
On Improving Data Locality in Sparse Matrix Computations

Peter M.W. Knijnenburg Harry A.G. Wijsho�

High Performance Computing Division, Dept. of Computer Science,

Leiden University,

P.O. Box 9512, 2300 RA Leiden, the Netherlands

peterk@cs.leidenuniv.nl and harryw@cs.leidenuniv.nl

Abstract

Sparse matrix computations and irregular type computations show poor data lo-

cality behavior. Recently compiler optimizations techniques have been proposed to

improve the data locality for regular type loop structures. Sparse matrix computations

do not fall into this categorie of computations and the issue of compiler optimizations

for sparse computations is merely understood. In this paper we describe how compiler

optimizations based on pattern matching techniques can be used to improve the data

locality behavior for sparse computations.

1 Introduction

The e�ective use of caches is becoming more and more crucial for obtaining e�cient

implementations of large scale computations on parallel computing platforms. Fortunately,

many applications show good cache behavior on sequential architectures [HP90]. However,

in the context of parallel computing cache coherency can deteriorate this behavior. This

is due to the fact that data residing in caches is invalidated by write actions of other

processors. Also the distribution of the workload over multiple processor might decrease

the possible data reuse per processor. All this requires the role of caches for large scale

application to be re-examined.

A substantial part of large scale applications is governed by sparse matrix computations.

These sparse matrix computations exhibit next to poor data locality [SW90] also chal-

1

lenges for compiler optimizations in general. This is caused by the fact that most of the

sparse codes are obscured due to the presence of indirect addressing and the dependence

on speci�c problem instances. Recently runtime solutions, i.e. the CHAOS/PARTI li-

brary, have been proposed to facilitate parallelization of sparse matrix computations and

in particular mesh type applications [vHKK

+

92, SBW91]. This runtime approach seems

to be very promising to handle the parallelization and data distribution problem of sparse

computations. Another approach is formed by requiring that sparse computations are

de�ned on the dense envelop of the sparse data structures followed by an automatic con-

version to optimized sparse codes [BW93a, BW93b]. In both approaches the exploitation

of data locality has not been addressed yet.

For regular type of loop nests work based on the window concept [BEJW92, EJWB93,

GJG87] can be e�ectively used to obtain automatic compiler optimizations increasing

the exploitation of data locality. This technique is very promising whenever an accurate

estimate of the window size can be obtained. Due to the fact that sparse computations

depend on speci�c problem instances this approach might breakdown for these types of

computations, though.

In this paper we describe how compiler optimizations together with at runtime evaluation

of speci�c library routines can be used to improve the data locality behavior of sparse

computations. These techniques rely on pattern matching as a basis to e�ciently charac-

terize the sparsity structure of the sparse systems. In order to facilitate the description

of the techniques proposed we had to adopt certain constraints on the presentation which

are given in the next section. Then some simple methods for improving data locality are

described. In section 4 we discuss the need for pattern matching in order to character-

ize possible data locality improvement. This is followed by a description how compiler

support can be used together with runtime evaluation to realize better cache behavior.

In section 6 speci�c techniques are described which rely on pattern matching and �nally

conclusions are given.

2

2 Framework

In this paper we assume that a sparse matrix A is stored rowwise. This means that there

exists two arrays LO and HI of length N , containing pointers in an array IND in which the

indices of entries are stored. The length of this array is the number of non-zero entries in

the matrix, NZ. The entries for row i are to be found in IND(LO(i)) through IND(HI(i)).

For each i, the sequence of indices in row i is denoted by �

i

. The entries of A are stored

in an array A of length NZ. In this paper we assume that each sequence �

i

is ordered. If

the �

i

's are not ordered, we can order them locally. Since, on average, every sequence �

is small, this can be done e�ciently.

The program fragment we use to illustrate the techniques is the simple code for matrix-

vector multiplication y = Ax, given below. The code consists of a double loop, the

outermost of which ranges over rows, and the innermost over the entries in a row.

DO i = 1,N

DO j = LO(i),HI(i)

y(i) = y(i) + A(j) * x(IND(j))

ENDDO

ENDDO

If a compiler wants to use the techniques described in this paper, it has to know that the

collection of arrays LO, HI, IND and A together constitute a representation of the sparse

matrix A. Hence we assume that the compiler incorporates a directive to communicate

this fact to it.

