
On the use of Graph Grammars for de�ning

the Syntax of Graphical Languages

�

J. Rekers

Department of Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

email: rekers@wi.leidenuniv.nl

ABSTRACT

In order to implement graphical editors which allow

both for structured and free editing, a parsing algorithm

is needed which can analyze a diagram according to a

graphical syntax, and derive the structure depicted.

We propose to split this analysis in two phases. The

�rst phase reads the picture objects as they were drawn,

determines the spatial relations between them, and

stores the whole in a graph. The second phase of the

analysis searches this graph for patterns which form con-

structs of the language under consideration, and gener-

ates an abstract syntax graph of the depicted structure.

We investigate whether graph grammars are a suit-

able formalism to de�ne both graphs and to specify

the translations between the two. The description of

the translation would de�ne the graphical syntax of L;

graph rewriting according to this description would im-

plement the corresponding graphical parser which per-

forms the second phase of the analysis.

1 INTRODUCTION AND MOTIVATION

Workstations with high-resolution displays are more

and more common. These displays provide superb ca-

pabilities for the display of graphics, and graphical lan-

guages which make use of these capabilities are emerg-

ing. Programming environments which o�er support for

graphical languages often use a syntax-directed graph-

ical editor as input medium. The data structure as it

lives internally in such an editor is speci�c for the graph-

ical language L under consideration and is often is an

abstract syntax graph. This graph is updated directly

by the edit operations issued by the user. The architec-

ture of such an editor can be depicted as in Fig. 1. It

has as major advantage that no parsing is necessary and

that syntactically incorrect graphs are impossible. Ex-

�

Presented at the Colloquium on Graph Transformation

and its application in Computer Science, Palma de Mal-

lorca, Spain, March 1994. Also available as technical report

94-11, Leiden University, ftp site ftp.wi.leidenuniv.nl, �le

pub/cs-techreports/tr94-11.ps.gz

abstract
syntax
graph L

graph
rewriting

pretty
printing

graphical editor
editing
commands

Figure 1: A syntax-directed editor for the graphical lan-

guage L

abstract
syntax
graph L

graph
rewriting

spatial
relations
graph

graph
rewriting

displaying

unstructured
editing
commands

pretty
printing

parsing

structured
editing
commands

graphical editor

Figure 2: A hybrid editor for the graphical language L

amples of graphical programming environments which

work according to this model are [13] and [4].

However, just as pure syntax-directed editors have

been a failure for textual languages, they will be for

graphical languages. Users of an editor need absolute

freedom in the order in which they develop their dia-

grams; structured support on demand is welcome, but

shouldn't be a straight-jacket as it is in a pure syntax-

directed editor. We strive for a hybrid editor which �lls

both the need for free editing as for structured help.

Our approach to realize such a hybrid editor is to in-

troduce an intermediate level which is not speci�c for

the graphical language L. Graphs are used again for the

representation at this level, but the nodes are pictorial

objects like boxes, circles, arrows and strings. The edges

in this graph are the spatial relations between these ob-

jects, like contains, connects, touches and labels. The

1

architecture of the graphical editor becomes as depicted

in Fig. 2. Here the user can use structured commands in

terms of L, but can also perform unrestricted modi�ca-

tions to the picture with so-called unstructured editing

commands. This means however that graphical syntax

analysis is needed at a certain moment in order to dis-

cover the structure depicted.

We propose to split this analysis in two phases, cor-

responding to the representation levels of the hybrid

graphical editor of Fig. 2. The unstructured edit com-

mands create or modify graphical objects. The coordi-

nates and shapes of these objects are in the �rst phase

of the analysis used to determine the spatial relations

between these objects and the other objects in the di-

agram. We call this process graphical scanning and it

generates the spatial relations graph of Fig. 2. In the

second phase of the analysis patterns in the spatial re-

lations graph are used to derive constructs in terms of

the graphical language L. We call this process graphical

parsing and it generates the abstract syntax graph of

Fig. 2. If the user applies structured editing commands

to modify the abstract syntax graph directly, the spa-

tial relations graph must be updated also. This means

that some kind of pretty printing is necessary in order

to perform the reverse mapping.

