extension zone in the spectral HIRLAM to obtain double

periodicity should also be taken into account. This is not a

problem on traditional vector computers with a shared mem-

ory or on MIMD computers programmed with explicit mes-

sage communications, since all dynamics and physics calcu-

lations can be done in the non-extended `real' computational

area. However, using the data-parallel programming model

on a parallel distributed memory architecture it is necessary

to map the extended area grid on the processor grid. Ide-

ally, the number of gridpoints in the extended area should

be about 25% larger than in the inner computational area

(10% in each direction), which means that an equal per-

centage of processors has to be applied to perform the extra

calculations in this `arti�cial' area.

The performance of the spectral HIRLAM is crucially

depending on the availability of fast FFT subroutines. The

basic algorithms of the package for `Super-Parallel' FFTs of

Munthe-Kaas [9] were designed and developed for applica-

tions on SIMD computers. The idea of super parallel FFTs

is a novel one, developed by Munthe-Kaas. The term `Super-

Parallel' algorithms is used to denote \algorithms that in a

SIMD fashion can solve multiple instances of similar prob-

lems, with a degree of parallelism that is in the order of the

sum of the sizes of all the sub-problems", see [11]. The only

restriction in the FFT package of Munthe-Kaas is that the

sizes of the problems should be powers of 2 (in all dimensions

in the case of multi-dimensional problems) and, in addition,

that the data must satisfy certain alignment requirements

with the address space in the computer.

Two more remarks could be made on the e�ciency of

spectral versus gridpoint models. First, in favour of the

spectral model, all calculations in gridpoint space could be

made strictly local since there is no horizontal staggering

of the gridpoints. Also in spectral space, all calculations

could be made strictly local, the coe�cients of each wave-

number are treated separately. As a second point, when

we move to larger number of horizontal point, say above

10

6

, the gridpoint methods become relatively more e�cient,

since the computational time needed for Fourier-transforms

increases faster than linearly in the number of points.

4 The Parallel Architecture

In this section we present some characteristics of the mas-

sively parallel MasPar systems used in this investigation.

These systems are also sold by Digital under the name of

DECmpp systems. For a detailed description of the systems

see, e.g. [8].

A MasPar system has a SIMD architecture with from

1,024 (1K) up to 16,384 (16K) processors. Each processor is

called a Processor Element (PE). All together they form the

PE-array. A PE is an 80 ns load/store arithmetic processor

with a 16 Kbytes or 64 Kbytes data memory. On a MP-1

system the PE is a 4-bits processor, while the newer MP-

2 systems contain 32-bits processors. The PE can operate

on 1, 8, 16, 32, and 64 bit integers. The oating point

precision is 32 or 64 bits. A full 16K MP-1 system has a

peak performance of 26,000 MIPS and 550 Mops (64-bits)

or 1,200 Mops (32-bits). For a full MP-2 system these

numbers are 68,000 Mips, and 2,400 Mops or 6,300 Mops,

respectively.

The PEs are controlled by the Array Control Unit (ACU).

This is a register-based load/store processor with 128 Kbytes

data memory and 1 Mbytes instruction memory. The ACU

is responsible for the instruction decode and broadcast of in-

structions and data. It also includes a 12 MIPS scalar RISC

processor for operations on scalar data. The PE-array and

ACU form the Data Parallel Unit (DPU).

The MasPar systems have two important types of com-

munications. The �rst type is the communication between

the Processor Elements (PEs). It can be divided into two

classes: Xnet and Router communication. Xnet commu-

nication performs nearest-neighbour communications. The

Processor Element Array is arranged in a 2-dimensional

mesh with toroidal wrap-around. With Xnet communica-

tion one can send data to or receive data from the eight

neighboring PEs, so in horizontal, vertical and diagonal di-

rections. This can be extended to communication between

two PEs that lie on a straight line in each of the eight direc-

tions. The maximum communication bandwidth using Xnet

is 23 Gbyte/s for a full 16K con�guration. Router communi-

cation provides the possibility to send/receive data between

two arbitrary PEs via a multi-stage crossbar network, so it

takes care of the global communications. The communica-

tion time is independent of the distance between the PEs,

but its maximum speed is considerably slower than for Xnet

communication: 1.3 Gbyte/s. Another limitation is that

there is only one Router channel for 16 PEs.