Next, the transformations we consider consist of traversing the iteration space in a di�erent

order than in the original code, for both loops. Hence we assume that the loops to which

the transformations have to be employed do not contain loop carried dependences, except

possibly a dependence (like the output dependence on y in the fragment above) that can

be ignored or broken by other techniques.

In the fragment for matrix-vector multiplication, the entire matrixA is accessed. Hence the

fragment serves as a good test case for studying the potential of the proposed techniques.

That is, if a technique does not perform well on this code, then it is unlikely that it will

perform good on other codes. The transformations we propose can be extended to other

3

codes, like sparse triangular solve, in a straightforward way.

3 Some simple techniques

Observe that the code for matrix-vector multiplication already exhibits strong data locality

on A and y. If an element A(n) is used in one iteration of the innermost loop, then the

element A(n + 1) is used in the next (spatial locality). Also, during the execution of the

inner loop, the element y(i) is referenced HI(i) � LO(i) +1 times. The element y(i+1) is

referenced in the next iteration of the outer loop (temporal locality). The only place where

the code does not exhibit locality is on references to the vector x. In this section we give

some techniques for improving the locality on x. We compare the hit ratios for the original

loop, and the transformed loops. The techniques we discuss are two obvious strategies for

improving the locality on x. First we strip the matrix into sets of consecutive columns;

then we block the matrix. These techniques for improving data locality have been studied

intensively for the dense case [GJM86].

First we give an approximation of the hit ratio of matrix-vector multiplication. We assume

that the dimension of A is N , and that it is randomly �lled with entries on average in

each row (or column). Hence A contains N entries in total. The length of a cache line is

c. We furthermore assume that every reference to x generates a cache miss. In order to

facilitate the analysis of the hit ratio we have chosen in this paper to ignore misses caused

by cache conicts. For analytic models taking into account also these kind of conict

the reader is referred to [TFJ93]. Under these assumptions we obtain for matrix-vector

multiplication

� N=c misses and 2N �N=c hits on y;

� N=c misses and N � N=c hits on A.

From this it easily follows that the hit ratio HR

0

is given by

HR

0

=

3

4

�

1

4

1

c

�

1

4c

(1)

4

3.1 Stripping columns

In this section we consider the possibility to access nc columns of A at the same time,

where c is the length of a cache line and n is some constant. We divide A up in dN=nce

collections of consecutive columns, or strips. Each strip contains nc entries.

nc nc

: : :

�

�

�

�

We now present the code fragment into which the matrix-vector multiplication can be

transformed. We use an auxiliary array MARK to keep track of the �rst position in IND

where the current collection of columns may start. We initialize MARK(i) to LO(i), for

each i. The code for matrix-vector multiplication can be transformed into the following

fragment. In this fragment, NS denotes the number of strips NS = N=nc.

DO k = 1,NS

DO i = 1,N

DO j = MARK(i),HI(i)

IF (IND(j) > k*c) THEN

MARK(i) = j

GOTO 1

ELSE

y(i) = y(i) + A(j) * x(IND(j))

ENDIF

ENDDO

MARK(i) = HI(i)+1

1 CONTINUE

ENDDO

ENDDO

We can compute the hit ratio for the transformed loop as follows. For each strip, we have

� n misses and nc� n hits on x;

� N=c misses and 2nc�N=c hits on y;

5

� n misses and nc� n hits on A.

From this it follows that the hit ratio HR

1

is given by

HR

1

= 1�

1

4

1

c

(1 +)�

1

4c

N

nc

(2)

For comparing the expression for HR

0

in (1) with the above expression for HR

1

, we

compute HR

1

�HR

0

.

HR

1

�HR

0

=

1

4

�

1

4

1

c

�

3

4

+

�

�

1

4c

�

N

nc

� 1

�

Instantiating this expression with = 10 and c = 8, we see that the hit ratio improves

(HR

1

> HR

0

) if n is roughly larger than N=300.

3.2 Blocking

In this section we discuss the idea of accessing A in a block-wise fashion. We consider

blocks of size nc� nc, where c is the length of a cache line and n is some constant.

: : :

.

.