We attempt in this paper to apply graph grammars

to de�ne the graphs at both levels and to specify the

translation between the two levels. The description of

the translation would de�ne the graphical syntax of L;

graph rewriting according to this description would im-

plement the corresponding graphical parser.

We limit our work to diagram-like pictures, the kind

which can be drawn with graphical editors like idraw,

xfig or MacDraw; we have no intention of processing

bitmap-based pictures. Neither do we, at this moment,

consider incremental parsing of pictures.

1.1 Organization of the paper

Section 2 explains the di�erent representations of a dia-

gram in more detail and explains which kind of transla-

tions must be performed between the levels. Next, sec-

tion 3 applies the graph grammar formalism progres

to de�ne the translation between two of the levels. Sec-

tion 4 provides some entry points to other proposals for

de�ning graphical syntax. Finally, section 5 comments

on the speci�cation achieved and discusses the applica-

tion of graph grammars in general to the speci�cation

of graphical languages.

2 PICTURE REPRESENTATIONS

The running example of this paper will be the de�nition

of the syntax of the language of Deterministic Finite

Automata (DFA's). For example,

1 2 3 4 5/ * * /
rest rest restrest

is a well-formed sentence in the language of DFA's, and

01

2 3

4

56

a
b

c

a
b

a

bc

b
c

a
c

is syntactically correct, but

a
b0 1

is not, and neither is

A Br

A sentence like

1

3

2a

a

is syntactically correct, but it is incorrect according to

the static semantics of DFA's (it is non-deterministic).

As mentioned in the introduction, we split the anal-

ysis of a picture according to a graphical syntax in two

phases. As a result, there will be three representation

levels which are increasingly abstract.

Level 1: Picture Objects

The �rst level describes the picture in a general format.

The objects at this level are, for example, Text, Ellipse,

B-Spline and Line, and these objects have attributes

describing their physical appearance in detail. At this

moment, it is not fully determined how to represent this

level, but we imagine something like the following data

structures:

Text B-spline

Font-Family Pen-Kind

Font-Size Foreground-Color

Foreground-Color Background-Color

StartPos Position*

String

Box

Circle Pen-Kind

Pen-Kind Foreground-Color

Foreground-Color Background-Color

Background-Color LowerLeftPosition

Center-Position UpperRightPosition

Radius

Line

: : :

2

d

Circle Arrow String

Pict

contains

connects

labels

text

1

N 1

1

Figure 3: The (level 2) representation of pictorial ob-

jects and their spatial relations

Everything needed to (re)draw the picture is available

at this level, we only abstract from the speci�c graphical

editor used.

Level 2: Spatial Relations

At the second level we abstract from attributes which

are not of interest for the graphical language L we want

to recognize. These are for DFA's the color and font

information.

More importantly, we use the positional information

of the picture objects to derive higher level spatial re-

lations between the objects. Such relations could, for

example, be contains, touches, connects or labels. Once

these relations are established, we can also abstract from

the speci�c locations and sizes of the objects.

The data structures at the second level can be ex-

pressed as in Fig. 3 (we use an Entity-Relationship

model in the notation of [2]). We model the spatial

relations graph for DFA's with three kinds of objects,

Circle, Arrow and String, which all are specializations of

the more general object Pict. A circle can contain other

picture objects, an arrow can connect two picture ob-

jects, and a string can label other picture objects. The

string object has the string value itself as attribute. For

other graphical languages, the spatial relations graph

will di�er of course.

The spatial relations at level 2 are speci�c for L, but

the derivation of them from level 1 objects is indepen-

dent of the context in which they appear. This is equiv-

alent to the process of tokenization in the textual world,

which is also speci�c for the language tokenized but

independent of the context in which recognized string

appears. The objects and relationships at level 2 can

somehow be seen as the graphical counterparts of lexi-

cal tokens.

It is necessary to specify which objects, attributes

and spatial relations are relevant for L, and how these

relations can be derived from the positional information

of the picture objects of level 1. The former is speci�c

for L, but the latter might be shared by several graphical

syntaxes.

