Deciding the NTS Property of
Context-Free Grammars

Joost Engelfriet *

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Abstract. An algorithm is presented that is a variation of the one of
Senizergues in [4]. It decides the NonTerminal Separation property of
context-free grammars in polynomial time. A straightforward generaliza-
tion of the algorithm decides the N'T'S property of extended context-free
grammars (but not in polynomial time).

It was shown in [4] that it is decidable whether an arbitrary context-free gram-
mar is NTS. The algorithm in [4] takes exponential time in the worst case. Tt
was recently shown in [3] that the N'TS property can in fact be decided in poly-
nomial time. This is not stated as such in [3], but immediately follows from
the more general result, shown in Proposition 3.8 of [3], that it is decidable in
polynomial time whether a monadic semi-Thue system is weakly confluent: the
reversed productions of a (A-free and chain-free) context-free grammar form a
monadic semi-Thue system that is weakly confluent if and only if the context-free
grammar is NTS.

Here we present an independent proof of the polynomial time decidability of
the NTS property that is a variation of the decidability algorithm in [4]. We also
show that the N'TS property is decidable for extended context-free grammars,
i.e., context-free grammars of which the productions have regular expressions as
right-hand sides. We first recall some definitions and facts (see [1, 4]).

We consider context-free grammars G = (X, V, P, Z) where X is the set of
terminals, V' the set of nonterminals, P the set of productions, and Z C V the
set of initial nonterminals. We assume that G is A-free and chain-free (i.e., for
every production A — «, o] > 1 and if || = 1 then o € X). Such a grammar
is NTS (nonterminally separated) if the following holds: for every A, B € V and
a, B,y € (XUVY if A =" afyand B — Fisin P, then A =* aBy. Note that
this does not depend on 7.

Let G = (X,V, P, Z) be a context-free grammar. A pair {«, 5) with «, 5 €
(XUV)* is called a shift-reduce configuration. For two shift-reduce configurations
we define the shift-reduce step relation b as follows (where o, 3,7 € (X U V)*,
beX,and A eV):

1. {a,08) F {ab, 3)

if no suffix of « is the right-hand side of a production in P, and

* Supported by ESPRIT BR Working Group No.6317 ASMICS

2. (a7, 8) (ad, B)
if A — yisin P, A is the “first” nonterminal that has a production with
right-hand side 7y (where we assume some fixed, but arbitrary order on V),
and 7 is the shortest suffix of ay that is the right-hand side of a production
in P.

A step of type 1 is a shift, and a step of type 2 1s a reduction. We note that, in a
step of type 2, it is irrelevant that v is taken to be the shortest suffix of ay that
is the right-hand side of a production; we might as well take the longest suffix
(or any other choice that makes F deterministic).

For A € V, we define LM(G,4) = {a € (X UV)* | (Aja) F* (AN}
Intuitively, LM(G, A) is the set of strings that are left-most reducible to A,
where a reduction takes place as soon as the right-hand side of a production is
detected. Obviously, if & € LM(G, A) then A =* «, but in general this is not
true in the other direction. If GG is an NTS grammar then o € LM(G, A) if and
only if A =* « (also because (i is A-free and chain-free). It should be clear from
the definition of F that LM(G, A) is a deterministic context-free language over
XUV.

Let A€V and o, 8,7 € (X UV)*. Let t be a derivation tree with root label
A and yield(?) = afy, and let M be the set of leaves of ¢ that correspond to the
indicated occurrence of § in yield(?) (the “marked” leaves). Then ¢ is said to be
nearly essential for the derivation A =* afy if

1. the root is the only internal node of ¢ that 1s an ancestor of all leaves in M,
and
2. every internal node 1s ancestor of some leaf in M.

In [4] the test for the N'TS property is based on the set of “essential” derivation
trees, which is a finite subset of the (generally infinite) set of nearly essential
derivation trees. For each such essential tree a right- (or left-) linear grammar is
constructed. Since, for a given grammar G, there may exist exponentially many
essential trees (in the size of the grammar), the algorithm in [4] takes exponential
time. Here we will show that it suffices to construct only polynomially many
right- (or left-) linear grammars. For the readers familiar with [4] we give the
following exponential example.