.

�

�

�

�

The code into which we may transform the matrix-vector multiplication fragment is a

straightforward extension of the code in the previous subsection, and is therefore omitted.

We present an analysis of the hit ratio in this case. Under the same assumptions as in the

previous subsection, we have that each block contains

�

nc

N

�

2

N entries. We have (N=nc)

2

blocks. Then for each block there are

� n misses and

�

nc

N

�

2

N � n hits on x;

� n misses and 2

�

nc

N

�

2

N � n hits on y;

�

�

nc

N

�

2

1

c

N misses and

�

nc

N

�

2

N

�

1�

1

c

�

hits on A.

6

The hit ration HR

2

now follows

HR

2

= 1�

1

2

1

c

N

nc

�

1

4c

(3)

Computing HR

2

�HR

0

we obtain

HR

2

�HR

0

=

1

4

�

1

4

1

c

�

2

N

nc

� 1

�

With = 10 and c = 8, this expression is larger than zero, if n is roughly larger than

N=100.

4 Pattern matching

In this section we propose a di�erent technique for improving data locality based on

pattern matching. This technique is complementary to the techniques from the previous

section. That is, both techniques can be used at the same time resulting in better locality

exploitation than before. We want to analyze the structure of a sparse matrix, and extract

information that allows us to improve data locality. Our approach can be summarized as

follows. Sparse matrices exhibit in many cases \dense" regions, blocks or lines. It seems

reasonable to try and exploit the structure of these regions. Since these regions are dense

and usually not too large, we expect to achieve high temporal and spatial locality. This

observation suggests that it may be pro�table to isolate these regions and process them

separately. Hence we search for patterns in the matrix, having certain favorable properties

like high density. Depending on the code at hand, there may be other properties that are

interesting as well. The crucial observation to make now is that these patterns are mirrored

in the compact representation of the matrix, in particular, in the array IND used to index

the rows of A.

Consider the following example. Suppose our matrixA has a (large) number of submatrices

of the form

� � � �

� �

� � �

� �

Assume that the left upper corner is located at position hi; ji and that the pattern is

permuted to the front of each row. Then we may unroll the loop accessing this pattern as

follows. Note that we have j = IND(i).

7

ii = LO(i)

y(i) = y(i) + A(ii)*x(j) + A(ii+1)*x(j+1) + A(ii+2)*x(j+2) + A(ii+3)*x(j+3)

ii = LO(i+1)

y(i+1) = y(i+1) + A(ii)*x(j) + A(ii+1)*x(j+2)

ii = LO(i+2)

y(i+2) = y(i+2) + A(ii)*x(j) + A(ii+1)*x(j+1) + A(ii+2)*x(j+2)

ii = LO(i+3)

y(i+3) = y(i+3) + A(ii)*x(j) + A(ii+11)*x(j+3)

The execution of this fragment is more e�cient than the executing the corresponding

statements in the original loop. First, we have removed (part of) the loop, and thus need

not update loop counters and execute branches. More importantly, we achieve high locality

by processing this pattern in isolation. Assuming that the architecture on which we want

to run the program has a cache line size of 4, we obtain one cache miss for the references

to x, one cache miss for the references to y, and four cache misses for the references to A.

The total number of references is 4 � 11 = 44. The total number of hits is 44 � 6 = 38.

Hence the hit ratio is 19=22 which is optimal for this case. Moreover, if we extract the

pattern from a large matrix, and process the rest of the matrix as it stands, we expect

not to destroy the locality that is implicitly present in A too much. Furthermore, we may

use other techniques, like stripping or blocking as described in the previous section, to

improve locality in the remainder of A. This is completely independent of the processing

of extracted regions.

The point is that we may recognize a pattern as above using the indirection array IND.

The pattern is present at position hi; ji if �

i

contains the indices j; j+ 1; j+ 2; j+ 3; �

i+1

contains j; j + 2, etc. We can sweep once through A and collect all pairs hi; ji such that

this pattern is present at this position.

An easy way of keeping track of the entries in A that have been handled as part of a

pattern is the following. We permute the pattern to the front of the row (or immediately

to the right of patterns already permuted to the front). Likewise for the actual entries

of the matrix in A. We then know where to �nd the pattern, and after consumption of

the pattern we may set LO(i) to LO(i) plus the length of the pattern in row i. Thus we

maintain the invariant that j values between LO(i) and HI(i) still have to be accessed.

