
Deciding the NTS Property of

Context-Free Grammars

Joost Engelfriet

?

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Abstract. An algorithm is presented that is a variation of the one of

Senizergues in [4]. It decides the NonTerminal Separation property of

context-free grammars in polynomial time. A straightforward generaliza-

tion of the algorithm decides the NTS property of extended context-free

grammars (but not in polynomial time).

It was shown in [4] that it is decidable whether an arbitrary context-free gram-

mar is NTS. The algorithm in [4] takes exponential time in the worst case. It

was recently shown in [3] that the NTS property can in fact be decided in poly-

nomial time. This is not stated as such in [3], but immediately follows from

the more general result, shown in Proposition 3.8 of [3], that it is decidable in

polynomial time whether a monadic semi-Thue system is weakly con
uent: the

reversed productions of a (�-free and chain-free) context-free grammar form a

monadic semi-Thue system that is weakly con
uent if and only if the context-free

grammar is NTS.

Here we present an independent proof of the polynomial time decidability of

the NTS property that is a variation of the decidability algorithm in [4]. We also

show that the NTS property is decidable for extended context-free grammars,

i.e., context-free grammars of which the productions have regular expressions as

right-hand sides. We �rst recall some de�nitions and facts (see [1, 4]).

We consider context-free grammars G = (X;V; P; Z) where X is the set of

terminals, V the set of nonterminals, P the set of productions, and Z � V the

set of initial nonterminals. We assume that G is �-free and chain-free (i.e., for

every production A ! �, j�j � 1 and if j�j = 1 then � 2 X). Such a grammar

is NTS (nonterminally separated) if the following holds: for every A;B 2 V and

�; �;
 2 (X [V)

�

, if A)

�

��
 and B ! � is in P , then A)

�

�B
. Note that

this does not depend on Z.

Let G = (X;V; P; Z) be a context-free grammar. A pair h�; �i with �; � 2

(X[V)

�

is called a shift-reduce con�guration. For two shift-reduce con�gurations

we de�ne the shift-reduce step relation ` as follows (where �; �;
 2 (X [V)

�

,

b 2 X, and A 2 V):

1. h�; b�i ` h�b; �i

if no su�x of � is the right-hand side of a production in P , and

?

Supported by ESPRIT BR Working Group No.6317 ASMICS

2. h�
; �i ` h�A; �i

if A !
 is in P , A is the \�rst" nonterminal that has a production with

right-hand side
 (where we assume some �xed, but arbitrary order on V),

and
 is the shortest su�x of �
 that is the right-hand side of a production

in P .

A step of type 1 is a shift, and a step of type 2 is a reduction. We note that, in a

step of type 2, it is irrelevant that
 is taken to be the shortest su�x of �
 that

is the right-hand side of a production; we might as well take the longest su�x

(or any other choice that makes ` deterministic).

For A 2 V , we de�ne LM(G;A) = f� 2 (X [V)

�

j h�; �i `

�

hA; �ig.

Intuitively, LM(G;A) is the set of strings that are left-most reducible to A,

where a reduction takes place as soon as the right-hand side of a production is

detected. Obviously, if � 2 LM(G;A) then A)

�

�, but in general this is not

true in the other direction. If G is an NTS grammar then � 2 LM(G;A) if and

only if A)

�

� (also because G is �-free and chain-free). It should be clear from

the de�nition of ` that LM(G;A) is a deterministic context-free language over

X [V .

Let A 2 V and �; �;
 2 (X [V)

�

. Let t be a derivation tree with root label

A and yield(t) = ��
, and letM be the set of leaves of t that correspond to the

indicated occurrence of � in yield(t) (the \marked" leaves). Then t is said to be

nearly essential for the derivation A)

�

��
 if

1. the root is the only internal node of t that is an ancestor of all leaves in M ,

and

2. every internal node is ancestor of some leaf in M .

In [4] the test for the NTS property is based on the set of \essential" derivation

trees, which is a �nite subset of the (generally in�nite) set of nearly essential

derivation trees. For each such essential tree a right- (or left-) linear grammar is

constructed. Since, for a given grammar G, there may exist exponentially many

essential trees (in the size of the grammar), the algorithm in [4] takes exponential

time. Here we will show that it su�ces to construct only polynomially many

right- (or left-) linear grammars. For the readers familiar with [4] we give the

following exponential example.

Consider, for n 2 N, the context-free grammarG with productions A! aAc,

A ! bAc, A ! d and A ! c

n

. Then all the 2

n

derivation trees for derivations

A)

�

��
 with � 2 fa; bg

n

d, � = c

n

, and
 = �, are essential. Note that this

grammar is not NTS; adding the constant amount of productions A! aA j bA j

cA j dA j AA j a j b j c makes it NTS.