The second important type of communication is formed

by the communication channels between the FE and the

DPU, and vice versa. Usually these channels are used to

distribute input data over the DPU and to return output

data from the DPU with a theoretical peak transfer rate of

2 Mbyte/s. With additional hardware this can be improved

to 10 Mbyte/s. These are only theoretical �gures: typi-

cal achievable rates are around 1 Mbyte/s and 6 Mbyte/s,

respectively. This shows that these communications are ex-

tremely expensive and should be limited as much as possi-

ble. The programmer is responsible for distributing the data

over the FE and the DPU, and much of a conversion e�ort

should be aimed at keeping the data as much as possible on

3

the DPU.

It should be mentioned that the main di�erence between

the MP-1 and the MP-2 con�gurations is the increase in

peak performance by a factor �ve. However, the communi-

cation network is exactly the same for both model types.

A MasPar system needs a front-end, that serves as an

interface to the DPU and is host for tools and compilers. In

our case the front-end is a Dec 5000 workstation. In addi-

tion we have the dedicated software to utilize the massively

parallel system: the MasPar Fortran (MPF) compiler. This

compiler is an implementation of Fortran 90. It indicates the

programming model for the MasPar system: data-parallel

programming. Operations on Fortran-arrays expressed by

the Fortran 90 array-syntax will be executed in parallel, and

the arrays involved will be distributed over the PEs. Oper-

ations with Fortran 77 syntax will be executed sequentially.

To translate Fortran 77 programs to Fortran 90 MasPar pro-

vides the VAST-II compiler.

Some details concerning the hard- and software used in

our investigation. The MasPar MP-1 system was a Mas-

Par DPU Model MP-1104 (64 rows, 64 columns) with a

DEC 5000/240 front-end, while the MasPar MP-2 system

contained a MasPar DPU Model MP-2216 (128 rows, 128

columns). All tests were performed with system release 3.2.0

of the MasPar software, which included the the Vast-II (ver-

sion 3.06), and the Mpfortran compiler (version 2.2.7). In all

cases the {nodebug and {Omax compiler-options were spec-

i�ed, which prevents the inclusion of extra code for debug

purposes, and performs the highest degree of optimization

possible on a MasPar system.

5 Forecast Timings

In this section the performance of the di�erent numerical

methods for the forecast routines will be discussed and com-

pared. Issues like pre/post-processing and I/O will be in-

vestigated in section 6.

5.1 Gridpoint Model Results

Before discussing the performance results for the gridpoint

version, we should mention some implementation issues one

encounters during porting the 28,000 lines of Fortran 77

HIRLAM code to a MasPar system. A detailed overview

of all implementation issues can be found in [12].

The �rst issue concerns the distribution of the data. As

is stated in section 2 the dependencies, that could result

in communications between the processors, in the `physics'-

part of HIRLAM are almost exclusively in the vertical direc-

tion, in contrast to those in the `dynamics', which are mainly

in the horizontal directions. The number of dependencies

in the `physics'-part is much larger than in the `dynamics'-

part. Therefore, to minimize the number of communications

we chose for a data-distribution where the data are mapped

on the two-dimensional processor-array by projection of the

vertical dimension onto the horizontal plane.

A second issue concerns the inclusion of compiler direc-

tives in the original code. This is a result from the fact that

the three- and two-dimensional �elds are stored in two- and

one-dimensional arrays, resp., where the �rst dimension runs

over all horizontal gridpoints. This means that for a distri-

bution of the horizontal gridpoints over all processors, we

have to use compiler directives, since the default mapping

on a MasPar system maps the �rst dimension of a data-array

only in the x-direction of the processor-array, and the sec-

ond dimension in the y-direction. With the MAP-directive

the user can overrule this default mapping and specify the

desired distribution.

Indirect addressing is another topic. Since memory ad-

dressing is part of an instruction, indirect addressing is often

not possible on a SIMD architecture. However, on the Mas-

Par one speci�c FORALL-statement allows the use of indi-

rect addressing. As a result some routines in HIRLAM had

to be rewritten, since they depend on indirect addressing.

Finally, it turned out that the compiler generates redun-

dant Xnet-communications in several routines, especially in

the `physics'-routines. A work-around for this problem was

to make sure that array-dimensions and several loop-bounds

were known at compile time. From a research point of view

this is a serious restriction, but for a production code this

will improve the performance on all kind of platforms.

