
Reshaping Access Patterns for Generating Sparse Codes

�

Aart J.C. Bik, Peter M.W. Knijnenburg and Harry A.G. Wijsho�

High Performance Computing Division

Department of Computer Science

Leiden University

P.O. Box 9512, 2300 RA Leiden, the Netherlands

ajcbik@cs.leidenuniv.nl

Abstract

In a new approach to the development of sparse

codes, the programmer de�nes a particular algorithm

on dense matrices which are actually sparse. The

sparsity of the matrices as indicated by the program-

mer is only dealt with at compile-time. The compiler

selects appropriate compact data structure and auto-

matically converts the algorithm into code that takes

advantage of the sparsity of the matrices. In order to

achieve e�cient sparse codes, the compiler must be

able to reshape some access patterns before a data

structure is selected. In this paper, we discuss a re-

shaping method that is based on unimodular trans-

formations.

Index Terms: Program Transformations, Restruc-

turing Compilers, Sparse Matrices.

1 Introduction

Because of the inherent complexity of sparse codes,

it is worthwhile to consider whether sparse codes can

be generated automatically. In [7, 9] we have pro-

posed an approach in which the algorithm is de�ned

on dense matrices and automatically converted into

sparse code. This implies that all operations can be

de�ned on two dimensional arrays, which reduces the

complexity of sparse codes development and mainte-

nance, and enables more standard compiler optimiza-

tions [6]. Annotations are used to identify which

of the declared dense data structures are actually

sparse. Matrices which are actually sparse are re-

ferred to as implicitly sparse matrices, because

the programmer does not have to deal with the spar-

sity explicitly. This burden is placed on the compiler

�

Support was provided by the Foundation for Computer

Science (SION) of the Netherlands Organization for the Ad-

vancement of Pure Research (NWO) and the EC Esprit

Agency DG XIII under Grant No. APPARC 6634 BRA III.

which, in order to exploit the sparsity as much as

possible, selects a compact data structure and gener-

ates corresponding sparse code. This approach can

be used for sparse matrices with arbitrary nonzero

structures, but if the matrices are available on �le,

compile-time analysis of these matrices [10] or some

kind of annotation can be used to enable the com-

piler to take advantage of certain properties of the

nonzero structures.

However, as alluded to in previous work, the appli-

cation of standard program transformations is essen-

tial for the generation of e�cient sparse codes. Be-

cause the input program operates on two-dimensional

arrays that support direct access, the programmer is

free to use all kind of access patterns through the

arrays. In some cases, preference is given to a partic-

ular kind of access patterns. For instance, column-

wise access is often used in FORTRAN to enable vec-

torization or to improve the spatial locality of the

program. However, in general, all kind of access pat-

terns through the implicitly sparse matrices can oc-

cur. Sparse data structures usually only support ef-

�cient generation of entries along one kind of access

patterns. This is caused by the fact that these data

structures do not only consists of primary storage

to store numerical values, but also of overhead stor-

age used to access these values and to reconstruct

the structure of the matrix. Supporting several kind

of access patterns would require data structures in

which the savings in storage for numerical values is

diminished by the required amount of overhead stor-

age, or for which the maintenance overhead would

increase the execution time considerably. Therefore,

before an organization for the sparse data structure

is selected, reshaping the access patterns can resolve

conicts between di�erent kind of access patterns.

This can improve the performance of the resulting

sparse code considerably.

The outline of the rest of this paper is as follows.

27.1

In section 2, we give a motivation for the necessity

of reshaping techniques in order to generate e�cient

sparse codes. In section 3 we give an outline of uni-

modular transformations, which will be used for the

reshaping techniques. These techniques are discussed

in section 4. We give some examples in section 5. Fi-

nally, in section 6, conclusions and issues for future

research are stated.

2 Importance of Reshaping

In this section, we illustrate that reshaping access

patterns for implicitly sparse matrices is essential for

the automatic generation of e�cient code.

2.1 De�nitions

Most occurrences of an implicitly sparse matrix A

appear in a nested loop of degree n. We assume

that the subscript functions of each occurrence can

be represented by a single mapping F

A

(

~

I) : Z

n

! Z

2

of the form F

A

(

~

I) = ~m+M �

~

I, where

~

I denotes the

surrounding loop indices, that is

~

I = (I

1

; : : : ; I

n

)

T

:

F

A

(

~

I) =

�

m

10

m

20

�

+

�

m

11

: : : m

1n

m

21

: : : m

2n

�

�

~

I

Each occurrence induces access patterns, con-

sisting of the index sets of the elements that are

referenced in one execution of the innermost loop.

The direction of an access pattern is de�ned as

~

d

A

= (m

1n

;m

2n

). If either m

1n

or m

2n

is zero,

the access patterns are called row- and column-

wise respectively. All other nonzero directions are

referred to as diagonal-wise. Access patterns for

which

~

d

A

=

~

0 holds are called scalar-wise. For the

latter kind of access patterns, a direction is usually

induced at a higher level i, for which m

1i

or m

2i

is

nonzero. Two directions

~

d and

~

d

0

are called linearly

dependent if

~

d = � �

~

d

0

for some � 2 R.

2.2 A Naive Approach

Consider, for example, the following fragment, where

an operation ~c A �

~

b is followed by an accumulation

of particular elements in an implicitly sparse matrix:

DO I = 1, M

DO J = 1, N

S

1

: C(I) += A(I,J) * B(J)

ENDDO

ENDDO

DO J = 1, N / 2

DO I = 1, M / 2

S

2

: ACC += A(2*I,2*J)

ENDDO

ENDDO

In [9] we have shown that statements S

1

and S

2

only have to be executed for entries, i.e. elements

that are stored explicitly in the compact data struc-

ture of A. If the organization of the selected data

structure is consistent with the access pattern in

these statements, a special construct can be gener-

ated that will iterate over all entries along a certain

access pattern at run-time. Since S

1

and S

2

induce

respectively row- and column-wise access patterns

through A, one of the following fragments would re-

sult after selection of the data structure (see [7, 9] for

details on the data structure and code generation):

row-wise storage of A:

DO I = 1, M

DO AD = ALOW(I), AHIGH(I)

J = AIND(AD)

S

1

: C(I) += AVAL(AD) * B(J)

ENDDO

ENDDO

DO J = 1, N / 2

DO I = 1, M / 2

AD = LKP(AIND,ALOW(2*I),AHIGH(2*I),2*J)

S

2

: IF (AD 6= ?) ACC += VAL(AD)

ENDDO

ENDDO

column-wise storage of A:

DO I = 1, M

DO J = 1, N

AD = LKP(AIND,ALOW(J),AHIGH(J),I)

S

1

: IF (AD 6= ?) C(I) += AVAL(AD) * B(J)

ENDDO

ENDDO

DO J = 1, N / 2

DO AD = ALOW(2*J), AHIGH(2*J)

I = AIND(AD)

S

2

: IF (MOD(I,2) = 0) ACC += AVAL(AD)

ENDDO

ENDDO

In the �rst fragment, a construct that iterates over

entries can be used for S

1

. This construct can also be

used for S

2

in the second fragment, although a test

is required because only the entries a

i;2�j

in a col-

umn for which i mod 2 = 0 holds, are operated on

in the original dense fragment. If row-wise storage is

selected, a lookup is required for S

2

to fetch the ele-

ments in the matrix. The value ? is returned if this

element is not an entry. Consequently, we can skip

the operations for these zero elements, although this

test does not reduce the execution time [23]. Simi-

larly, a lookup results for S

1

if column-wise storage

is selected. These lookups are unwanted for two rea-

sons. First, each lookup induces substantial overhead

because in the worst case all entries in a whole row

or column must be scanned in order to obtain the

address of an entry, or to conclude that the element

to be fetched is not an entry.

27.2

Second, no reduction in the number of iterations is

obtained. For example, S

1

is executed M � N times in

the second fragment, but only NZ times in the �rst,

where NZ indicates the total number of entries in A.

2.3 Reshaping for Consistency

The problems arising in the previous section are

caused by the inconsistency of access patterns of oc-

currences of the same matrix, i.e. the access patterns

induced by the occurrences of A in S

1

and S

2

over-

lap and have linearly independent directions (0; 1)

and (2; 0) respectively. Since the organization of the

data structure can only support the storage of entries

along access patterns in one direction, lookups must

be generated for all occurrences inducing access pat-

terns that are inconsistent with this data structure

organization.

However, in some cases, reshaping techniques can

be used to obtain consistency. For the previous frag-

ment, interchanging the loops that surround S

3

con-

verts the direction of the access patterns through A

into (0; 2). Consequently, if sparse row-wise storage

is selected for A, code in which a construct iterates

over entries can be generated for both S

1

and S

2

. In

table 1, we present some timings of the two versions

of the previous section and the reshaped variant on

one CPU of a CRAY C98/4256 for some matrices of

the Harwell-Boeing Sparse Matrix Collection [17] in

the appropriate storage format. The row-wise vari-

ant is preferable over the column-wise variant, be-

cause the lookup is executed less frequently in the

�rst fragment than in the second, namely

1

4

� M � N

and M � N times respectively. However, the reshaped

version is clearly superior, due to the elimination of

all lookups.

Although this experiment is rather simple, it illus-

trates the most important objective in the generation

of sparse codes, namely that the number of oper-

ations performed must be kept proportional to the

number of entries in the sparse matrix [14, 16, 23].

Skipping operations on zeros by means of condition-

als is useless. Scanning sparse data structure to ob-

tain an entry must be avoided as much as possible.

For the automatic data structure selection and sparse

Matrix Row Column Reshaped

gre 1107 0.4 1.5 2:1 � 10

�3

jagmesh1 0.3 1.1 1:7 � 10

�3

orani678 2.2 8.8 6:4 � 10

�3

steam2 0.1 0.5 1:4 � 10

�3

Table 1: Execution Time in seconds (Cray C98/4256)

code generation method this implies that it is very

important to achieve consistency between all the ac-

cess patterns through an implicitly sparse matrix. In

this case the generation of constructs that limit the

number of operations performed, become feasible.

3 Unimodular Matrices

In this section we give an outline of the general

approach to iteration-level loop transformations in

terms of unimodular matrices. For an extensive

overview of the theory, consult [4, 5, 15, 25, 26].

3.1 Loop Transformations

Every iteration-level loop transformation on n per-

fectly nested loops with stride 1 and regular loop

bounds, consisting of a combination of loop inter-

changing, loop skewing, or loop reversal (see e.g. [1,

22, 24, 27, 28, 29]) can be modeled by a mapping

between the original and target iteration space,

namely a linear transformation that is represented

by a unimodular matrix U . A unimodular ma-

trix is an n� n integer matrix, i.e. all elements are

integers, for which j det(U)j = 1 holds. Each iter-

ation ~{ in the original iteration space is mapped to

an iteration ~{

0

= U �~{ in the target iteration space.

Because iterations in the target iteration space are

also traversed in lexicographic order, application of a

transformation e�ectively results in a new execution

order on the instances.

Because each unimodular matrix can be decom-

posed into a number of such elementary loop trans-

formations, and conversely, any combination of iter-

ation level loop transformations is represented by a

unimodular matrix, this approach o�ers more ex-

ibility than the traditional step-wise application of

loop transformations, where the usefulness and valid-

ity of each transformation is considered separately.

3.2 Application of a Transformation

Application of a unimodular transformation U is

valid, if each data dependence in the original nest-

ing is satis�ed in the resulting nesting. Dependence

distance vectors provide a convenient representation

of data dependences. If iteration ~{

0

depends on it-

eration ~{, then ~{ +

~

d = ~{

0

for some distance vector

~

d. Induced by the sequential semantics of DO-loops,

iterations are executed in lexicographic order. Con-

sequently, each distance vector of a loop-carried data

dependence is lexicographically positive, denoted

by

~

d �

~

0, i.e. its leading component (�rst nonzero

27.3

component) is positive. Since U is a linear transfor-

mation, U �~{

0

� U �~{ = U � (~{

0

�~{). Consequently,

application of a unimodular transformationU is valid

if and only if U �

~

d �

~

0 for each dependence distance

~

d 6=

~

0 in the original nest.

In [25, 26], a more abstract representation of data

dependences, referred to as dependence directions, is

incorporated in the validity test. Each component of

a general dependence vector

~

d can represent a possi-

bly in�nite range of integers. Directions '<', '>', `=',

and `�' correspond to the ranges [1;1], [�1;�1],

[0; 0], and [�1;1] respectively. A distance com-

ponent d is denoted by the degenerate range [d; d].

If all dependences are represented by lexicographi-

cally positive dependence vectors, i.e., each compo-

nent is an interval [l; r] with l > 0, dependence direc-

tions can also be handled by de�ning an arithmetic

on these vectors. Addition of ranges and multiplica-

tion of a range by a scalar are de�ned as respectively

[l; r]+[l

0

; r

0

] = [l+ l

0

; r+r

0

] and s � [l; r] = [s � l; s �r], if

s � 0, or range [s �r; s � l] otherwise. Operations on1

are as expected (e.g. 0 � 1 = 0 and �1 � �1 = 1).