Consider, for n € N, the context-free grammar GG with productions A — aAe,
A — bAc, A — d and A — ¢". Then all the 2" derivation trees for derivations
A =* afy with « € {a,b}"d, p = ¢", and v = A, are essential. Note that this
grammar is not NTS; adding the constant amount of productions A — aA | bA |
cA|dA] AA] alb]|cmakesit NTS.

We now turn to our polynomial time variation of the algorithm of [4]. Tt is
based on the following two facts; the first fact is part of the proofs of Propositions
1 and 2 of [4].

Fact 1. A context-free grammar G = (X, V, P, 7) is NTS iff the following holds,
forall A,BeV and o, 8,7 € (X UV)*:
if A =" afy, B— [isin P, and there is a nearly essential derivation tree for

A =" afy, then aBy € LM(G, A).

Fact 2. Let G = (X,V, P, Z) be a context-free grammar. For every 4 € V and
every production p = (B —), the language F4 , = {aBy | A =" afy and
there is a nearly essential derivation tree for A =* «37} is regular. Moreover, a
right-linear grammar for £ 4 , can be constructed in polynomial time.

Before proving these facts we show that they imply the polynomial time decid-
ability of the N'TS property. It follows from Fact 1 that a grammar G is NTS iff
E4, CLM(G, A) for every A € V and p € P. Consider a fixed A and p. It suf-
fices to show that E4 ,NLM(G, A)° = 0 can be decided in polynomial time. Since
E4 , is regular by Fact 2, and LM(G, A4) is a deterministic context-free language,
the property can in fact be decided in polynomial time, provided grammars (or
automata) for both E4 , and LM(G, A)° can be constructed in polynomial time.
For E4 p this is shown in Fact 2. As observed in [1], a deterministic pushdown
automaton D can be constructed that directly simulates the shift-reduce algo-
rithm recognizing LM(G, A). To decide between shifting or reducing, D should
keep the top-most part of the pushdown « (the first element of the shift-reduce
configuration) in its finite state. Clearly, it suffices that the state contains the
longest suffix of « that is a prefix of a right-hand side of a production of G. Hence
D needs polynomially many states only. From this it easily follows that D can
be constructed in polynomial time. Since G is A-free and chain-free, D always
reads all of its input. Hence, an automaton recognizing LM(G, A)¢ is obtained
by interchanging the final and nonfinal states of D. This shows the polynomial
time decidability of the NTS property. We now prove Facts 1 and 2.

Proof of Fact 1. (Only if) Let G be NTS. If A =* affy and B — Fisin P, then
(since G is NTS) A =" aBy and hence (since G is NTS) aBy € LM(G, 4).

(If) Let the stated condition be true. To show that G is NTS, assume that
A="afyand B— € P. Let t be a derivation tree for A =* a3y and let M
be the set of leaves of ¢ that correspond to the occurrence of 3 in yield(¢). Let
z be the least internal node of ¢ that is a common ancestor of all leaves in M.
Considering the subtree ¢ of ¢ rooted at x we obtain derivations A =* a1 A’y
and A" =* sy, where has label A’ | @ = aj s, and ¥ = v37v1. Now consider
the nearly essential derivation tree ¢/ obtained from ¢ by pruning all subtrees
that are rooted at internal nodes of ¢’ that are not ancestor of any leaf in M.
Clearly, t" is nearly essential for a derivation A’ =* o} fv5 with of =* a2 and
¥, = 2. The stated condition now implies that o4 By, € LM(G, A") and so
A" =* a4 By, Hence A =% ay Ay =" ayay Byhy) =* aqasByayy = aBy. O

Proof of Fact 2. Let G = (X,V,P,Z), A € V,and p = (B —) € P. In
what follows we will construct a (A-free, but not necessarily chain-free) context-
free grammar G’ = (X UV, V', P', Z') for the language E4 , which is itself not
right- or left-linear but from which such a grammar can easily be constructed.
In fact, V/ = {S}UVL UVg with Z/ = {S}, V: NVgr =0, S € V7, UVg, and
the productions of P’ are also partitioned in three parts: productions with left-
hand side 5, right-linear productions that contain nonterminals from V only,
and left-linear productions that contain nonterminals from Vg only. Clearly, any

grammar of this form can be turned into an equivalent right-linear grammar (or
finite automaton) in polynomial time.