We will now present several timings achieved by porting

the HIRLAM code to di�erent con�gurations of the MasPar

architecture. We adopted as test runs the calculation of a 6-

hour forecast on a 64�64�16 grid and a 128�128�16 grid,

both at 55 km spacing. The semi-implicit gridpoint version

with this resolution requires 72 time steps of 5 minutes. The

small grid �ts perfectly on a 4K (64�64) PE array, while for

the large grid this holds for a 16K (128�128) PE array. On

PE array with less processors than the number of horizontal

gridpoints, the grid is splitted automatically in layers. If the

number of gridpoints is not a multiple of the number of PEs,

some PEs will be idle during part of the calculation. There-

fore the only sensible choice for the number of gridpoints in

one horizontal level is a multiple of the number of proces-

sors. From physical arguments one would choose the highest

feasible number of gridpoints for any chosen model domain,

because that leads to the highest possible resolution. Alter-

natively, if the modeller would choose to keep the resolution

�xed, he would surely extend the model domain as much as

possible, given the available computational power, so as to

reduce the inuence of the lateral boundary conditions.

In table 1 the elapsed times are presented to complete

the 6-hour forecast on di�erent MasPar con�gurations. It

also contains a more detailed view by showing the elapsed

time per time step, together with a break-down in the times

needed for the `dynamics' and the `physics'. From this table

several observations can be made. We want to mention the

following points:

{ Comparison of the corresponding timings for the 1K,

4K and 16K con�gurations per model show that the

calculations are scalable with respect both to the num-

ber of processors and to the number of gridpoints.

{ The gridpoint version runs roughly a factor two faster

on the MasPar MP-2 than on the MasPar MP-1, which

is clearly less than the theoretical factor �ve, see sec-

tion 4. A reason is the design decision to enhance the

processor power in the MP-2 only, and not to improve

the communication bandwidth with respect to the MP-

1. This can also be seen in table 1, where the ratio be-

tween the time for `dynamics' and the time for `physics'

di�ers signi�cantly on both systems. Remember, the

dynamics contains many nearest-neighbour communi-

cations, while for the physics communication is much

less important.

{ The Mop-rate for the most computationally intensive

routines in the `dynamics' measures about 150 Mops

for the 64�64�16 run on the MP-1 with 4K processors,

which is 50% of the maximum rate. For the `physics'

routines in this run it varies from 160 up to 260 Mops

4

Table 1: Elapsed execution time (in sec) using various MasPar con�gurations

for a 6-hour forecast with the gridpoint HIRLAM model on di�erent grid sizes.

Also the elapsed time (in millisec) for one time step with the break down into

the time spent in the `dynamics' and in the `physics'.

Model and Grid size Forecast 1 Time step (in ms)

processors (in s) Total Dynamics Physics

MP-1 1K 64 � 64 � 16 286 3877 1972 1905

MP-1 4K 64 � 64 � 16 79 1047 552 495

MP-1 4K 128� 128� 16 291 3934 2020 1914

MP-2 1K 64 � 64 � 16 135 1825 1052 773

MP-2 4K 64 � 64 � 16 39 500 291 209

MP-2 4K 128� 128� 16 137 1841 1070 771

MP-2 16K 128� 128� 16 39 506 302 204

(53%-86%). For the 128� 128� 16 grid size on a MP-

2 with 16K processors, we found for the most time

consuming `dynamics' routines a speed of 1200 up to

1750 Mops (19%{28%), and for the `physics' routines

1900 up to 3300 Mops (30%{52%).

5.2 Spectral Model Results

The following strategy was adopted for implementation of

the HIRLAM spectral model on the MasPar:

1. Available software packages for two-dimensional Fast

Fourier Transforms on the MasPar are based on an

organization of the input and output data according

to a two-dimensional cut-and-stack mapping of the

two-dimensional data arrays on the two-dimensional

processor grid. Therefore, this two-dimensional orga-

nization and mapping of the data was used in the dy-

namical part of the model.

2. The organization of the computations in spectral space

in the original spectral HIRLAMmodel was based on a

re-sorting of all spectral coe�cients to avoid unneces-

sary computations for spectral components that are to

be truncated. This organization of the spectral compu-

tations would not have been very e�cient on the Mas-

Par. Thus, the computations in spectral space were

re-organized { all computations are done for all spec-

tral components followed by an explicit truncation. In

order to optimize the spectral model, FFT-routines

based on scrambled spectral coe�cients were utilized.