The computations involved to discover these spatial

relations will be of the kind: \is this a point on that

consists DFA state

Edge

Automaton

State

Final State

label

label

d
1 N

N M

Figure 4: The (level 3) data structure of DFA's

line?", \do these two shapes overlap?", or \are these

two objects near to each other?". The de�nition of the

spatial relations is thus expressed in terms of coordi-

nates and shapes and will need some geometry-like for-

malism. We are currently investigating the needs in this

area in more detail and will not go deeper into them in

this paper.

Level 3: The language L

At the third level the abstract syntax of the graphical

language L itself appears. For the abstract syntax of

DFA's one could imagine a data structure as shown in

Fig. 4. Entities at this level are automaton states and

the labeled edges between DFA states are relationships.

As a single diagram can contain more than one automa-

ton, we introduce a an Automaton entity which takes

all states contained in it together. Note that there does

not exist any relation yet between the graphs at level

2 and the graphs at level 3. It is exactly this relation

which we seek to de�ne in the graphical syntax of the

language.

The process of deriving a level 3 graph from level 2

pictorial objects and spatial relations is roughly equiv-

alent to the parsing process of the textual world, where

combinations of tokens and their relative positions are

used to derive the abstract syntax tree.

There is a need for a context-free kind of grammar to

translate the objects and relations in the picture world

of level 2 to objects and relations in the L world of level

3. As both representation are graphs, it seems most ap-

propriate to express the translation with graph rewrite

rules and to apply a graph replacement system here.

However, these systems describe a graph transforma-

tion instead of a translation from one kind of graphs to

another. This means that, in order to apply a graph

replacement system, we have to unify the representa-

tions at level 2 and 3 to a single representation. The

distinction between the two levels will in that case be-

come less clear. This approach will be pursued in the

next section.

3

Back-links

Instances at all levels should keep so-called back-links

to the objects and/or relationships at lower levels from

which they were derived. This is necessary as informa-

tion is lost in the abstraction, while this information

is vital to obtain a graphical representation of an in-

stance of L again. This also means that, if L instances

are modi�ed or created directly, that some layout algo-

rithm must create structures at lower levels to represent

them.

3 PARSING WITH A GRAPH GRAMMAR

There are a number of possibilities to express the trans-

formation between the graphical level 2 and the DFA

constructs of level 3. In this paper we will use graph

grammars and will use the graph grammar formalism

progres [3, 15] to express this translation. A pro-

gres speci�cation has two parts, a static part in which

the types of the nodes and the allowed edges are de-

�ned, and a dynamic part in which the allowed graph

transformations are speci�ed. We start with the data

de�nition part.

3.1 Data structure de�nition

We simulate the two distinct graphs by de�ning two

top classes, Pict and DFAobject, for the di�erent levels.

The abstract syntax of the spatial relations level (Fig. 3)

can be expressed in progres as follows:

section NODE_CLASSES;

node class Pict end;

end;

section NODE_TYPES;

node type Circle : Pict end;

node type Arrow : Pict end;

node type Text : Pict

external text: STRING

end;

end;

section EDGE_TYPES;

edge type contains: Circle -> Pict;

edge type labels: Text -> Pict;

edge type startsin: Arrow -> Pict;

edge type endsin: Arrow -> Pict;

end;

The allowed objects in the input graph are circles, ar-

rows and strings. These are all specializations of Pict.

Circles can contain other objects, strings can label other

objects and arrows can connect objects. Progres does

not support three-way relations and we replaced the

Connect relationship of our EER de�nition of Fig. 3

by two edges, startsin and endsin. In order to provide

1 2

a
b

Figure 5: A simple DFA

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

Figure 6: The spatial relations graph of Fig .5

a 1 b 2
from

to

from to

consists consists

Edge State Edge FinalState

Automaton

Figure 7: The internal representation of Fig .5

an example of an instance of this data structure, the

spatial relations graph for the DFA of Fig. 5 is depicted

in Fig. 6.