Intuitively, a production of P’ with left-hand side .S simulates the production
of P with left-hand side A that is applied at the root of a nearly essential
derivation tree for some A =" afv. Such a production generates the B that
replaces 3, and it generates a prefix of o and a suffix of 4. The right-linear
productions with nonterminals from Vg then generate the remainder of o (from
left to right), and the left-linear productions with nonterminals in Vi generate
the remainder of y (from right to left). The generation of 3 is simulated in the
nonterminals. To this aim every nonterminal from V; contains a prefix of 3,
which is the part of § of which the generation still has to be simulated by this
nonterminal. Similarly every nonterminal from Vg contains a suffix of 5.

Thus, Vi consists of all (Y, L, ¢) where Y € V, L stands for “Left”, and ¢ is
a non-empty prefix of 8. Symmetrically, Vi consists of all (¢, R,Y) where ¢ is
a non-empty suffix of 5, R stands for “Right”, and Y € V. The productions of
P’ are defined as follows (where = always refers to ().

(1) Productions with left-hand side S. For every production 4 — Y7 -- -V} in
P, withY; € XUV for 1 < i<k, P’ contains the following productions.

(1.1) All productions S — Y7 ---Y;_1(Y;, L, ¢} B{¢), R, Y;}Y; 41 - - - Y3 where 1 <
i<j<kY;,Y; €V, and there exists 7 € (X U V)" such that 3 = ¢myp and
Yi41---Yj_1 =" m. Note that in the case that ¢+ 1 = j the last condition means
that G = ¢1).

(1.2) All productions S — Y7 - Y;_1B(¢), R, Y;)Y; 41 - - - Yy where 1 <i < j <k,
Y; € V, and there exists 7 € (X UV)* such that § =7¢ and V; ---Y;_1 = 7.
(1.3) All productions S — Y7 ---Y;_1(Y;, L, $)BYj 41 - - - Y3 where 1 <i < j <k,
Y; € V, and there exists 7 € (X U V)" such that 8 = ¢7 and Y41 ---Y; =% 7.

(1.4) All productions S — Y7---Y;_1BYj41 -+ Y} where 1 < ¢ < j < k and

To explain the intuition behind the above productions, consider a nearly
essential derivation tree for A =* afy with production A — é applied at the
root, and let 6 = Y7 ---Y;. Let M be the set of leaves corresponding to 5.
Then Y7,...,Y;_1 are the symbols of é that label leaves to the left of M, and
Yj41,..., Yy those that label leaves to the right of M. Furthermore, (Y;, L, ¢)
occurs in the production of P’ if and only if ¥; is a nonterminal that generates
both leaves in M and leaves not in M, and ¢ is the sequence of labels of the
generated leaves in M. And a similar statement holds for (¢, R,Y;). This same
intuition also explains the remaining productions.

(2) Productions with left-hand side in V7. For every production Y — Y7 - - Y},
in P, with Y; € XUV for 1 <i <k, P’ contains the following productions.
(2.1) All productions (Y, L,¢) — Y1 - Y;_1(Y;, L, ¢1) where 1 < i< k, YV, € V|
and there exists ¢2 € (X UV)* such that ¢ = ¢1¢2 and Yiy1 -V =™ ¢2. In
the case that ¢ = &k the last condition means that ¢ = ¢;.

(2.2) All productions (Y, L,¢) — Y1 ---Yi_1 where 2 < i< kand Y- Y} =™ ¢.

(3) Productions with left-hand side in Vg. For every production Y — Y7 - - Y},
in P, P’ contains the following productions.

(3.1) All productions (¢, R,Y) — (¢1, R, Y;)Yj41-- Y where 1 < j < kY, €
V, and there exists o5 € (X UV)" such that ¢ = ¢2¢1 and Y7 - Y1 = 4.
In the case that j = 1 the last condition means that ¢ = ¢.

(3.2) All productions (¢, R,Y) — Y41 - - Yy where 1 < j < k—land ¥ ---Y; =*
.