We now turn to our polynomial time variation of the algorithm of [4]. It is

based on the following two facts; the �rst fact is part of the proofs of Propositions

1 and 2 of [4].

Fact 1. A context-free grammar G = (X;V; P; Z) is NTS i� the following holds,

for all A;B 2 V and �; �;
 2 (X [V)

�

:

if A)

�

��
, B ! � is in P , and there is a nearly essential derivation tree for

A)

�

��
, then �B
 2 LM(G;A).

Fact 2. Let G = (X;V; P; Z) be a context-free grammar. For every A 2 V and

every production p = (B ! �), the language E

A;p

= f�B
 j A)

�

��
 and

there is a nearly essential derivation tree for A)

�

��
g is regular. Moreover, a

right-linear grammar for E

A;p

can be constructed in polynomial time.

Before proving these facts we show that they imply the polynomial time decid-

ability of the NTS property. It follows from Fact 1 that a grammar G is NTS i�

E

A;p

� LM(G;A) for every A 2 V and p 2 P . Consider a �xed A and p. It suf-

�ces to show that E

A;p

\LM(G;A)

c

= ; can be decided in polynomial time. Since

E

A;p

is regular by Fact 2, and LM(G;A) is a deterministic context-free language,

the property can in fact be decided in polynomial time, provided grammars (or

automata) for both E

A;p

and LM(G;A)

c

can be constructed in polynomial time.

For E

A;p

this is shown in Fact 2. As observed in [1], a deterministic pushdown

automaton D can be constructed that directly simulates the shift-reduce algo-

rithm recognizing LM(G;A). To decide between shifting or reducing, D should

keep the top-most part of the pushdown � (the �rst element of the shift-reduce

con�guration) in its �nite state. Clearly, it su�ces that the state contains the

longest su�x of � that is a pre�x of a right-hand side of a production ofG. Hence

D needs polynomially many states only. From this it easily follows that D can

be constructed in polynomial time. Since G is �-free and chain-free, D always

reads all of its input. Hence, an automaton recognizing LM(G;A)

c

is obtained

by interchanging the �nal and non�nal states of D. This shows the polynomial

time decidability of the NTS property. We now prove Facts 1 and 2.

Proof of Fact 1. (Only if) Let G be NTS. If A)

�

��
 and B ! � is in P , then

(since G is NTS) A)

�

�B
 and hence (since G is NTS) �B
 2 LM(G;A).

(If) Let the stated condition be true. To show that G is NTS, assume that

A)

�

��
 and B ! � 2 P . Let t be a derivation tree for A)

�

��
 and let M

be the set of leaves of t that correspond to the occurrence of � in yield(t). Let

x be the least internal node of t that is a common ancestor of all leaves in M .

Considering the subtree t

0

of t rooted at x we obtain derivations A)

�

�

1

A

0

1

and A

0

)

�

�

2

�

2

where x has label A

0

, � = �

1

�

2

, and
 =

2

1

. Now consider

the nearly essential derivation tree t

00

obtained from t

0

by pruning all subtrees

that are rooted at internal nodes of t

0

that are not ancestor of any leaf in M .

Clearly, t

00

is nearly essential for a derivation A

0

)

�

�

0

2

�

0

2

with �

0

2

)

�

�

2

and

0

2

)

�

2

. The stated condition now implies that �

0

2

B

0

2

2 LM(G;A

0

) and so

A

0

)

�

�

0

2

B

0

2

. Hence A)

�

�

1

A

0

1

)

�

�

1

�

0

2

B

0

2

1

)

�

�

1

�

2

B

2

1

= �B
. ut

Proof of Fact 2. Let G = (X;V; P; Z), A 2 V , and p = (B ! �) 2 P . In

what follows we will construct a (�-free, but not necessarily chain-free) context-

free grammar G

0

= (X [V; V

0

; P

0

; Z

0

) for the language E

A;p

which is itself not

right- or left-linear but from which such a grammar can easily be constructed.

In fact, V

0

= fSg [V

L

[V

R

with Z

0

= fSg, V

L

\ V

R

= ;, S 62 V

L

[V

R

, and

the productions of P

0

are also partitioned in three parts: productions with left-

hand side S, right-linear productions that contain nonterminals from V

L

only,

and left-linear productions that contain nonterminals from V

R

only. Clearly, any

grammar of this form can be turned into an equivalent right-linear grammar (or

�nite automaton) in polynomial time.