Recall that we assume that for each i, the sequence �

i

, which is the sequence of indices

8

IND(LO(i)) through IND(HI(i)), is ordered. Given two ordered sequences � and �,

we can decide whether they are equal, whether they contain an identical subsequence, or

what their intersection is, in time O(j�j+ j�j). In most cases, the number of entries in a

row in a sparse matrix is a small constant on average. Hence, on average, we can compare

two patterns in constant time.

5 Compiler support

As we mentioned in a previous section, the compiler should be communicated the data

structures that represent a sparse matrix. Since it is very expensive to go and search for

arbitrary patterns, the compiler should be told the kind of pattern that the programmer

expects to encounter in the sparse matrices on which the program is intended to run.

Although it is possible to de�ne a language for specifying patterns, together with special

code for such a pattern, and let the compiler generate code for recognizing these patterns,

we do not pursue this issue further here. At present we assume that the compiler has

access to library calls which can recognize blocks and diagonal lines.

A library call to a function for recognizing a certain kind of pattern delivers a list of

descriptions of every such pattern present in the matrix. A description will consists of a

starting position and a speci�cation of its size. For instance, a block may be described by

the position of its left upper corner hi; ji, its length k, and its depth `.

Since the function that recognizes a pattern will permute the pattern to the front or the

back of the row, it is important that the patterns will be accessed in the same order as in

which they have been detected. So the list of patterns will be maintained as a queue.

For an easy example, suppose we have a sparse matrix A represented by the arrays LO,

HI, IND and A, and suppose that the patterns present in A are blocks. Then we have the

original code

C$SPARSE LO,HI,IND,A

C$PATTERN BLOCK

DO i = 1,N

DO j = LO(i),HI(i)

9

......

ENDDO

ENDDO

The compiler transforms this into

CALL find_blocks(LO,HI,IND,A,BL)

WHILE BL not empty DO

CALL get_block(BL,i,j,k,l)

..... ! consume block using the same code as the original loop

! but also adapt LO(i) or HI(i) to consume a pattern

ENDDO

C blocks have been processed, LO and HI have been adapted

DO i = 1,N

DO j = LO(i),HI(i)

.....

ENDDO

ENDDO

At runtime, this code will be executed and the structure of the sparse matrix given by a

speci�c problem instance will be characterized.

6 Speci�c techniques

In this section we discuss some examples of pattern matching in a sparse matrix and the

transformations that can be applied.

6.1 A �xed pattern

Given some pattern �, we can extract all rows i such that �

i

= �. We denote this collection

by ALPHA. In this case, the transformed loop takes on a very special appearance. First we

execute the rows that are equal to �, and then the rows that are not equal to �. Code

for doing this is straightforward an therefore omitted. Another possibility we get in this

case, is that we may permute the loops, as follows. Let n be the length of �.

10

DO j = 1,n

DO i in ALPHA

k = LO(i) + j - 1

y(i) = y(i) + A(k) * x(IND(k))

ENDDO

ENDDO

An analogous transformation may be employed if we collect rows which contain identical

subsequences. In order to keep track of the position of the subsequence we permute this

subsequence to the front of the row. The array A containing the entries of the matrix is

adapted analogously.

6.2 Blocks

We now describe how one can exploit and detect some patterns automatically. The �rst

pattern we consider is a block of entries in A. In this case, �

i

contains n; n+1; : : : ; n+m;

�

i+1

contains n; n+1; : : : ; n+m, etc. A block can be described by giving the coordinates

of the left upper corner hi; ji, its length k and its depth `. Note that, if we have permuted

the block to the front of the row, the j coordinate is not necessary. Given such a block,

we may execute the following code fragment for it.

DO ii = i,i+l

DO jj = 1,k

y(i) = y(i) + A(LO(ii)+jj) * x(IND(LO(ii)+jj))

ENDDO

LO(ii) = LO(ii) + k ! front is done

ENDDO

We now discuss how to recognize blocks in a sparse matrix. The algorithm we propose has

O(NZ) running time, where NZ is the number of non-zeroes in the matrix. We sweep

through the matrix row by row. We use a queue for maintaining a worklist containing

triples hj; k; `i, where j is the starting coordinate of the block in the previous row, k is its

length, and ` is the depth seen so far.