This concludes the construction of the grammar G generating E4 ,. It re-
mains to show that G’ can be constructed in polynomial time from G. Let n be
the size of . Since the number of prefixes and suffixes of 8 is O(n), G’ has O(n?)
nonterminals. Now consider the productions S — Y7 ---Y;_1(Y;, L, ¢) B{¢), R, Y})
Yj41--- Yy of P/, corresponding to the production A — Y7 - - - Y3 of P, as defined
in (1.1) above. There are O(n*) such productions in P’, one for each choice of
i, J, ¢, and . Note that the condition Y;4q---Y;_; =* 7 can be verified in
polynomial time. Similar statements hold for the productions of all other types.
From these remarks it should be clear that G’ can be constructed in polynomial
time. O

We now turn to the decidability of the N'TS property for extended context-free
grammars. An extended context-free grammar (or extended BNF) has produc-
tions of which the right-hand sides are regular expressions over X U V. An al-
ternative way of viewing this is as follows. An extended context-free grammar
is a context-free grammar G = (X, V, P, 7) such that P is infinite and for each
nonterminal B the language Rp = {# € (X UV)* | B — 8 € P} is regular.
The regular languages Rp should be given effectively as regular expressions, fi-
nite automata, or right-linear grammars. In what follows we will assume that a
deterministic finite automaton A is given, with state set Q, initial state go, and
state transition function é : @ x (X UV) — @, and that for each nonterminal B
a set Fp C @ of final states is given, such that, with this set of final states, A
recognizes the language Rp. All the usual definitions for context-free grammars
also apply to extended context-free grammars, including the definition of NTS.

The algorithm that decides the NTS property for extended context-free gram-
mars is a variation of the one above. First of all, it should be clear that Fact 1 is
still true in the extended case (with the same proof). Instead of Fact 2 we will
show the following, closely related, fact.

Fact3. Let G = (X,V,P,Z) be an extended context-free grammar. For all
A, B € V, the language E4 g = {aBy | A =* ofy and there is a nearly
essential derivation tree for A =* a8y, for some § € Rg} is regular. Moreover,
a right-linear grammar for 4 p can be obtained effectively.

First we show, as before, that Facts 1 and 3 imply the decidability of the N'TS
property. By Fact 1, a grammar G is NTS iff £4 p N LM(G, A)¢ = 0 for all
A, B €V. Since F4 p is regular by Fact 3, and since the deterministic context-
free languages are (effectively) closed under complement and intersection with
a regular language, it suffices to show that LM(G, A) can be recognized by a
deterministic pushdown automaton D). As before, D simulates the shift-reduce
algorithm, with the first element « of the shift-reduce configuration on its push-
down. To decide between shifting or reducing, DD keeps in its finite state the

set S of all states ¢ € @ (of the finite automaton A) such that 6(¢g,7) = ¢ for
some suffix v of @. When S contains a final state from some Fg, D makes a re-
duction, as follows. It pops symbols off its pushdown, simultaneously simulating
automaton A backwards, starting with each of the final states in S (possibly for
different B). To keep D deterministic, the backward simulation of A is with the
usual subset construction. Thus, for each of the nonterminals B for which there
is a final state in S, D keeps track of a set Sp of states of A. As soon as ¢y turns
up in one (or more) of the Sp, D stops popping because it knows that it just has
popped the shortest suffix that is the right-hand side of a production. D then
pushes the “first” B such that Sp contains ¢g. Note that in order to keep track
of the set S, D should in fact store S on its pushdown, each time it pushes a
symbol. It should be clear that D can be obtained effectively from G.

This shows the decidability of the N'TS property. It remains to prove Fact 3.

Proof of Fact 3. A grammar G' = (X UV, V', P’ Z’) for the language E4 p can
be defined in much the same way as in the proof of Fact 2. This time Vz consists
of all (Y, L,p), and Vg of all (¢, R, Y, with p, ¢ € Q. Intuitively, 6(¢o, ¢) = p for
some prefix ¢ of some 5 € Rp, and §(¢,v¢) € Fp for some suffix ¢ of 3.

Moreover, G’ is an extended context-free grammar. Since the regular lan-
guages are (effectively) closed under substitution, a right-linear grammar for
E4 g can be constructed from G’, due to the form of the productions (see the
proof of Fact 2).

The productions of G’ are very similar to those given in the proof of Fact 2.
They are defined as follows.