This had the e�ect that a number of coe�cients �elds

needed to be calculated in advance and scrambled to

the same sorting order as the spectral coe�cients.

3. For the physics the same code as in the gridpoint model

was used.

With this strategy for implementation of the spectral

HIRLAM model on the MasPar, all inter-processor com-

munication is carried out within the FFT routines, while

the dynamics, physics and spectral space calculations are

strictly local.

It was possible to introduce the computer code changes

corresponding to this implementation strategy and also to

convert the dynamical part of the code by simple editing

commands. To summarize the experiences from the imple-

mentation of the HIRLAM spectral model on the MasPar

system, it should �rst be mentioned that the implementa-

tion did not cause any major problems. As mentioned above,

the major change was related to some of the data structures

that needed to be changed to obtain an optimal mapping

of the data on the processor grid. In other words, the data

parallel programming style had to be introduced throughout

the code. As in the gridpoint version, to run e�ciently on

the MasPar architecture actual array dimensions and loop

bounds had to be introduced in some critical subroutines.

Some coe�cient matrices used for vertical transforms had

to be forced to the PE memories by mapping directives in

order to minimize the sloshes of scalar values between the

FE and the DPU.

Two operational data sets from the application of the

HIRLAM system at the Swedish Meteorological and Hydro-

logical Institute were used for benchmarks on the MasPar

MP-2 systems. For most of the tests, data from a horizontal

area consisting of 110� 110 gridpoints (128� 128 in the ex-

tended area, see section 3) and with 16 vertical levels were

utilized. The horizontal grid distance in this data set is ap-

proximately 55 km. In order to have a proper test of the

smaller MasPar systems, a data set with 50 � 50 horizon-

tal gridpoints (64 � 64 in the extended area) was used in

addition.

For all the runs with a transform grid resolution of 55 km,

it was possible to use a time step of 5 minutes. So 72 time

steps were carried to obtain forecasts valid at +6 hour. In

order to test the MasPar also on a larger data set, the 110�

100�16 data set was interpolated horizontally to a data-set

with 221 � 221 � 16 (256 � 256 � 16 in the extended area)

transform gridpoints.

The total elapsed computing times for di�erent HIRLAM

spectral forecast model test runs on di�erent MasPar sizes

are contained in table 2. Again the elapsed execution time

for each time step, with the break down into the time spent

in the `dynamics' and the `physics', for the di�erent MasPar

runs are also given. The following of more general interest

could be noted about the results in table 2:

{ The speedup factor to run the same forecast on four

times as many processors seems to be slightly greater

than four. This means that the spectral formulation

also leads to scalable algorithms with respect to the

number of processors.

{ Running on a particular processor con�guration with

a 4 times larger horizontal area (e.g., on 221 � 221

extended to 256 � 256 horizontal points as compared

to 110� 100 extended to 128� 128 horizontal points)

increases the computing time with a factor somewhat

greater than four. This could be explained by the non-

linear increase in computing time for the FFTs as a

function of the number of horizontal points.

5

Table 2: Elapsed execution time (in sec) using various MasPar MP-2 con�g-

urations for a 6-hour forecast with the spectral HIRLAM model on di�erent

grid sizes. Also the elapsed time (in millisec) for one time step with the break

down into the time spent in the `dynamics' and in the `physics'.

Model and Grid size Forecast 1 Time step (in ms)

processors (in s) Total Dynamics Physics

MP-2 1K 50 � 50 � 16 179 2482 1569 913

MP-2 4K 50 � 50 � 16 43 599 396 203

MP-2 4K 110� 100� 16 201 2786 1832 954

MP-2 16K 110� 100� 16 49 676 458 218

MP-2 16K 221� 221� 16 232 3218 2209 1010

Table 3: Execution times (in sec) to calculate a 6-hour forecast on a MasPar MP-2

with 4K processors. See text for details.

Method Dynamics Physics Statistics Total

Semi-implicit 72 � 0.29 = 20.9 24 � 0.21 = 5.0 72 � 0.05 = 3.6 29.5

Spectral 72 � 0.40 = 28.8 24 � 0.20 = 4.8 72 � 0.05 = 3.6 37.2

Fully explicit 360 � 0.14 = 50.4 24 � 0.21 = 5.0 72 � 0.05 = 3.6 59.0

{ The spectral HIRLAM model without I/O ran on the

MP-2 with 16K processors with a speed of 600 Mops.