1. Initialize the queue to empty.

2. For each row i do

11

� If i contains a consecutive sequence n; : : : ; n+m, and the worklist has an entry

hn;m; `i, remove this entry and enqueue hn;m; `+ 1i. If the worklist does not

contain such an entry, enqueue hn;m; 1i.

� Permute the sequence to the front of the row.

� If the worklist contains an entry hj; k; `i such that this row does not have a

consecutive sequence starting at position n, then the preceding row contained

the bottom of the block. Store the block hi� `� 1; j; k; `i in a set of recognized

blocks.

3. For each stored block, execute a code fragment as given above for it.

Note that we may adapt the preceding algorithm in order to store only those blocks that

have length and/or depth larger than some prede�ned constant. Too many very small

blocks may cause unacceptable overhead.

We may analyze the performance of this technique as follows. Suppose we have recognized

b blocks, with average length k and depth `. It is easy to see that each such blocks has

4k`�

k

c

�

`

c

�

k`

c

hits. The remainder of the matrix contains N � bk` entries. Assuming that there are

only misses on x, we can compute the total number of hits in this remainder as follows.

� N=c misses and 2(N � kb`)�N=c hits on y;

� (N � kb`)=c misses and (N � kb`)� (N � kb`)=c hits on A.

From this it follows that the hit ratio HR

3

is given by

HR

3

=

3

4

+

bk`

4N

�

1

4N

�

kb

c

+

`b

c

�

�

1

4

1

c

�

1

4c

(4)

We obtain

HR

3

�HR

0

=

b

4N

�

k`�

k

c

�

`

c

�

which is always larger than zero. We also see that if the number of blocks b, or the size of

these blocks k` increases, then the improvement increases also.

12

A variation on the above algorithm consists of recognizing not only dense blocks, but also

blocks with \holes" in them. In this case, a sequence n

1

; n

2

; : : : ; n

m

is also considered

consecutive if, for all j, n

j+1

� n

j

� a for some small constant a. In practice, a will be

typically 2 or 3. In this case, however, the length of a sequence is no longer constant. We

can mark the end of such a sequence by replacing IND(j) by IND(j) + N. The code frag-

ment we have to execute now is analogous to the previous code fragment and is therefore

omitted.

6.3 Diagonal lines

Next we discuss how to deal with diagonal lines in a matrix. If a matrix contains a lot

of diagonals, we may want to access these line by line. We can view this as skewing the

access to the matrix. In this section we assume, for technical convenience, that the matrix

only contains diagonal lines. Below we indicate how the general case can be handled.

The �rst problem we have to solve is in which order to access the lines. Consider the

following matrix.

@

@

@

@

@

@

@

@

@

@

4

@

@

@

@

5

@

@

@

@

6

@

@

@

7

@

@

@

@

3

@

@

@

2

@

@

@

@

1
�

�

�

�

We store the coordinates of the left (top) end point of the diagonal hi; ji and its length

`. If we access the lines in increasing numbering, that is, from the upper-right to the

lower-left corner, then we access every row from right to left. We order the descriptions of

the diagonals in this way. That is, for any two diagonals d

1

= hi; j; `i and d

2

= hi

0

; j

0

; `

0

i,

d

1

is accessed before d

2

i� either j > j

0

and i < i

0

+ `

0

, or i + ` < i

0

. This scheme of

accessing diagonals enables us to �nd for each row the relevant j coordinate without extra

computation or indirection.

Given a diagonal hi; j; `i, we may execute the following code fragment for it. Note that we

only need to use one loop.

13

DO ii = i,i+l

y(i) = y(i) + A(HI(i)) * x(IND(HI(i))

HI(i) = HI(i) - 1

ENDDO

The last statement in the loop removes the current j coordinate from the list of yet to

access j coordinates. So an invariant of this techniques is that for each row i, the j

coordinates in IND from LO(i) to HI(i) still have to be accessed.

We can recognize diagonal lines in a matrix in much the same way as we did for blocks.