Using this new arithmetic, application of U is valid,

if U �

~

d �

~

0 for all dependence vectors

~

d. The converse

implication, however, does not hold. If loop skewings

are used in U , dependence information may be lost.

The application of a unimodular matrix to a loop

nest is implemented by rewriting the loop-body and

generating appropriate loop bounds. Since

~

I =

U

�1

�

~

I

0

holds, the new body is obtained by replac-

ing each I

j

in the original body accordingly. The

new loop bounds are determined by application of

Fourier-Motzkin elimination [2, 13, 19] to the sys-

tem of inequalities that is obtained by substituting

U

�1

�

~

I

0

for

~

I in the system de�ned by the original

loop bounds. In [12], we present an implementation

of Fourier-Motzkin elimination in which only integer

arithmetic is involved and also present simpli�cation

methods to eliminate all redundant constraints from

such a system, thereby improving the e�ciency of

the generated code.

3.3 Example

Consider, for example, application of the unimodular

matrix U to the following loop:

DO I

1

= 0, 50

DO I

2

= 0, 50 - I

1

DO I

3

= 0, 50

L(I

1

,I

2

,I

3

)

ENDDO

ENDDO

ENDDO

U =

1 1 1

1 0 0

0 1 0

!

U

�1

=

0 1 0

0 0 1

1 �1 �1

!

We assume that application is valid. The result-

ing loop-body is obtained by replacing

~

I according

to equation

~

I = U

�1

�

~

I

0

. Application of Fourier-

Motzkin elimination to the system of inequalities

that is obtained by substituting U

�1

�

~

I

0

for

~

I in the

original system is used to rewrite the system into

a format that can be used to generate the resulting

bounds. Replacing

~

I by U

�1

�

~

I

0

in the original system

yields the following system in the new loop indices:

0 � I

0

2

� 50

0 � I

0

3

� 50� I

0

2

0 � I

0

1

� I

0

2

� I

0

3

� 50

The appropriate form is obtained by application of

Fourier-Motzkin elimination to this system:

I

0

3

� 50� I

0

2

I

0

3

� I

0

1

� I

0

2

0 � I

0

3

I

0

1

� I

0

2

� 50 � I

0

3

�I

0

2

� 0 I

0

2

� 50

Eliminate I

0

3

#

I

0

2

� 50 I

0

2

� I

0

1

0 � I

0

2

I

0

2

� 50

I

0

1

� 100 0 � 50

Eliminate I

0

2

#

I

0

1

� 100 0 � I

0

1

0 � 50 0 � 50

0 � 50

The following code is generated, after redundant in-

equalities have been eliminated:

DO I

0

1

= 0, 100

DO I

0

2

= 0, MIN(50,I

0

1

)

DO I

0

3

= MAX(0,I

0

1

-I

0

2

-50), MIN(50-I

0

2

,I

0

1

-I

0

2

)

L(I

0

2

,I

0

3

,I

0

1

-I

0

2

-I

0

3

)

ENDDO

ENDDO

ENDDO

The conversion of the original iteration space into

the target iteration space is illustrated in �gure 1.

It can be easily determined which iterations in the

original iteration space are executed in one iteration

of the resulting loops. For example, since (1; 1; 1) is

the �rst row of U , all iterations in the original itera-

tion space that lie in the plane I

1

+ I

2

+ I

3

= c

1

, for

c

1

2 Z, are executed in iteration I

0

1

= c

1

. Moreover,

these planes are traversed in the direction (1; 1; 1) in

successive iterations of the outermost resulting loop,

as illustrated in the �rst picture of �gure 2. Because

(1; 0; 0) is the second row of U , all iterations in the

intersection of the plane de�ned by the outermost

27.4

I3

+I1 I3I2+ =100+I1 I3I2+ =1

I1

I2

I2
’

I1
’

I3
’

Original Iteration Space

Target Iteration Space

U

Figure 1: Application of U

loop and the plane I

1

= c

2

, for c

2

2 Z, are exe-

cuted in iteration I

0

2

= c

2

. This line has direction

(0; 1;�1), as is shown in the second picture of �g-

ure 2. An iteration along this line that also lies in

the plane of which the normal vector is de�ned by the

last row of U , i.e. I

2

= c

3

, for c

3

2 Z, is executed

in the iteration I

0

3

= c

3

, as illustrated in the last pic-

ture of �gure 2. In general, the rows of an n � n

unimodular matrix U , for n � 2, de�ne the normal

vectors of so-called hyperplanes in the n-dimensional

iteration space. The intersection of such hyperplanes

determine which original iteration is executed in a

particular iteration

~

I

0

= ~c of the resulting loop, ac-

cording to equation U �

~

I = ~c. Consequently, all iter-

ations that are executed in a complete execution of

the innermost resulting loop are along a line through

the original iteration, formed by the intersection of

hyperplanes de�ned by the �rst n � 1 rows of U .

Moreover, since

~

I = U

�1

�

~

I

0

, the last column of U

�1

de�nes the direction of this line. Along this line, orig-

inal iterations are executed in successive iterations of

the innermost resulting loop. For the previous trans-

formation, for instance, this direction is (0; 1;�1),

i.e. the last column of U .

I1

I3

I2

+I1 I3I2+ 1=c

I3

I1

I2

I1 2=c
I3

I2

I2 3=c

I1

Figure 2: Original Iteration Space Traversal

4 Reshaping Access Patterns

In this section, we present the construction of a uni-

modular transformation which will be used for chang-

ing the direction of the access patterns of occurrences

of implicitly sparse matrices.