This is comparable to the performance of that model

on a multiprocessor CRAY C90 (450 Mops).

5.3 Performance Comparison

In this subsection we compare the performance of the grid-

point versions, both semi-implicit and fully explicit, and the

spectral versions of the HIRLAM model with respect to the

pure forecast calculations.

In table 1 it is shown that a time step within the semi-

implicit version takes 500 ms for a 64 � 64 � 16 grid on a

MasPar MP-2 with 4K processors. Of this time 291 ms is

spent in the `dynamics' and the remaining 209 ms in the

`physics'. For the spectral model with 50 � 50 � 16 points,

see table 2, the total time is 599 ms, divided in 396 ms for

the `dynamics' and 203 ms for the `physics'. The reduction

of the number of gridpoints from 64�64�16 in the gridpoint

formulation to 50 � 50 � 16 is compensated by the higher

intrinsic accuracy of the spectral method (see section 3).

For a real HIRLAM production forecast one has to con-

sider the following facts. In an operational implementation

for a 55 km resolution, the `dynamics' can be calculated

with time steps of 5 minutes because of numerical stability.

For the `physics' a larger time step can be chosen, namely

15 minutes. Furthermore, to obtain some information about

changes in pressure, wind-speed, etc., every 5 minutes some

statistics will be calculated.

Taken into account these facts we can calculate the total

averaged costs for the 6-hour forecast on a MasPar MP-

2 system with 4K processors. The time to compute the

statistics has been measured to be 50 ms on the MP-2 with

4K processors.

To get an impression of the e�ciency of a fully explicit

method, which contains nearest-neighbour communications

only, we measured the time for the `dynamics' without the

semi-implicit correction. A time of 142 ms was found. How-

ever, due to the stability of this numerical method a time

step of one minute had to be chosen for the `dynamics'.

So 360 time steps for a 6-hour forecast. For the physics

and statistics nothing changes compared to the semi-implicit

method.

Table 3 shows the resulting execution times to produce

a 6-hour forecast with the three numerical methods. From

these execution times we can �rst conclude that despite the

fact that although the semi-implicit gridpoint and spectral

formulations depend on global communications and the fully

explicit gridpoint formulation needs only nearest-neighbour

communications, the �rst two methods are favourable. This

is mainly due to the fact that these methods allow a �ve

times larger time step. Comparing execution time of the

semi-implicit method with the one of the spectral version

shows that the semi-implicit is the fastest way to calculate

the 6-hour forecast. However, the di�erence is not very large

contrary to the fact that the number of global communica-

tions is considerably larger in the spectral formulation. One

reason for this is the highly optimized FFT package that has

been used for spectral model. This also shows an advantage

of the spectral method with respect to parallelization as-

pects. As explained all inter-processor communication in

the spectral model occur within the FFT package. So if one

wants to reduce the communication overhead, one could con-

centrate on this package, while in a gridpoint model inter-

processor communication is spread throughout large parts

of the code (see also [2, 4]).

In the comparison above, the positive e�ect of the im-

proved accuracy of the spectral model was assumed to be

equal to the negative e�ect of the need for an extension

zone.

6 Production Runs

Until now we have only considered the performance of

the routines executing the computations for a forecast. How-

ever, a full production run does not consist of calculations

only. In a HIRLAM production run we need �rst of all ini-

tialization �elds for the various physical variables. These

values are available as �les on disk, and are read during

the input phase at the start of the run. Secondly, since we

deal with a limited area model, there will be an input phase

for new boundary values every 6 hours. Furthermore, every

hour the values of several �elds are written to disk to obtain

information about the changes of the variables. These issues

can be considered as the I/O phase, which exists in every

computer program.

6

Table 4: Total elapsed times (in sec) to complete a full production with the semi-

implicit gridpoint HIRLAM model on di�erent MasPar con�gurations. Also the

di�erentiation into the pre/post-processing time and into the actual forecast time

are shown. The pre/post-processing time is splitted into time for the front-end to

back-end communications and visa versa (denote as copy), and the time spent in

front-end calculations and I/O (denoted as front-end).