Intuitively, a production of P

0

with left-hand side S simulates the production

of P with left-hand side A that is applied at the root of a nearly essential

derivation tree for some A)

�

��
. Such a production generates the B that

replaces �, and it generates a pre�x of � and a su�x of
. The right-linear

productions with nonterminals from V

L

then generate the remainder of � (from

left to right), and the left-linear productions with nonterminals in V

R

generate

the remainder of
 (from right to left). The generation of � is simulated in the

nonterminals. To this aim every nonterminal from V

L

contains a pre�x of �,

which is the part of � of which the generation still has to be simulated by this

nonterminal. Similarly every nonterminal from V

R

contains a su�x of �.

Thus, V

L

consists of all hY; L; �i where Y 2 V , L stands for \Left", and � is

a non-empty pre�x of �. Symmetrically, V

R

consists of all h ;R; Y i where is

a non-empty su�x of �, R stands for \Right", and Y 2 V . The productions of

P

0

are de�ned as follows (where) always refers to G).

(1) Productions with left-hand side S. For every production A! Y

1

� � �Y

k

in

P , with Y

i

2 X [V for 1 � i � k, P

0

contains the following productions.

(1.1) All productions S ! Y

1

� � �Y

i�1

hY

i

; L; �iBh ;R; Y

j

iY

j+1

� � �Y

k

where 1 �

i < j � k, Y

i

; Y

j

2 V , and there exists � 2 (X [V)

�

such that � = �� and

Y

i+1

� � �Y

j�1

)

�

�. Note that in the case that i+1 = j the last condition means

that � = � .

(1.2) All productions S ! Y

1

� � �Y

i�1

Bh ;R; Y

j

iY

j+1

� � �Y

k

where 1 � i < j � k,

Y

j

2 V , and there exists � 2 (X [V)

�

such that � = � and Y

i

� � �Y

j�1

)

�

�.

(1.3) All productions S ! Y

1

� � �Y

i�1

hY

i

; L; �iBY

j+1

� � �Y

k

where 1 � i < j � k,

Y

i

2 V , and there exists � 2 (X [V)

�

such that � = �� and Y

i+1

� � �Y

j

)

�

�.

(1.4) All productions S ! Y

1

� � �Y

i�1

BY

j+1

� � �Y

k

where 1 � i < j � k and

Y

i

� � �Y

j

)

�

�.

To explain the intuition behind the above productions, consider a nearly

essential derivation tree for A)

�

��
 with production A ! � applied at the

root, and let � = Y

1

� � �Y

k

. Let M be the set of leaves corresponding to �.

Then Y

1

; : : : ; Y

i�1

are the symbols of � that label leaves to the left of M , and

Y

j+1

; : : : ; Y

k

those that label leaves to the right of M . Furthermore, hY

i

; L; �i

occurs in the production of P

0

if and only if Y

i

is a nonterminal that generates

both leaves in M and leaves not in M , and � is the sequence of labels of the

generated leaves in M . And a similar statement holds for h ;R; Y

j

i. This same

intuition also explains the remaining productions.

(2) Productions with left-hand side in V

L

. For every production Y ! Y

1

� � �Y

k

in P , with Y

i

2 X [V for 1 � i � k, P

0

contains the following productions.

(2.1) All productions hY; L; �i ! Y

1

� � �Y

i�1

hY

i

; L; �

1

i where 1 � i � k, Y

i

2 V ,

and there exists �

2

2 (X [V)

�

such that � = �

1

�

2

and Y

i+1

� � �Y

k

)

�

�

2

. In

the case that i = k the last condition means that � = �

1

.

(2.2) All productions hY; L; �i ! Y

1

� � �Y

i�1

where 2 � i � k and Y

i

� � �Y

k

)

�

�.

(3) Productions with left-hand side in V

R

. For every production Y ! Y

1

� � �Y

k

in P , P

0

contains the following productions.

(3.1) All productions h ;R; Y i ! h

1

; R; Y

j

iY

j+1

� � �Y

k

where 1 � j � k, Y

j

2

V , and there exists

2

2 (X [V)

�

such that =

2

1

and Y

1

� � �Y

j�1

)

�

2

.

In the case that j = 1 the last condition means that =

1

.

(3.2) All productions h ;R; Y i ! Y

j+1

� � �Y

k

where 1 � j � k�1 and Y

1

� � �Y

j

)

�

 .