4.1 Simple Method for Reshaping

Consider the following general framework, in which

an occurrence of an implicitly sparse matrix A ap-

pears in a perfectly nested loop at nesting depth

n � 2, and where the subscripts functions are repre-

sented by a mapping F

A

(

~

I) = ~m +M �

~

I as de�ned

in section 2.1:

DO I

1

2 V

1

: : :

DO I

n

2 V

n

S

1

: : : : A(F

A

(

~

I)) : : :

ENDDO

: : :

ENDDO

27.5

In order to achieve that the access patterns of this

occurrence lie along lines with a particular desired

direction ~v = (v

1

; v

2

), i.e. the directions become

linearly dependent, we require that all index pairs

(x; y) in one access pattern are on a line of the form

(x; y) = (c

1

; c

2

)+ t � (v

1

; v

2

), as illustrated in �gure 3:

c1

c2

x

y

2v

1v

Figure 3: (x; y) = (c

1

; c

2

) + t � (v

1

; v

2

)

An important observation is that for any point

(x; y) = (c

1

+t�v

1

; c

2

+t�v

2

) on this line, the equation

v

2

�x�v

1

�y = v

2

�c

1

�v

1

�c

2

holds. Therefore, the ex-

pression v

2

�x�v

1

�y remains constant along a line of

the previous form. Consequently, one way to enforce

a desired direction ~v is to require that the expression

v

2

� x � v

1

� y for (x; y)

T

= F

A

(

~

I) is constant in one

iteration of the outermost loop. Using the de�nition

of section 2.1, x and y are de�ned as follows:

�

x

y

�

=

�

m

10

m

20

�

+

�

m

11

: : : m

1n

m

21

: : : m

2n

�

�

~

I

The constraint can be rewritten into the following

form, where k

i

= v

2

�m

1i

� v

1

�m

2i

for 1 � i � n:

(v

2

�m

1

� v

1

�m

2

) + k

1

� I

1

+ : : :+ k

n

� I

n

= c

0

Because only the variant part of this constraint is

relevant, we simplify it as follows. In this expression,

we de�ne �

i

= k

i

=g for g = gcd(k

1

; : : : ; k

n

), assum-

ing that that g 6= 0:

1

�

1

� I

1

+ : : :+ �

n

� I

n

= c (1)

A traversal of the original iteration space where

in iteration I

0

1

= c, all iterations in the hyperplane

�

1

�I

1

+: : :+�

n

�I

n

= c are visited, is obtained by ap-

plication of a linear transformation

~

I

0

= U �

~

I, where

the �rst row of U consists of (�

1

; : : : ; �

n

). In [21, 25],

a completionmethod is presented that yields an n�n

unimodular matrix of this form. In [11], we have

1

For most conversion, g 6= 0 holds. Only if a single element

or a one-dimensional part of the matrix is accessed that is

parallel to the desired direction, the situation g = 0 can arise.

extended this method to construct the inverse of

this matrix e�ciently by a simultaneous construc-

tion. This eliminates the need to explicitly compute

the inverse afterwards. If no data dependences have

to be accounted for, this completion method can be

used to construct a loop transformation changing the

direction of particular access patterns.

4.2 Double Loop Example

Suppose that regular diagonal-wise access patterns

are desired in the following perfectly nested loop, in

which access patterns with direction (2; 4) occur:

DO I

1

= 1, 6

DO I

2

= 1, 3

ACC += A(I

1

+2*I

2

-2,4*I

2

-3)

ENDDO

ENDDO

F

A

(

~

I) =

�

�2

�3

�

+

�

1 2

0 4

�

�

~

I

To achieve that the access patterns lie along lines

with the desired direction (1; 1), we require that ex-

pression I

1

� 2 � I

2

is constant in one iteration of

the outermost loop. If the dependence caused by the

accumulation can be ignored, direct use of an auto-

matically constructed matrix is possible:

U =

�

1 �2

0 1

�

U

�1

=

�

1 2

0 1

�

This reshaping, illustrated in �gure 4, results in

the following fragment in which access patterns with

direction (4; 4) occur:

DO I

0

1

= -5, 4

DO I

0

2

= MAX(1,d(1-I

0

1

)/2e), MIN(3,b(6-I

0

1

)/2c)

ACC += A(I

0

1

+4*I

0

2

-2,4*I

0

2

-3)

ENDDO

ENDDO

4.3 Validity of Reshaping

Application of a unimodular transformation U is

valid if

~

d

0

= U �

~

d �

~

0 holds for all dependence dis-

tances

~

d 6=

~

0 in the original loop [3, 5, 25]. This con-

straint is not always satis�ed for a constructed trans-

formation U . Fortunately, we can exploit the fact

that several unimodular matrices can enforce traver-

sal of hyperplanes that have the form (1), given in

section 4.1. For double loops, the following proposi-

tion can be used:

Proposition 1 If there exists an z

1

2 f�1;+1g

such that z

1

� (�

1

; �

2

) �

~

d � 0 for all dependence dis-

tance vectors

~

d in a double loop, then there exists an

integer z

2

2 f�1;+1g such that application of the

27.6

Traversal Order
Accessed Point

5

x

y
5 10

10

5

x

y
5 10

10

Figure 4: Conversion of (2; 4) into (1; 1)

following transformation V , where U is a unimodu-

lar matrix with �rst row (�

1

; �

2

), is valid.

V =

�

z

1

0

0 z

2

�

�U V

�1

= U

�1

�

�

z

1

0

0 z

2

�

Proof Suppose there exists an z

1

2 f�1;+1g such

that z

1

� (�

1

; �

2

) �

~

d � 0 for all dependences dis-

tance vectors

~

d in the original nest. Let

~

d be an

arbitrary dependence distance vector in the original

nest. We distinguish two cases. If z

1

� (�

1

; �

2

) �

~

d > 0,

then V �

~

d �

~

0 and application of V is valid. If

z

1

� (�

1

; �

2

) �

~

d = 0, then (�

1

; �

2

) �

~

d = 0, and,

hence, U �

~

d = (0; t)

T

for some t 2 Z. Therefore,

we have

~

d = U

�1

� (0; t)

T

= t � (��

2

; �

1

)

T

. Since

all dependences in the original nest are lexicograph-

ically positive we have, depending on the values of

�

1

and �

2

, either for all dependences

~

d such that

(�

1

; �

2

) �

~

d = 0,

~

d is of the form t � (��

2

; �

1

)

T

for

some t � 0, or for all dependences

~

d such that

(�

1

; �

2

)�

~

d = 0,

~

d is of the form t�(��

2

; �

1

)

T

for some

t � 0. Consequently, we can choose z

2

2 f+1;�1g

such that for any

~

d with (�

1

; �

2

) �

~

d = 0, we have

V �

~

d = V � U

�1

(0; t)

T

= (0; z

2

� t)

T

�

~

0. 4

For example, making the direction through a ma-

trix A and a desired direction ~v = (�1; 1) linearly de-

pendent by application of the following constructed

transformation U would violate the original depen-

dences with distance

~

d = (1;�1)

T

in the following

fragment:

DO I

1

= 2, 5

DO I

2

= 1, 5

B(I

1

,I

2

) = A(I

1

,I

2

) * B(I

1

-1,I

2

+1)

ENDDO

ENDDO

�

0

�1

�

=

�

1 1

�1 0

�

�

�

1

�1

�

Negation of the second row in U , i.e. choosing

z

2

= �1, eliminates the dependence violation. The

direction within each access pattern is reversed, as

can be seen in the resulting code:

DO I

1

= 3, 10

DO I

2

= MAX(2,I

0

1

-5), MIN(5,I

0

1

-1)

B(I

0

2

,I

0

1

-I

0

2

) = A(I

0

2

,I

0

1

-I

0

2

) * B(I

0

2

-1,I

0

1

-I

0

2

+1)

ENDDO

ENDDO

The dependences within each access pattern are il-

lustrated in �gure 5.