The abstract syntax of DFA's is expressed as follows

in progres:

section NODE_CLASSES;

node class DFAobject end;

node class DFAstate is a DFAobject

external label: STRING;

end;

end;

section NODE_TYPES;

node type Automaton: DFAobject end;

node type State: DFAstate end;

node type Finalstate: DFAstate end;

node type Edge: DFAobject

external label: STRING;

end;

end;

section EDGE_TYPES;

edge type consists: Automaton -> DFAstate;

edge type from: Edge -> DFAstate;

edge type to: Edge -> DFAstate;

end;

The output of the parser will be a graph of DFA states

and edges with their connections. We also introduce

an Automaton object which has a consists relation with

4

every state belonging to the automaton. This automa-

ton object and the the relations it must obtain with all

states mainly serves to make the de�nition of the graph-

ical syntax harder; we introduced it as a challenge to the

syntax speci�cation formalism. We represent the DFA

edge relationship of Fig. 4 by a progres type. Accord-

ing to this data structure, the DFA of Fig. 5 would be

represented by the graph of Fig. 7.

Finally, we need to de�ne the back-links between the

objects in the DFA world and the graphical objects from

which they were derived. These back-links will also be

used in the translation from the level 2 objects to level

3 objects.

section EDGE_TYPES;

edge type drawn_by: DFAobject -> Pict;

end;

3.2 Translation rules

In the graph transformation part we are �nally able to

express what DFA states and DFA edges look like and

how they are to be composed out of pictorial objects

and their spatial relations. That would de�ne the cor-

respondence between the graph of Fig. 6 and the one of

Fig. 5.

3.2.1 Recognizing DFA states

The �rst rule recognizes a double circle which contains

a string (eg.

kh

3

) as being a �nal DFA state:

production ParseDFA =

:=

‘1: Circle

not UsedBy

contains
2’ = ‘2

contains
3’ = ‘3

4’: FinalState

drawn_by

1’ = ‘1

contains
‘2: Circle

contains
‘3: String

transfer 4'.label := `3.text;

end;

restriction UsedBy: DFAobject =

with <-drawn_by--

end;

The left-hand side of a progres rule denotes the pat-

tern to be recognized in the existing graph. For each in-

stance in the graph that matches this pattern, the right-

hand side states what modi�cation must be performed

on it. The transformation speci�ed above introduces a

node for a DFAstate and relates it to the outer circle

recognized in the left-hand side. By using the construct

1' = `1 we state that node `1 and all its connections

with the rest of the graph are to be left intact. This

means that we only add to the existing graph, no infor-

mation is deleted. The line \transfer label of 4'

:= `3.text" provides the DFA state recognized with

its label, which is the text of the string contained in the

double circle.

In order to prevent the above rule to match in�nitely

often we add the limitation that only pictorial objects

that haven't been used yet can be used as left-hand

side. This is expressed by the restriction UsedBy which

returns the set of DFAobjects which have a drawn by

relation with the outer circle recognized. The above

production may be �red only if this set is empty. Fig. 8

shows the graph after having recognized the �nal state

in the graph of Fig. 6.

The rule to recognize ordinary DFA states (eg.

k

5

)

can be formulated as follows:

production ParseDFA =

:=

‘2: Circle
contains

not Container not UsedBy

’3: String

4’: State

drawn_by

2’ = ‘2
contains

3’ = ‘3

transfer 4'.label := `3.text;

end;

restriction Container: Pict =

with <-contains--

end;

This rule uses two restrictions, one to disallow multiple

matches of the same pictorial information and one to

prevent that the inner circle of a double circle is recog-

nized as being an ordinary state. Fig. 9 shows the graph

after having recognized the ordinary state.