This concludes the construction of the grammar G

0

generating E

A;p

. It re-

mains to show that G

0

can be constructed in polynomial time from G. Let n be

the size of G. Since the number of pre�xes and su�xes of � is O(n), G

0

has O(n

2

)

nonterminals. Now consider the productions S ! Y

1

� � �Y

i�1

hY

i

; L; �iBh ;R; Y

j

i

Y

j+1

� � �Y

k

of P

0

, corresponding to the production A! Y

1

� � �Y

k

of P , as de�ned

in (1.1) above. There are O(n

4

) such productions in P

0

, one for each choice of

i, j, �, and . Note that the condition Y

i+1

� � �Y

j�1

)

�

� can be veri�ed in

polynomial time. Similar statements hold for the productions of all other types.

From these remarks it should be clear that G

0

can be constructed in polynomial

time. ut

We now turn to the decidability of the NTS property for extended context-free

grammars. An extended context-free grammar (or extended BNF) has produc-

tions of which the right-hand sides are regular expressions over X [V . An al-

ternative way of viewing this is as follows. An extended context-free grammar

is a context-free grammar G = (X;V; P; Z) such that P is in�nite and for each

nonterminal B the language R

B

= f� 2 (X [V)

�

j B ! � 2 Pg is regular.

The regular languages R

B

should be given e�ectively as regular expressions, �-

nite automata, or right-linear grammars. In what follows we will assume that a

deterministic �nite automaton A is given, with state set Q, initial state q

0

, and

state transition function � : Q� (X [V)! Q, and that for each nonterminal B

a set F

B

� Q of �nal states is given, such that, with this set of �nal states, A

recognizes the language R

B

. All the usual de�nitions for context-free grammars

also apply to extended context-free grammars, including the de�nition of NTS.

The algorithm that decides the NTS property for extended context-free gram-

mars is a variation of the one above. First of all, it should be clear that Fact 1 is

still true in the extended case (with the same proof). Instead of Fact 2 we will

show the following, closely related, fact.

Fact 3. Let G = (X;V; P; Z) be an extended context-free grammar. For all

A;B 2 V , the language E

A;B

= f�B
 j A)

�

��
 and there is a nearly

essential derivation tree for A)

�

��
, for some � 2 R

B

g is regular. Moreover,

a right-linear grammar for E

A;B

can be obtained e�ectively.

First we show, as before, that Facts 1 and 3 imply the decidability of the NTS

property. By Fact 1, a grammar G is NTS i� E

A;B

\ LM(G;A)

c

= ; for all

A;B 2 V . Since E

A;B

is regular by Fact 3, and since the deterministic context-

free languages are (e�ectively) closed under complement and intersection with

a regular language, it su�ces to show that LM(G;A) can be recognized by a

deterministic pushdown automaton D. As before, D simulates the shift-reduce

algorithm, with the �rst element � of the shift-reduce con�guration on its push-

down. To decide between shifting or reducing, D keeps in its �nite state the

set S of all states q 2 Q (of the �nite automaton A) such that �(q

0

;
) = q for

some su�x
 of �. When S contains a �nal state from some F

B

, D makes a re-

duction, as follows. It pops symbols o� its pushdown, simultaneously simulating

automaton A backwards, starting with each of the �nal states in S (possibly for

di�erent B). To keep D deterministic, the backward simulation of A is with the

usual subset construction. Thus, for each of the nonterminals B for which there

is a �nal state in S, D keeps track of a set S

B

of states of A. As soon as q

0

turns

up in one (or more) of the S

B

, D stops popping because it knows that it just has

popped the shortest su�x that is the right-hand side of a production. D then

pushes the \�rst" B such that S

B

contains q

0

. Note that in order to keep track

of the set S, D should in fact store S on its pushdown, each time it pushes a

symbol. It should be clear that D can be obtained e�ectively from G.

This shows the decidability of the NTS property. It remains to prove Fact 3.

Proof of Fact 3. A grammar G

0

= (X [V; V

0

; P

0

; Z

0

) for the language E

A;B

can

be de�ned in much the same way as in the proof of Fact 2. This time V

L

consists

of all hY; L; pi, and V

R

of all hq;R; Y i, with p; q 2 Q. Intuitively, �(q

0

; �) = p for

some pre�x � of some � 2 R

B

, and �(q;) 2 F

B

for some su�x of �.

Moreover, G

0

is an extended context-free grammar. Since the regular lan-

guages are (e�ectively) closed under substitution, a right-linear grammar for

E

A;B

can be constructed from G

0

, due to the form of the productions (see the

proof of Fact 2).

The productions of G

0

are very similar to those given in the proof of Fact 2.

They are de�ned as follows.

(1) Productions with left-hand side S. For every production A! Y

1

� � �Y

k

in

P , with Y

i

2 X [V for 1 � i � k, P

0

contains the following productions.