2

5

5

y

x

Accessed Point
Traversal Order

Figure 5: Dependences within one Access Pattern

The method fails if the �rst component of U �

~

d is

positive for some dependences, but negative for oth-

ers. This occurs, for example, in the conversion that

2

Dependences are usually depicted in the iteration space.

However, since x = I

1

and y = I

2

hold, a straightforward

relation between accessed points and iterations hold.

27.7

makes the direction of the access patterns through A

and (1; 1) linearly dependent for the following frag-

ment with dependence distances (0; 1)

T

and (1; 0)

T

:

DO I

1

= 2, 5

DO I

2

= 2, 5

B(I

1

,I

2

) = A(I

1

,I

2

) * B(I

1

,I

2

-1) * B(I

1

-1,I

2

)

ENDDO

ENDDO

In this case, for the two dependence distances, we get

the following equations:

�

1 �1

1 0

�

�

�

0

1

�

=

�

�1

0

�

�

1 �1

1 0

�

�

�

1

0

�

=

�

+1

1

�

The reason for this problem is illustrated in �g-

ure 6. In diagonal-wise access patterns, all indices

with I

1

� I

2

= c are accessed before a next value of

c is considered. However, the dependences imposes a

cyclic traversal ordering on these access patterns.

5

5

y

x

Accessed Point c=3 c=2 c=1 c=0

c=−1

c=−2

c=−3

Figure 6: Cyclic Ordering on Access Patterns

4.4 Re�nement of the Method

We have shown that the simple method of reshaping

is successful for double loops, which follows from the

fact that keeping expression (1) constant in one itera-

tion of the outermost loop enforces a direction for the

access patterns in the innermost loop, such that this

direction and a desired direction ~v are linearly depen-

dent. However, for general loops the basic method is

too restrictive as can be seen in the following exam-

ple. Enforcing row-wise access patterns requires that

expression I

1

+2�I

3

is constant in one iteration of the

outermost loop, and results in the next conversion:

DO I

1

= 1, 10

DO I

2

= 1, 10

DO I

3

= 1, 10

: : : A(I

1

+2*I

3

,I

2

) : : :

ENDDO

ENDDO

ENDDO

U =

0

@

1 0 2

0 1 0

0 0 1

1

A

#

DO I

0

1

= 3, 30

DO I

0

2

= 1, 10

DO I

0

3

= MAX(1,d(I

0

1

-10)/2e), MIN(10,b(I

0

1

-1)/2c)

: : : A(I

0

1

,I

0

2

) : : :

ENDDO

ENDDO

ENDDO

In the resulting fragment, all iterations that refer-

ence elements in the same row are executed in one

iteration of the outermost loop. Each set of itera-

tions is within a plane with normal vector (1; 0; 2),

as illustrated in �gure 7. Although this kind of trans-

formations can be useful for sparse code generation,

because it tends to move the overhead for accessing

sparse rows to a higher level in the loop nest, it pro-

vides little exibility. Especially, if we want to change

the directions of the access pattern of several occur-

rences of implicitly sparse matrices in a particular

loop, it is unlikely that identical hyperplanes must

be traversed in the outermost loop.

I2

I1

I3

Figure 7: Plane I

1

+ 2 � I

3

= c

More exibility is obtained if we observe that it-

erations along any line within the previous plane

reference (possibly identical) elements in the same

row. Consequently, any transformation that induces

a loop in which all iterations along a line in this plane

are performed in one iterations of the resulting inner-

most loop can be used to enforce row-wise (or pos-

sibly scalar-wise) access patterns. In general, the di-

rection of an access patterns and a desired direction

~v are linearly dependent, if the iterations that are

executed in one iteration of the resulting innermost

loop are on a line within a hyperplane that is given

27.8

by equation (1). Since a line can only be within such

a hyperplane if the direction ~u of that line is per-

pendicular to the normal vector (�

1

; : : : ; �

n

) of that

plane, i.e. (u

1

; : : : ; u

n

) ? (�

1

; : : : ; �

n

), the following

constraint is imposed on ~u:

u

1

��

1

+ : : :+ u

n

� �

n

= 0 (2)

The general solution of diophantine equation (2)

has the form ~u = T

�1

� (0; t

2

; : : : ; t

n

)

T

for arbitrary

t

i

2 Z for a matrix T with �

1

; : : : ; �

n

as �rst row [3].

Matrix T

�1

can be obtained during the construction

of T as described in [11]. For instance, the direction

~u of a line through the plane I

1

+ 2 � I

3

= c of the

previous example has the following general form:

~u =

0

@

1 0 �2

0 1 0

0 0 1

1

A

�

0

@

0

t

2

t

3

1

A

=

0

@

�2 � t

3

t

2

t

3

1

A

(3)

Consequently, as observed at the end of section 3.3,

any unimodular transformation U , for which the in-

tersection of the hyperplanes de�ned by the �rst

n � 1 rows form a line with a direction satisfying

constraint (2), can be used to enforce a particular

direction on the access patterns. For instance, since

direction (0; 1; 0)

T

is an instance of (3), and the in-

tersection of planes I

1

= c

1

and I

3

= c

2

is precisely a

line in this direction, a unimodular matrix where the

�rst and second row correspond to these planes can

also be used to enforce row-wise access patterns in

the previous example. The following matrix, mod-

eling a single loop interchange, satis�es that form.