3.2.2 Recognizing DFA edges

Next, we can formulate the rule to recognize DFA edges

(eg.

a

�!) in the picture. This rule uses the drawn by

relation to learn which DFA states are connected by

the arrow.

production ParseDFA =

5

2

FinalState

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

drawn_by

Figure 8: Final state 2 recognized

1 2

State FinalState

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

drawn_by drawn_by

Figure 9: Ordinary state 1 recognized

1 b 2

from to
State Edge FinalState

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

drawn_by drawn_by drawn_by

Figure 10: Edge b recognized

a 1 b 2
from

to

from to
Edge State Edge FinalState

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

drawn_by drawn_by drawn_by drawn_by

Figure 11: Edge a recognized

a 1 b 2
from

to

from to

consists consists

Edge State Edge FinalState

Automaton

labels contains labels contains

containsendsinstartsin
startsin

endsin

circlecirclearrowcirclearrow

stringstringstringstring a 1 b 2

drawn_by drawn_by drawn_by drawn_by

Figure 12: The automaton object recognized

‘2: Pict
startsin

‘1: Arrow
endsin

‘3: Pict

‘5: DFAstate ‘6: DFAstate

drawn_by drawn_by

‘4: String

labels

:=

5’ = ‘5 7’: Edge 6’ = ‘6

drawn_by

from to

1’ = ‘1

not UsedBy

2’ = ‘2
startsin endsin

3’ = ‘3

4’ = ‘4

labels

transfer 7'.label := `4.text;

end;

This rule states \if a labeled arrow connects two picto-

rial objects which have been recognized as being DFA

states, then the arrow represents a DFA edge between

those states". Note the use of the drawn by edge in this

transformation rule. The arrow has a startsin and an

endsin relation with two objects of kind Pict. By stat-

ing that these two must have a drawn by relation with

two states again, we locate the two states which must

be connected by the edge recognized in the arrow. We

use the superclass Pict instead of Circle as object kind

here, in order not to mention once more that states are

depicted by a circle. Figures 10 and 11 show the suc-

cessive graphs after the recognition of the two edges.

3.2.3 Taking the automaton together

Finally, we need to take all connected DFA states to-

gether under a single Automaton object. We specify

this by �rst stating that every DFA state belongs to

some automaton, and next by stating that DFA states

which are connected by a DFA edge belong to the same

6

automaton. This leaves us with as many automata as

there are distinct subgraphs in the picture.

production ParseDFA =

‘1: DFAstate := 1’ = ‘1

Automaton

consists

end;

production ParseDFA =

‘1: DFAstate
from

‘2: DFAedge
to

‘3: DFAstate

‘4: Automaton

consists

:=

from
2’ = ‘2

to

4’ = ‘4
consists consists

1’ = ‘1 3’ = ‘3

‘5: Automaton

consists

condition not (`4 = `5);

embedding redirect --consists-> from `5 to '4;

end;

Fig. 12 shows the �nal graph, after having applied all

translation rules. This leaves us indeed with the desired

graph of Fig. 7, annotated with back-links towards the

objects in the spatial relations graph.

3.3 Discussion

Progres is well �t to describe the parsing process of

DFA's as a transformation of graphs. The speci�cation

of this derivation only took a few rules and we feel that

formulating graph transformation rules in a graphical

manner improves the comprehensibility greatly.

Still, due to the fact that a graph grammar is a general

tool and not speci�ed towards the de�nition of graphi-

cal syntax, the rules need to express more than strictly

necessary, as convenient defaults specialized towards the

de�nition of graphical syntax are not available.

Evaluating the graph-grammar approach we consider

the following points positive in it:

� The de�nition of graphical objects and their rela-

tions in a data de�nition formalism which allows

for sub-classing and attributes leads to short and

expressive de�nitions.

� The de�nition of the structure of the input graph

and that of the output graph in a single formalism

minimizes the number of formalisms which need to

be understood.

� The fact that the grammar rules themselves can be

de�ned in a graphical manner provides good insight

in the sometimes complicated rules.

� The transformation rules are very powerful in terms

of the structures they can match and the allowed

graph transformations they can prescribe.

We consider the following points negative in our pro-

gres de�nition of the graphical syntax of DFA's:

� There is no distinction between the universe in

which the input graph exists and the one in which

the output graph is generated. The only distinction

between the two are the names used by the writer

of a grammar.

� The creation of the drawn by relation and the

checking for it is cumbersome. This should be han-

dled automatically by the underlying implementa-

tion.

� The spatial relations only exist between graphical

objects; This forces the transformation rules to fol-

low the drawn by relations.