Model and Grid size Total Pre/post-processing Forecast

processors time Total Copy Front-end

MP-1 1K 64 � 64� 16 322 105 42 63 217

MP-1 4K 64 � 64� 16 150 84 24 60 66

MP-1 4K 128� 128� 16 557 335 133 202 222

MP-2 1K 64 � 64� 16 252 145 86 59 106

MP-2 4K 64 � 64� 16 124 91 33 58 33

MP-2 4K 128� 128� 16 554 445 249 196 109

MP-2 16K 128� 128� 16 326 292 100 192 34

However, all data on disk is stored in a standardized,

machine-independent format. As a result this data needs to

be transformed to/from this standard. This is also a part

of the full production run. Besides there are several other

transformations from the raw calculated variables into other

information, that is useful to produce a weather forecast.

To investigate the inuence of these issues for a massively

parallel system we executed several full 6-hour production

runs with the semi-implicit gridpoint HIRLAM model on

di�erent MasPar con�gurations. The resulting elapsed times

are presented in table 4. To get the timings for an actual

production run, which simulates 36 or 48 hours, one should

multiply the numbers in this table by 6 or 8, respectively.

In our implementation all the `extra' issues within a full

production run mentioned in this section are executed on

the front-end of the MasPar system. We consider them as

the pre/post-processing phases of the production run. As a

result of our implementation the data has to be copied to

and from the DPU (back-end) to the front-end. Also these

copies are assumed to be part of the pre/post-processing

phases.

From table 4 one can draw the following conclusions:

{ The pre/post-processing time dominates the total exe-

cution time in several runs or counts for a considerable

part to it.

{ The `copy'-timings do not scale with the amount of

data. This is mainly due to the fact that the data is

copied automatically several times if one does not use

all available processors of the MasPar system. This is

embedded in the MasPar runtime system to provide

real nearest-neighbour communications even if not all

PEs are used.

{ The `front-end' timings for each grid size are nearly

equal on the various con�gurations.

Based on the achieved results it seems that parallel com-

puting is not useful for numerical weather forecasting. How-

ever, it is possible to improve the observed `overhead':

1. Replace the front-end by a faster machine with better

I/O capacities. This will a�ect the fore-end calcula-

tions.

2. Execute the pre/post-processing on the DPU. A large

part of these computations can be executed in parallel.

3. Dump the calculated values of the desired variables di-

rectly from the back-end on disk in a raw form. Mas-

Par systems provide several hard- and software im-

provements to read or write data directly by the DPU

from or to disk in a very fast way. Subsequently, a

second process could perform all the pre- and post-

processing concurrently with the forecast calculations.

None of these options have been implemented yet. It is

clear from the achieved timings that the pre/post-processing,

in particular getting data in or out of the parallel system, is

very important.

7 Cost/Performance for the HIRLAM Forecast Model

From our �ndings we now can derive rough estimates of

the cost-e�ciency of the MasPar system compared to other

hardware platforms. Before doing so, however, we stress

the fact that to achieve the timings above, much human

investment was needed. The human costs are not reected

in the estimates below.

In table 5 we present the total elapsed time to complete

a 6-hour forecast on a grid of 128�128�16 point using dif-

ferent computing platforms. In this table all calculations are

performed in 32-bits precision, unless stated otherwise. Con-

cerning the comparison of 32 bit and 64 bit calculations, we

have the following remarks: 1) Up to now we have not seen

that 32 bits is insu�cient for the HIRLAM model, perhaps

with the exception of initialization. This may be di�erent

at high resolutions. 2) If 32 bits is su�cient then the 32-bits

MasPar should be compared to a 32-bits Convex or a 32-bits

Cray. The last is not available, so the Cray is too expensive

for its purpose. 3) On a Convex 210 64-bits arithmetic is as

expensive as 32-bits. As a result the numbers in table 5 can

be compared. The Cray and Convex are simply too accurate

for the investigated versions of HIRLAM, which is paid by a

relatively bad cost/bene�t ratio. This is a hardware feature,

just like the MasPar has to pay for its hardware concept by

extra communications.

Concerning this cost/performance comparison it is clear

that a parallel system like the MasPar is competitive with

vector-architectures for this application. However, the sys-

tem is defeated by a state-of-the-art workstation like a DEC-

alpha. But if an improvement of the pre/post-processing

phases leads to a substantial reduction of elapsed time, the

parallel MasPar systems can also become price-competitive

in comparison to a DEC-alpha workstation.

7

Table 5: Price/performance comparison for di�erent systems. Per-

formance is measured as the total elapsed time (in sec) to complete

a 6-hour production run for a 128 � 128 � 16 grid with the semi-

implicit version of the HIRLAM forecast model.