Note that the last column of U

�1

is identical to this

direction:

U =

0

@

1 0 0

0 0 1

0 1 0

1

A

U

�1

=

0

@

1 0 0

0 0 1

0 1 0

1

A

Indeed, interchanging the I

2

- and I

3

-loop in the

previous example is another, more obvious, way to

obtain row-wise access patterns through matrixA. In

some cases, a penalty must be paid for this increased

exibility. For example, because (�2; 0; 1)

T

is also an

instance of (3), application of the following matrix is

also allowed, because the intersection of planes I

2

=

c

1

and I

1

+ 2 � I

3

= c

2

is a line in this direction:

U =

0

@

0 1 0

1 0 2

0 0 1

1

A

U

�1

=

0

@

0 1 �2

1 0 0

0 0 1

1

A

This e�ectively reverses the I

0

1

- and I

0

2

-loop in the

code that results after application of the �rst trans-

formation discussed in this section, and scalar-wise

access patterns result. An illustration of the kind of

sparse sparse code that can be generated automati-

cally if row-wise storage is selected by the compiler is

shown below (for non-entries an address ? for which

AVAL(?)=0.0 results, see [9] for details):

DO I = 1, 10

DO J = 3, 30

AD = LKP(AIND,ALOW(J),AHIGH(J),I)

DO K = MAX(1,CEIL(J-10,2)), MAX(10,FLOOR(J-1,2))

: : : AVAL(AD) : : :

ENDDO

ENDDO

ENDDO

Because the same element is referenced in a com-

plete execution of the innermost non-controlling loop,

lookup overhead in this row is amortized over several

iterations. Therefore, scalar-wise access patterns are

considered acceptable, which is reected in the fact

that the scalar-wise direction (0; 0) and any other di-

rection are linearly dependent. However, solutions in

which row-wise access patterns occur are preferred.

4.5 General Method for Reshaping

In this section, we present a �ve-step method for ob-

taining the solution of the following problem: given

p subscript functions F

i

(

~

I) of several occurrences of

implicitly sparse matrices in a perfectly nested loop

of depth n, and desired directions ~v

i

, for 1 � i � p,

construct an n � n unimodular matrix U such that

application of U to this loop nest is valid and achieves

that the direction of the access patterns induced by

each resulting subscript function and the desired di-

rection ~v

i

become linearly dependent.

4.5.1 Construction of Hyperplanes

In the �rst step, p hyperplanes of the form (1) in

which expression v

i

2

�x�v

i

1

�y where (x; y)

T

= F

i

(

~

I),

remains constant, are constructed for each subscript

function and desired direction:

8

>

<

>

:

�

1

1

� I

1

+ � � �+ �

1

n

� I

n

= c

1

.

.

.

�

p

1

� I

1

+ � � �+ �

p

n

� I

n

= c

p

Occurrences for which this description of the hy-

perplane cannot be constructed because all coe�-

cients are zero are ignored because any transforma-

tion will obtain an appropriate direction for the ac-

cess patterns of such occurrences.

27.9

4.5.2 Construction of the Intersection

In this step, the general form for the direction ~u of a

line that lies within the intersection of these hyper-

planes is determined. Since the direction of this line

must be perpendicular to all vectors (�

i

1

; : : : ; �

i

n

), a

general form of the solution of the following homo-

geneous system of linear diophantine equations must

be obtained:

8

>

<

>

:

�

1

1

� u

1

+ : : :+ �

1

n

� u

n

= 0

.

.

.

�

p

1

� u

1

+ : : :+ �

p

n

� u

n

= 0

(4)

Fortunately, �nding a solution of this system has

been well-studied in the context of data dependence

analysis. In [3, 5] it is shown, that if system (4) is rep-

resented by (u

1

; : : : ; u

n

)�A =

~

0, where the �

i

1

; : : : ; �

i

n

constitutes the ith column of A, and a unimodular

n � n matrix R represents the operations to reduce

the n � p matrix A to echelon form, i.e. R � A = S

for an n� p echelon matrix S, then all solutions are

given by ~u = (t

1

; : : : ; t

n

) �R for arbitrary t

i

2 Z such

that (t

1

; : : : ; t

n

) � S =

~

0. An algorithm to reduce a

matrix to echelon form, which means that nonzeros

rows are ordered �rst and the nonzeros appear in

staircase fashion, is given in [5]. If r = rank(A), the

�rst r rows of S are nonzero. Because a homogeneous

system is considered, this implies that the general so-

lution has the following form, for some t

i

2 Z:

~u = (0; : : : ; 0

| {z }

r

; t

n�r+1

; : : : ; t

n

) �R (5)

Since the intersection of the p hyperplanes given

in (4) is constructed, ~u =

~

0 is the only solution if

rank(A) = n. In that case, a compromise must be

found. Possible solutions are to ignore certain occur-

rences or to adapt a number of desired directions so

that a nonzero solution exists. Ideally, such decisions

are made automatically, but user interaction can be

used to simplify this process.

4.5.3 Selection of a Suitable Line

The result of the previous step is a general descrip-

tion of the direction ~u of lines lie within the hyper-

planes constructed in the �rst step. In principle, an

arbitrary nonzero instance of (5) can be taken. How-

ever, it is preferable to select an instance in which

nonzero components appear at the position of con-

trolling loops in the �rst, second, or any dimension

of subscript functions for which column-, row- or

diagonal-wise access patterns are desired, in order to

avoid the situation discussed at the end of section 4.4.

Moreover, ~u is chosen such that gcd(u

1

; : : : ; u

n

) = 1.

4.5.4 Construction of a Transformation

In this step, a unimodular matrix must be con-

structed such that iterations in the original iteration

space are executed along lines with direction ~u. In

earlier examples, it was shown that any unimodu-

lar transformation for which ~u constitutes the last

column of its inverse can be used for this purpose.

Either a new completion method can be used to ob-

tain such a matrix, or the completion method of [11]

can be adapted. First, a unimodular matrix T is con-

structed with ~u as �rst row. This is possible because

the components of ~u are relatively prime. Subse-

quently, we may de�ne matrices U

�1

and U as:

U

�1

= (P � T)

T

and U =

�

T

�1

� P

T

�

T

where P =

0

B

B

B

@

0 1

.

.

.

.

.

.

0 1

1 0 : : : 0

1

C

C

C

A

4.5.5 Making the Transformation Valid

The unimodular transformation constructed in the

previous step is used directly if there are no depen-

dences in the loop nest. Otherwise, we can use the

fact that the following matrix V is also unimodular

and that the last column of V

�1

is either ~u or �~u,

for any unimodular (n � 1) � (n � 1) matrix Z and

integer z 2 f�1;+1g:

V =

0

B

B

B

@

0

Z

.

.

.

0

0 : : : 0 z

1

C

C

C

A

� U

V

�1

= U

�1

�

0

B

B

B

@

0

Z

�1

.

.

.

0

0 : : : 0 z

1

C

C

C

A

The following construction method will be used to

enforce that for all dependence vectors

~

d that rep-

resent loop-carried data dependences in the origi-

nal loop nest,

~

d

0

= V �

~

d �

~

0 holds. Starting with

Z = I and z = 1, the following steps are applied

for k = 1; : : : ; d � 1. At each step k, we select an

index i with k � i < n, such that for all dependence

vectors either all components d

0

i

� 0 or all compo-

nents d

0

i

� 0. Subsequently, rows i and k in Z are

interchanged followed by a reversal of row i if the

components were non-positive. Dependence vectors

for which the ith component become strictly positive

do not have to be considered in following steps. Fi-

nally, z is chosen such that the nth component of all

27.10

remaining dependence vectors is non-negative. Be-

cause Z is constructed by a permutation and rever-

sals, Z

�1

is equal to Z

T

.