� The graphical part of the transformation rules lacks

expressiveness, and there often is a need for addi-

tional constraints or actions which need to be de-

�ned in a textual manner.

4 RELATED WORK

The approach of Helm and Marriott [10, 11] towards

graphical parsing is to de�ne the graphical syntax en-

tirely in a logic formalism. They do not split the transla-

tion in separate phases. Their parsers are implemented

by a constraint solver such as prolog.

Wittenburg et al. [16, 17, 18] propose relational uni-

�cation grammars to specify the parsing of pictorial ob-

jects and their spatial relations. They implement the

parsers de�ned by these grammars with a chart-based

relational parsing algorithm which has been developed

by them also.

Golin et al. [5, 6, 7, 8] present a compiler generator

for visual languages which is based on the notion of pic-

ture layout grammars. In such a grammar a syntax rule

is limited to a single spatial relation which connects two

symbols. This generally leads to a large number of non-

terminals and syntax rules. Symbols may be de�ned

as being \remote"; these result in additional connec-

tions in the derivation tree, e�ectively turning it into a

graph. Spatial relations are based on the bounding box

of graphical objects, non-terminals obtain the enclos-

ing bounding box of their constituents. Picture layout

grammars have been used successfully to de�ne the syn-

tax of several graphical languages.

7

Our approach to graphical parsing is to specify the

syntax in a graph grammar. For a general introduction

to this �eld the proceedings of the various workshops

on graph grammars can best be scanned; [1] is a good

entry point. A well known implementation of graph

grammars is the progres system [3, 15].

G�ottler [9] also describes the application of graph

grammars to the processing of graphical languages. He

describes how diagrams can be represented by graphs

and how graph grammar productions implement the

edit operations to the diagrams represented. This is

close to our spatial relations graph and the processing

of the \unstructured edit commands" of Fig. 2 in it.

G�ottler stops here and does not address the next step

in the analysis, the step which performs graphical pars-

ing and derives the structure depicted by the diagram.

Kaul [12] describes a class of context-free precedence

graph grammars for which he provides a linear time

parsing algorithm. This parser produces a derivation

tree according to the production rules in the graph

grammar, and the technique could be very useful for

the implementation of our graphical parsers. However,

the fact that the graphs must reduce to a single non-

terminal makes it harder to formulate the syntax of a

graphical language. Furthermore, the spatial relations,

on which parsing is based, may in our setting be am-

biguous. Only a parser that can backtrack or that can

process alternative derivations in parallel, is able to �nd

correct derivations for these graphs (a future publication

of ours discusses the problems related to parser imple-

mentation in more detail [14]). Therefore, it seems that

the techniques proposed by Kaul are not directly appli-

cable to our problem setting.

5 CONCLUSIONS AND FUTURE WORK

We want to develop a graphical parsing algorithmwhich

is able to analyze a diagram according to a graphical

syntax and which derives the structure depicted by that

diagram. Such parsing algorithm would enable graph-

ical editors which allow both structured and unstruc-

tured editing.

We have split the de�nition of the syntax of graphical

languages in two parts, one part to de�ne the relevant

pictorial objects and their spatial relations, and a second

part which de�nes how constructs in the language to

be recognized are composed of these pictorial objects

and relations. We consider this distinction to be very

useful, as the two need entirely di�erent de�nition and

implementation strategies.

We have applied graph grammars to de�ne both data

structures and the transformation between the two, thus

de�ning a graphical parser. We have carried out an ex-

periment with a very simple graphical language and con-

sider the results positive. However, it is unclear whether

more complicated graphical grammars can be expressed

with the same ease. This is subject to further research.

It could be pro�table to use graph grammars to de-

�ne the graphical grammars only, and not to use graph

rewriting to implement the parser. Due to the general

nature of graph rewriting, we expect this to be less e�-

cient than a more speci�c graphical parsing algorithm.

We can imagine that a translation of our graph gram-

mar transformation rules to the relational grammars of

Wittenburg [17] could lead to more e�cient parsing.