System List price ($) 6-hour production run

MasPar MP-1 4K � 200K 557

a

MasPar MP-2 4K � 550K 554

b

Dec Alpha � 60K 1000

Convex C210 (64-bits) � 100K

c

2300

Cray Y-MP (64-bits)

d

� 2.5M

e

140

a

forecast only: 222 s

b

forecast only: 109 s

c

not listed anymore

d

1 processor

e

per processor

Finally, it should be noticed that for operational weather

forecasting the performance is much more important than

the costs: producing a forecast for a few hours ago is not

useful, even if it is relatively cheap.

8 Conclusions

To conclude a summary of the main results of this investi-

gation:

� The semi-implicit and spectral version of the HIRLAM

model are preferable to a fully explicit gridpoint ver-

sion, despite the global communications needed versus

the nearest-neighbour communications.

� The semi-implicit gridpoint version results in a higher

performance than the spectral version.

� Copying data in and out of a parallel system is very

time-consuming. However, there are several hard- and

software options to improve this issue.

� Concerning cost/performance a massively parallel sys-

tem, like MasPar, can compete with vector architec-

tures. However, improvements in sequential processing

should not be lost track of.

� The algorithms for numerical weather forecasting used

in this application can be executed very e�cient and

give evidence of a good scalability both to the number

of data-points as to the number of processors.

� The e�ort to port an application like HIRLAM to a

parallel architecture is quite considerable. However,

this was also true for vector platforms when they en-

tered the market.

Acknowledgments

Finally, we would thank Hans Munthe-Kaas (Bergen Univer-

sity, Norway) for the use of his library with Super-Parallel

FFTs, the Para//ab at the Institute of Informatics (Bergen

University) for giving access to their DECmpp 12000/Sx

Model 200 (MasPar MP-2216), and Nigel Jagger (MasPar

Computer Corporation, Reading, UK) for his support and

the access to their MasPar MP-1104.

References

[1] A. Arakawa and V.R. Lamb, Computational Design of

the Basic Dynamical Processes of the UCLA General

Circulation Model, Report, Dept. of Meteorology, Uni-

versity of California, Los Angeles, 1976.

[2] S.R.M. Barros and T. Kauranne, On the Paralleliza-

tion of Global Spectral Weather Models, submitted to

Parallel Computing, 1993.

[3] E. Eliassen, B. Machenhauer, and E. Rasmussen, On a

Numerical Method for Integration of the Hydrodynami-

cal Equations with a Spectral Representation of the Hor-

izontal Fields, Report No. 2, Institut for Teoretisk Me-

teorologi, University of Copenhagen, 1970.

[4] U. G�artel, W. Joppich, and A. Sch�uller, Paralleliz-

ing the ECMWF's Weather Forecast Program: The 2D

Case, Technical Report 740, GMD, Sankt Augustin,

1993.

[5] N. Gustafsson, The HIRLAM Model, in proceedings of

Seminar on Numerical Methods in Atmospheric Mod-

els, ECMWF, Reading, UK, September 1991.

[6] J.E. Haugen and B. Machenhauer, A Spectral Limited-

Area Model Formulation with Time-dependent Bound-

ary Conditions Applied to the Shallow-Water Equa-

tions, Mon. Wea. Rev. 121 (1993) 2631{2636.

[7] P. K�allberg (editor), Documentation Manual of the

Hirlam Level 1 Analysis-Forecast System, June 1990.

[8] MasPar, MasPar MP-1 Hardware Manuals, July 1992.

[9] H. Munthe-Kaas, Super Parallel FFTs, SIAM J. Sci.

Stat. Comput. 14 (1993) 349{367.

[10] S.A. Orzag, Transform method for calculation of vector-

coupled sums. Application to the spectral form of the

vorticity equation, J. Atmos. Sci. 27 (1970) 890{895.

[11] D. Parkinson, Super Parallel Algorithms, in Supercom-

puting, SATO ASI series F, Vol. 62, Springer, 1989.

[12] L. Wolters and G. Cats, A Parallel Implementation of

the HIRLAM Model, in G.-R. Ho�mann and T. Kau-

ranne (eds.), Parallel Supercomputing in Atmospheric

Science, proceedings of the Fifth ECMWF Workshop

on the Use of Parallel Processors in Meteorology, World

Scienti�c Publ., 1993, 486{499.

8