We maintain a working list of partially recognized lines. An entry in this list is given by

a pair hj; `i, where j is the j coordinate of a point on a line in the previous row, and ` is

the length of the line seen so far. Then the line extends to the current row, if this row has

an entry with coordinate j+ 1. So we enqueue hj+1; `+ 1i if this is the case. Otherwise,

we have reached the end of a line, and store hi� `� 1; j� `; `i as a description of the line.

In case the matrix contains diagonal lines, and moreover other entries not on these lines,

we can still use the above transformation, if we permute the j coordinates lying on a line

to the right-hand side of the row. It is of course also possible to search for lines with a

di�erent slope than diagonal lines.

When we analyze the performance of this technique, we see that every reference to A will

be a cache miss. The references to x, on the other hand, exhibit good locality. We can

show that the hit ratio on x is �

�

1�

1

c

�

, where � is the fraction of entries located on

diagonal lines. However, if this fraction � is large, we may decide to reorder the matrix

and store it diagonalwise. If we do this, we can compute the hit ratio as follows. Suppose

we have detected ` lines, with average length k. We obtain 4k`� 3

k`

c

hits in these lines.

Analogously to the deduction in the previous subsection we can compute the hit ratio

HR

4

as

HR

4

=

3

4

+

k`

4N

�

k`

2Nc

�

1

4

1

c

�

1

4c

(5)

From this it follows that HR

4

�HR

0

is given by

HR

4

�HR

0

=

k`

4N

�

1�

2

c

�

This means that the the hit ratio always increases, and if the number of lines and average

increase, then so does the hit ratio.

14

7 Conclusions

In this paper we gave an initial description of how the di�cult problem of compiler opti-

mizations for the exploitation of data locality for sparse computation can be handled by

techniques based on pattern matching. The simpli�ed analytic analysis used in the paper

seems to indicate that there is a big potential for these techniques to be useful. In order

to come to more conclusive evidence for this, the techniques will have to be implemented

and cache modeling should be used to prove the exact e�ectiveness. We plan to address

this in more detail in forth-coming work.

References

[BEJW92] F. Bodin, C. Eisenbeis, W. Jalby, and D. Windheiser. A quantitative algo-

rithm for data locality optimazation. Springer Verlag, Berlin, 1992.

[BW93a] A.J.C. Bik and H.A.G. Wijsho�. Compilation techniques for sparse matrix

computations. In Proc. Int. Conference on Supercomputing, pages 416{424,

1993.

[BW93b] A.J.C. Bik and H.A.G. Wijsho�. On automatic data structure selection and

code generation for sparse computations. In Proc. 6th Int. Workshop on Lan-

guages and Compilers for Parallel Computing, volume 768 of Lecture Notes

in Computer Science, pages 57{75. Springer Verlag, Berlin, 1993.

[EJWB93] C. Eisenbeis, W. Jalby, D. Windheider, and F. Bodin. A strategy for array

management in local memory. Special Issue od Matj. Programming B on

Applications of Discrete Optimization, 1993.

[GJG87] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local mem-

ory management by global program transformation. In Proc. International

Conference on Supercomputing. Springer Verlag, Berlin, 1987.

[GJM86] K. Gallivan, W. Jalby, and U. Meier. The use of BLAS3 in linear algebra on

a parallel processor with hierarchical memeory. SIAM J. on Scienti�c and

Statistical Computing, 8(6), 1986.

15

[HP90] J.L. Hennessy and D.A. Patterson. Computer Architecture, A Quantitative

Approach. Morgan Kaufmann Publishers, San Mateo, 1990.

[SBW91] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation.

Concurrency: Practice and Experience, 3(6):573{592, 1991.

[SW90] Y. Saad and H.A.G. Wijsho�. Spark: A benchmark package for sparse com-

putations. In Proc. on International Supercomputing, pages 239{253, 1990.

[TFJ93] O. Temam, C. Fricker, and W. Jalby. Impact of cache interference on nu-

merical codes cache behavior: Predicting and estimating, 1993. To appear in

Proceedings of the IEEE.

[vHKK

+

92] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler

analysis for irregular problems in Fortran D. In Proc. 5th Workshop on

Languages and Compilers for Parallel Computing, New Haven, CT, 1992.

16