ACKNOWLEDGEMENT

I would like to thank Gregor Engels for his numerous

stimulating remarks and ideas.

REFERENCES

[1] Ehrig, Kreowski, and Rozenberg, editors. 4th inter-

national workshop on Graph Grammars and their

application to Computer Science, LNCS 532, Bre-

men, Germany, 1990. Springer Verlag.

[2] R. Elmasri and S.B. Navathe. Fundamentals of

Database Systems. Benjamin Cummings, 1989.

[3] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and

A. Sch�urr. Building integrated software develop-

ment environments { part 1: Tool speci�cation.

ACM Transactions on Software Engineering and

Methodology, 1(2):135{167, 1992.

[4] G. Engels and P. L�ohr-Richter. A highly integra-

ted environment to support conceptual database

design. In Proceedings of the 5th international

workshop on Computer-Aided Software Engineer-

ing { CASE'92, pages 19{22, Montr�eal, Qu�ebec,

Canada, 1992.

[5] E. J. Golin.A method for the speci�cation and pars-

ing of visual languages. PhD thesis, Brown Univer-

sity, May 1991.

[6] E. J. Golin. Parsing visual languages with picture

layout grammars. Journal of Visual Languages and

Computing, 2(4):371{394, December 1991.

[7] E.J. Golin and T. Magliery. A compiler gener-

ator for visual languages. In Proceedings 1993

IEEE Symposium Visual Languages, pages 314{

321, Bergen, Norway, August 1993.

[8] E.J. Golin and S.P. Reiss. The speci�cation of vi-

sual language syntax. Journal of Visual Languages

and Computing, 1(2):141{156, June 1990.

[9] H. G�ottler. Graph grammars, a new paradigm for

implementing visual languages. In C. Ghezzi and

8

J. A. McDermid, editors, the 2nd European Soft-

ware Engineering Conference (ESEC'89), LNCS

387, pages 336{350. Springer{Verlag, 1989. Also

in: Proceedings Eurographics 1989, pages 505{516.

[10] R. Helm and K. Marriott. Declarative speci�ca-

tion of visual languages. In Proceedings 1990 IEEE

Workshop Visual Languages, pages 98{103, Skokie,

Illinois, October 1990. Extended version in techni-

cal report RC 15813 of the IBM T.J. Watson Re-

search Center.

[11] R. Helm and K. Marriott. A declarative speci�ca-

tion and semantics for visual languages. Journal

of Visual Languages and Computing, 2(4):311{332,

December 1991.

[12] M. Kaul. Parsing of graphs in linear time. In 2nd

international workshop on Graph Grammars and

their application to Computer Science, LNCS 153,

pages 206{218, 1982.

[13] M.F. Kleyn and J.C. Brown. A high level language

for specifying graph based languages and their pro-

gramming environments. In Proceedings 15th inter-

national conference on software engineering, pages

324{335, Baltimore, Maryland, 1993.

[14] J. Rekers. Graphical de�nition of graphical syntax.

Submitted for presentation at the IEEE/CS Sym-

posium on Visual Languages (VL'94), St. Louis,

Missouri, October 1994.

[15] A. Sch�urr. Progress: A VHL{language based on

graph grammars. In Ehrig, Kreowski, and Rozen-

berg, editors, 4th international workshop on Graph

Grammars and their application to Computer Sci-

ence, LNCS 532, pages 641{659. Springer Verlag,

1990.

[16] K. Wittenburg. Parsing with relational uni�ca-

tion grammars. In Proceedings of the second In-

ternational Workshop on Parsing Technologies {

IWPT'91, pages 225{234, Cancun, Mexico, 1991.

Association for Computational Linguistics.

[17] K. Wittenburg and L. Weitzman. Visual grammars

and incremental parsing for interface languages.

In Proceedings 1990 IEEE Workshop Visual Lan-

guages, pages 111{118, Skokie, Illinois, October

1990.

[18] K. Wittenburg, L. Weitzman, and J. Talley. Uni-

�cation{based grammars and tabular parsing for

graphical languages. Journal of Visual Languages

and Computing, 2(4):347{370, December 1991.

9