(1) Productions with left-hand side S. For every production 4 — Y7 -- -V} in
P, withY; € XUV for 1 < i<k, P’ contains the following productions.

(1.1) All productions S — Y1 ---Y;_1(Y;, L, p)B{q, R, Y;}Y; 41 - - - Yp where 1 <
i<j<kY;,Y; €V, and there exists 7 € (X UV)" such that §(p, 7) = ¢ and
Yit1---Yj_1 =" m. In the case that ¢ 41 = j this condition means that p = q.

(1.2) All productions S — Y7 ---Y;_1B{(¢q, R, Y;)Yj41-- - Yy where 1 <i < j <k,
Y; € V, and there exists 7 € (X UV)* such that §(¢p,7) = ¢ and ¥;---Y;_1 =*
.

(1.3) All productions S — Y7 ---Y;_1(Y;, L, p) BY 41 - - - Y}, where 1 <i < j <k,
Y; € V, and there exists 7 € (X UV)* such that é(p,7) € Fp and Yi4q - -+ Y; =*
.

(1.4) All productions S — Y7 ---Y;_1BYjyq1 -+ Y where 1 < i < j < k, and
there exists 3 € Rp such that Y;---Y; =* 3.

(2) Productions with left-hand side in V7. For every production Y — Y7 - - Y},
in P, with Y; € XUV for 1 <i <k, P’ contains the following productions.
(2.1) All productions (Y, L,p} — Y1 ---Yi_1(Y;, L, p1) where 1 < i<k, Y, €V,
and there exists ¢ € (X U V)" such that é(p1,¢) = pand Vi1 Y =% ¢. In
the case that ¢ = k the last condition means that p = p;.

(2.2) All productions (Y, L,p) — Y1 ---Y;_; where 2 < ¢ < k, and there exists
¢ € (X UV)* such that 6(q0,¢) = pand Y;--- Y, =* ¢.

(3) Productions with left-hand side in Vg. For every production Y — Y7 - - Y},
in P, P’ contains the following productions.

(3.1) All productions (¢, R,Y) — {(q1, R,Y;})Yj11 - - Y, where 1 <j <k, Y; €V,
and there exists ¢ € (X U V)* such that é6(¢,¢) = ¢1 and Y7 ---Y;_1 =" ¢. In
the case that 7 = 1 the last condition means that ¢ = ¢1.

(3.2) All productions (¢, R,Y) — Y;41---Yy where 1 < j < k — 1, and there
exists ¢ € (X UV)* such that §(¢,%) € Fp and Y1 ---Y; =* «.

This concludes the description of G’. It remains to show that G’ is indeed an
extended context-free grammar, and that it can be obtained effectively from G.
For this we have to show that the languages R, = {# € (XUV)* |C — g € P’}
are regular (for each C' € V'), and can be obtained effectively from the regular
languages R¢ (for C' € V), i.e., from the automaton A. This is based on the fact
that for a given (extended) context-free grammar GG and a regular language R,
the language {# € (X UV)* | 8 = « for some 7 € R} is regular, and can be
obtained effectively from G and R (for an easy proof see Proposition 2.1 of [2]).
From this fact, and the definition of P/, it can easily be seen that a finite state
transducer (even gsm mapping) 7 can be constructed such that Ry = 7(Ra).
Similarly, R’<Y7L7p and R?quyy) are (effectively) images of Ry under appropriate
finite state transductions. Since the class of regular languages is effectively closed
under finite state transductions, this shows that G’ is an extended context-free
grammar that can be constructed from G. a

References

1. L.Boasson, G.Senizergues; NTS languages are deterministic and congruential, J. of
Comp. and Syst. Sci. 31 (1985), 332-342

2. R.V.Book; Decidable sentences of Church-Rosser congruences, Theor. Comput. Sci.
23 (1983), 301-312

3. K.Madlener, P.Narendran, F.Otto, L.Zhang; On weakly confluent monadic string-
rewriting systems, Theor. Comput. Sci. 113 (1993), 119-165

4. G.Senizergues; The equivalence and inclusion problems for NTS languages, J. of
Comp. and Syst. Sci. 31 (1985), 303-331

This article was processed using the IANTRpX macro package with LLNCS style