(1.1) All productions S ! Y

1

� � �Y

i�1

hY

i

; L; piBhq;R; Y

j

iY

j+1

� � �Y

k

where 1 �

i < j � k, Y

i

; Y

j

2 V , and there exists � 2 (X [V)

�

such that �(p; �) = q and

Y

i+1

� � �Y

j�1

)

�

�. In the case that i + 1 = j this condition means that p = q.

(1.2) All productions S ! Y

1

� � �Y

i�1

Bhq;R; Y

j

iY

j+1

� � �Y

k

where 1 � i < j � k,

Y

j

2 V , and there exists � 2 (X [V)

�

such that �(q

0

; �) = q and Y

i

� � �Y

j�1

)

�

�.

(1.3) All productions S ! Y

1

� � �Y

i�1

hY

i

; L; piBY

j+1

� � �Y

k

where 1 � i < j � k,

Y

i

2 V , and there exists � 2 (X [V)

�

such that �(p; �) 2 F

B

and Y

i+1

� � �Y

j

)

�

�.

(1.4) All productions S ! Y

1

� � �Y

i�1

BY

j+1

� � �Y

k

where 1 � i < j � k, and

there exists � 2 R

B

such that Y

i

� � �Y

j

)

�

�.

(2) Productions with left-hand side in V

L

. For every production Y ! Y

1

� � �Y

k

in P , with Y

i

2 X [V for 1 � i � k, P

0

contains the following productions.

(2.1) All productions hY; L; pi ! Y

1

� � �Y

i�1

hY

i

; L; p

1

i where 1 � i � k, Y

i

2 V ,

and there exists � 2 (X [V)

�

such that �(p

1

; �) = p and Y

i+1

� � �Y

k

)

�

�. In

the case that i = k the last condition means that p = p

1

.

(2.2) All productions hY; L; pi ! Y

1

� � �Y

i�1

where 2 � i � k, and there exists

� 2 (X [V)

�

such that �(q

0

; �) = p and Y

i

� � �Y

k

)

�

�.

(3) Productions with left-hand side in V

R

. For every production Y ! Y

1

� � �Y

k

in P , P

0

contains the following productions.

(3.1) All productions hq;R; Y i ! hq

1

; R; Y

j

iY

j+1

� � �Y

k

where 1 � j � k, Y

j

2 V ,

and there exists 2 (X [V)

�

such that �(q;) = q

1

and Y

1

� � �Y

j�1

)

�

 . In

the case that j = 1 the last condition means that q = q

1

.

(3.2) All productions hq;R; Y i ! Y

j+1

� � �Y

k

where 1 � j � k � 1, and there

exists 2 (X [V)

�

such that �(q;) 2 F

B

and Y

1

� � �Y

j

)

�

 .

This concludes the description of G

0

. It remains to show that G

0

is indeed an

extended context-free grammar, and that it can be obtained e�ectively from G.

For this we have to show that the languages R

0

C

= f� 2 (X[V)

�

j C ! � 2 P

0

g

are regular (for each C 2 V

0

), and can be obtained e�ectively from the regular

languages R

C

(for C 2 V), i.e., from the automaton A. This is based on the fact

that for a given (extended) context-free grammar G and a regular language R,

the language f� 2 (X [V)

�

j �)

�

G

� for some � 2 Rg is regular, and can be

obtained e�ectively from G and R (for an easy proof see Proposition 2.1 of [2]).

From this fact, and the de�nition of P

0

, it can easily be seen that a �nite state

transducer (even gsm mapping) � can be constructed such that R

0

S

= � (R

A

).

Similarly,R

0

hY;L;pi

and R

0

hq;R;Y i

are (e�ectively) images of R

Y

under appropriate

�nite state transductions. Since the class of regular languages is e�ectively closed

under �nite state transductions, this shows that G

0

is an extended context-free

grammar that can be constructed from G. ut

References

1. L.Boasson, G.Senizergues; NTS languages are deterministic and congruential, J. of

Comp. and Syst. Sci. 31 (1985), 332-342

2. R.V.Book; Decidable sentences of Church-Rosser congruences, Theor. Comput. Sci.

23 (1983), 301-312

3. K.Madlener, P.Narendran, F.Otto, L.Zhang; On weakly con
uent monadic string-

rewriting systems, Theor. Comput. Sci. 113 (1993), 119-165

4. G.Senizergues; The equivalence and inclusion problems for NTS languages, J. of

Comp. and Syst. Sci. 31 (1985), 303-331

This article was processed using the L

a

T

E

X macro package with LLNCS style