If this construction breaks down, the reshaping

method fails. This will occur, for instance, in situa-

tions that are similar to the one depicted in �gure 6.

However, in general, we have more exibility in selec-

tion of iteration space traversal than with the simple

method of section 4.1.

4.6 An Example of Reshaping

Consider the following fragment with occurrences of

implicitly sparse matrices A, B and C:

DO I

1

= 10, 15

DO I

2

= 1, 3

DO I

3

= 1, 50

: : : A(I

1

+3*I

2

+I

3

,I

1

+I

3

) : : :

: : : B(2*I

1

+I

3

,2*I

2

) : : :

: : : C(I

1

-3*I

2

,I

3

) : : :

ENDDO

ENDDO

ENDDO

F

A

(

~

I) =

�

1 3 1

1 0 1

�

�

~

I

F

B

(

~

I) =

�

2 0 1

0 2 0

�

�

~

I

F

C

(

~

I) =

�

1 �3 0

0 0 1

�

�

~

I

Suppose that row-wise storage is desired for all ma-

trices, and that there are data dependences with dis-

tances (0; 0; 1)

T

, (0; 1; 0)

T

and (1; 0; 0)

T

. Reshaping

the access patterns accordingly seems to be a non-

trivial task at �rst sight. Because the desired direc-

tion for the access patterns of the three occurrences

is (0; 1), the following planes result in the �rst step:

8

<

:

I

1

+ 3 � I

2

+ I

3

= c

1

2 � I

1

+ I

3

= c

2

I

1

� 3 � I

2

= c

3

In step 2, the general form for the direction ~u of

line within these planes is determined. Echelon re-

duction yields the following form for R�A = S, where

rank(S) = 2:

0

@

0 0 1

1 0 �1

3 1 �6

1

A

�

0

@

1 2 1

3 0 �3

1 1 0

1

A

= S

Direction ~u is described for arbitrary t

3

2 Z as

(0; 0; t

3

) � R = (3 � t

3

; t

3

;�6 � t

3

), indicating the di-

rection of the line that is formed by the intersection

of the previous planes. Vector (3; 1;�6) is an in-

stance of this description for which the components

are relatively prime, and can be selected at step 3.

Moreover, because all components are nonzero, the

associated transformation will induce real row-wise

access patterns. In the fourth step, matrices U

�1

and U are constructed:

U =

0

@

�1 3 0

0 6 1

0 1 0

1

A

U

�1

=

0

@

�1 0 3

0 0 1

0 1 �6

1

A

Computation of U �

~

d yields (0; 1; 0)

T

, (3; 6; 1)

T

and

(�1; 0; 0)

T

respectively. Since all second components

are non-negative, rows 1 and 2 in U are interchanged.

Since only the resulting distance (0;�1; 0)

T

must be

considered, reversal of the the second row su�ces

to make all resulting dependences lexicographically

positive. This gives rise to the following transforma-

tions:

V =

0

@

0 6 1

1 �3 0

0 1 0

1

A

V

�1

=

0

@

0 1 3

0 0 1

1 0 �6

1

A

Therefore, this transformation a�ects the fragment

as illustrated below. Indeed, row-wise access pat-

terns result:

DO I

0

1

= 7, 68

DO I

0

2

= MAX(1,d(21-I

0

1

)/2e), MIN(12,b80-I

0

1

)/2c)

DO I

0

3

= MAX(1,d(10-I

0

2

)/3e,d(I

0

1

-50)/6e),

MIN(3,b(15-I

0

2

)/3c,b(I

0

1

-1)/6c)

: : : A(I

0

1

+I

0

2

,I

0

1

+I

0

2

-3*I

0

3

) : : :

: : : B(I

0

1

+2*I

0

2

,2*I

0

3

) : : :

: : : C(I

0

2

,I

0

1

-6*I

0

3

) : : :

ENDDO

ENDDO

ENDDO

5 Data Structure Selection

The reshaping method presented in the previous sec-

tion enables us to take a systematic approach to data

structure selection, as illustrated below with an ex-

ample.

5.1 Sparse Matrix Multiplication

Consider, for example, the following formulation of

the operation C C+A �B, where A, B and C are

implicitly sparse matrices:

27.11

DO I

1

= 1, 10

DO I

2

= 1, 10

DO I

3

= 1, 10

C(I

1

,I

2

) += A(I

1

,I

3

) * B(I

3

,I

2

)

ENDDO

ENDDO

ENDDO

F

A

(

~

I) =

�

1 0 0

0 0 1

�

�

~

I

F

B

(

~

I) =

�

0 0 1

0 1 0

�

�

~

I

F

C

(

~

I) =

�

1 0 0

0 1 0

�

�

~

I

The reshaping method of section 4.5 enables us to

explore all possible data structures. For any combi-

nation of e.g. row-, column- and the regular diagonal-

wise storage of the three implicitly sparse matrices,

the unimodular transformation that changes the di-

rection of the access patterns accordingly can be de-

termined. The result of this approach is shown in

�gure 8:

For example, in case row-, column- and row-wise

access patterns are desired for matrices A, B and

C respectively, ~u = (0; 0; 1) results which, not sur-

prisingly, gives rise to the unimodular transforma-

tion U = I. Consequently, a tile is placed on the

row-column-row combination. Note that, for exam-

ple, all combination with row- and column-wise ac-

cess patterns forA andB respectively are possible for

~u = (0; 0; 1) because the resulting scalar-wise access

patterns for C matches all three directions. As an-

other example, because reshaping for diagonal-wise

access pattern for B and C, while keeping the ac-

cess patterns of A row-wise, results in the following

echelon reduction R �A = S, where rank(S) = 3, the

method fails and no tile appears at the corresponding

position:

0

@

1 0 0

0 0 1

0 1 1

1

A

�

0

@

1 0 1

0 �1 �1

0 1 0

1

A

=

0

@

1 0 1

0 1 0

0 0 �1

1

A

A

B

C

Row Column Diagonal
Row

Column
Diagonal

Row

Column

Diagonal

Figure 8: Matrix Multiplication

Discussions of the implementations of some of these

variants can be found in e.g. [9, 18, 20, 23].

6 Future Research

In this paper we have presented a reshaping method

which, for di�erent occurrences in a perfectly nested

loop, constructs a unimodular transformation that

changes a direction of the access patterns of these

occurrences into a desired direction. This reshaping

method is necessary for the selection of compact data

structures for implicitly sparse matrices that enables

the generation of e�cient sparse codes. For a simple

fragment, the method can be used for an exhaustive

search of the possible data structures for the di�erent

occurrences. However, since such an approach would

induce an unacceptable increase of compile-time for

real programs, a strategy to control the reshaping in

combination with data structure selection must be

developed.

Presently, we are studying the possibility to use the

theory of this paper, that has been studied in the

context of automatic conversion of dense programs

into sparse code, to solve other kinds of problems.

For instance, since for vector computers it is often

desirable to have stride-1 accesses in the innermost

loop, the method can be extended so that all accesses

of several multi-dimensional arrays are along the �rst

dimension.

The ideas of this paper have been incorporated in

a prototype restructuring compiler MT1 [8]. Apart

from a reshaping method, the compiler must also be

able to isolate particular regions of the index set of

the matrix in order to exploit characteristics of the

nonzero structure of the matrix. In a forthcoming pa-

per [12], we will present an execution set partitioning

transformation that can be used for this purpose.

References

[1] Randy Allen and Ken Kennedy. Automatic trans-

lation of fortran programs to vector form. ACM

Transactions on Programming Languages and Sys-

tems, Volume 9:491{542, 1987.

[2] Corinne Ancourt and Francois Irigoin. Scan-

ning polyhedra with do loops. In Proceedings of

Third ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 39{50,

1989.

[3] U. Banerjee. Dependence Analysis for Supercomput-

ing. Kluwer Academic Publishers, Boston, 1988.

27.12

[4] U. Banerjee. Unimodular transformations of double

loops. In Proceedings of Third Workshop on Lan-

guages and Compilers for Parallel Computing, 1990.

[5] U. Banerjee. Loop Transformations for Restructur-

ing Compilers: The Foundations. Kluwer Academic

Publishers, Boston, 1993.

[6] Aart J.C. Bik and Harry A.G. Wijsho�. Advanced

compiler optimizations for sparse computations. In

Proceedings of Supercomputing 93, pages 430{439,

1993.

[7] Aart J.C. Bik and Harry A.G. Wijsho�. Compila-

tion techniques for sparse matrix computations. In

Proceedings of the International Conference on Su-

percomputing, pages 416{424, 1993.

[8] Aart J.C. Bik and Harry A.G. Wijsho�. MT1: A

prototype restructuring compiler. Technical Report

no. 93-32, Dept. of Computer Science, Leiden Uni-

versity, 1993.

[9] Aart J.C. Bik and Harry A.G. Wijsho�. On auto-

matic data structure selection and code generation

for sparse computations. In Proceedings of the Sixth

International Workshop on Languages and Compil-

ers for Parallel Computing, pages 57{75, 1993. Lec-

ture Notes in Computer Science, No. 768.

[10] Aart J.C. Bik and Harry A.G. Wijsho�. Nonzero

structure analysis. In Proceedings of the Interna-

tional Conference on Supercomputing, 1994. To ap-

pear.

[11] Aart J.C. Bik and Harry A.G. Wijsho�. On a com-

pletion method for unimodular matrices. Technical

Report no. 94-14, Dept. of Computer Science, Lei-

den University, 1994.

[12] Aart J.C. Bik and Harry A.G. Wijsho�. On strate-

gies for generating sparse codes. Technical Report

In Progress, Dept. of Computer Science, Leiden Uni-

versity, 1994.

[13] George B. Dantzig and B. Curtis Eaves. Fourier-

Motzkin elimination and its dual. Journal of Com-

binatorial Theory, Volume 14:288{297, 1973.

[14] David S. Dodson, Roger G. Grimes, and John G.

Lewis. Algorithm 692: Model implementation and

test package for the sparse linear algebra subpro-

grams. ACM Transactions on Mathematical Soft-

ware, Volume 17:264{272, 1991.

[15] Michael L. Dowling. Optimal code parallelization

using unimodular transformations. Parallel Com-

puting, Volume 16:157{171, 1990.

[16] I.S. Du�, A.M. Erisman, and J.K. Reid. Direct

Methods for Sparse Matrices. Oxford Science Publi-

cations, 1990.

[17] I.S. Du�, Roger G. Grimes, and John G. Lewis.

Sparse matrix test problems. ACM Transactions on

Mathematical Software, Volume 15:1{14, 1989.

[18] Fred G. Gustavson. Two fast algorithms for sparse

matrices: Multiplication and permuted transposi-

tion. ACM Transactions on Mathematical Software,

Volume 4:250{269, 1978.

[19] Wei Li and Keshav Pingali. A singular loop transfor-

mation framework based on non-singular matrices.

In Proceedings of the Fifth Workshop on Languages

and Compilers for Parallel Computing, 1992.

[20] John Michael McNamee. Algorithm 408: A sparse

matrix package. Communications of the ACM, pages

265{273, 1971.

[21] Morris Newman. Integral Matrices. Academic Press,

New York, 1972. Pure and Applied Mathematics,

Volume 45.

[22] David A. Padua and Michael J. Wolfe. Advanced

compiler optimizations for supercomputers. Com-

munications of the ACM, pages 1184{1201, 1986.

[23] Sergio Pissanetsky. Sparse Matrix Technology. Aca-

demic Press, London, 1984.

[24] C.D. Polychronoupolos. Parallel Programming and

Compilers. Kluwer Academic Publishers, Boston,

1988.

[25] Michael E. Wolf and Monica S. Lam. A data local-

ity optimizing algorithm. In Proceedings ACM SIG-

PLAN 91 Conference on Programming Languages

Design and Implementation, pages 30{44, 1991.

[26] Michael E. Wolf and Monica S. Lam. A loop trans-

formation theory and an algorithm to maximize par-

allelism. IEEE Transactions on Parallel and Dis-

tributed Algorithms, pages 452{471, 1991.

[27] Michael J. Wolfe. Loop skewing: The wavefront

method revisited. International Journal of Parallel

Programming, Volume 15:279{293, 1986.

[28] Michael J. Wolfe. Optimizing Supercompilers for Su-

percomputers. Pitman, London, 1989.

[29] H. Zima. Supercompilers for Parallel and Vector

Computers. ACM Press, New York, 1990.

[30] Zahari Zlatev. Computational Methods for General

Sparse Matrices. Kluwer Academic Publishers, 1991.

27.13

