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Abstract

Because the e�ciency of sparse codes is very much depen-

dent on the size and structure of input data, peculiarities

of the nonzero structures of sparse matrices must be ac-

counted for in order to avoid unsatisfying performance. Usu-

ally, this implies retargeting a sparse application to speci�c

instances of the same problem. However, if characteristics of

the input data are collected at compile-time and used in the

data structure selection and code generation by a compiler

that converts dense programs into sparse programs auto-

matically, the complexity of sparse code development can

be greatly reduced, and an e�cient way for this retargeting

results. Such a `sparse compiler' requires an analysis engine,

which is the topic of this paper.

Index Terms: Nonzero Structures, Restructuring Compil-

ers, Sparse Matrices.

1 Introduction

Automatic analysis of nonzero structures of sparse matrices

is useful for a number of reasons. First, it can provide a

programmer with useful insights about characteristics of a

range of sparse matrices for which an application must be

developed, so that these characteristics can be accounted

for. This requires, of course, access to a representative set

of sparse matrices. Second, an analysis engine is very help-

ful for a `sparse compiler', proposed in [4, 6]. This compiler

automatically transforms a program that operates on dense

matrices into a program that exploits the sparsity of cer-

tain matrices. In this manner, the burden of sparse code

generation is placed on the compiler, while the programmer

only has to deal with the dense code that is both qualita-

tive and quantitative much simpler [8]. Usually more opti-

mizations are enabled because, in general, information that

is obtained by analysis of dense codes is much more accu-

rate [3]. Clearly, the characteristics of the sparse matrices

�
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must drive such a compiler. An analysis engine is required

to obtain nonzero structure information that can be used

in the data structure selection and code generation. Since

analysis time contributes to compile-time, it is important

to have an e�cient analyzer. Finally, once the techniques of

the sparse compiler have been well developed, a more power-

ful approach can be taken. The compiler generates multiple

versions of the code that have been optimized for several

nonzero structures that are likely to occur, and inserts the

analysis code in the resulting program. At run-time, the out-

come of the analysis determines which version of the code is

the most suited for a particular matrix. This approach has

as major advantage that the nonzero structure of a matrix

does not have to be known at compile-time. However, since

analysis is performed at run-time, it is even more important

to have an e�cient analyzer, since no gain is obtained, if

the savings in execution time in an optimized version are

outweighted by the analysis time.

In the context of LU-factorization, a priori orderings,

usually expressed in terms of a relabeling on the underly-

ing graph [9, 14], are often applied to matrices in order to

con�ne so-called �ll-in to certain regions in the matrix. For

example, application of Tarjan`s algorithm [22] can be used

to obtain a block triangular form [9], while application of

the well-known Cuthill-McKee algorithm [7] is often used to

reduce the bandwidth of a matrix. So-called local strategies,

like application of the Markowitz criterion [9], try to meet

the minimum �ll-in objective by selection of a pivot at each

stage for which some �ll-in related properties are satis�ed.

These methods, however, are not considered in this paper,

i.e. we merely try to detect a certain structure in a (possibly

reordered) matrix. A necessary extension of the sparse com-

piler, however, must deal with reorderings, for example, by

automatic insertion of such routines. This makes all sparsity

related issues completely transparent to the programmer.

In this paper we present some e�cient analysis tech-

niques that have been implemented for the prototype com-

piler MT1 [5], which is currently used to implement the tech-

niques of automatic sparse code generation. In section 2,

important characteristics of nonzero structures are identi-

�ed, followed by a discussion in section 3 of how some of

these nonzero structures can be detected e�ciently. In sec-

tion 4 the implementation of these techniques is discussed,

illustrated with some compile-time techniques that become

possible if nonzero structure information is available. Fi-

nally, conclusions and topics for further research are stated

in section 5.



2 Nonzero Structures

In this section, we explore some important characteristics

of the nonzero structure of a sparse n � n matrix A, i.e.

Nonz

A

= f(i; j)ja

ij

6= 0g (see e.g. [9, 18, 23, 24, 25]).

2.1 Band Forms

The band form of a matrix is de�ned by the lower and up-

per semi-bandwidth, which are two integers b

1

� 0 and

b

2

� 0 that contain theminimum values for which constraint

(a

ij

6= 0) ) (�b

1

� j � i � b

2

) is satis�ed,

1

which means

that all nonzeros are con�ned to a band. If b

1

= b

2

holds,

b

1

+ b

2

+ 1 is referred to as the bandwidth of this band.

Although the semi-bandwidths are de�ned for arbitrary ma-

trices (e.g. b

1

= b

2

= n � 1 for a full matrix), matrices are

usually only called band matrices if the semi-bandwidths are

relatively small. If (�b

1

� j�i � b

2

)) (a

ij

6= 0) also holds,

the matrix is a full band matrix [24], while zero elements

might appear in the band otherwise. Some special kinds of

band matrices can be distinguished. If b

1

= b

2

= 0, the ma-

trix is in diagonal form, while for b

1

= b

2

= 1 the matrix is

called tridiagonal. A form that is closely related to stor-

age formats, consists of the so-called variable band matri-

ces [9, 13, 16, 17], where lower and upper semi-bandwidths

are determined per diagonal element, which gives rise to a

skyline as de�ned in section 3.1.

2.2 Triangular Forms

A matrix is in lower triangular form, if (a

ij

6= 0) )

(j � i). For a unit lower triangular matrix, a

ii

= 1 for

all 1 � i � n hold as well. If (a

ij

6= 0) ) (j < i) holds,

the matrix is called strictly lower triangular. A lower

triangular matrix can be seen as a special band matrix for

b

2

= 0 and relatively large b

1

> 0 (note that b

1

= n � 1

does not necessarily hold if the triangular part is not full).

For relatively small b

2

> 0 the matrix is in so-called band

lower triangular form. The corresponding upper triangu-

lar forms are de�ned similarly.

2.3 Block Forms

Consider a partition of a square matrix A into submatrices

A

ij

for 1 � i � p and 1 � j � p. Each A

ii

is an n

i

� n

i

matrix, and is referred to as a diagonal block. The sizes

n

i

of these diagonal blocks completely determine the parti-

tion of the whole matrix: each A

ij

is an n

i

� n

j

submatrix.

Submatrices A

ij

for i 6= j are called o�-diagonal blocks.

If a block only consists of zero elements, this is denoted by

A

ij

= 0. Such blocks are referred to as zero blocks.
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Given this partition, a block banded form can be de�ned

with semi-bandwidths B

1

� 0 and B

2

� 0, which are the

minimum values for which (A

ij

6= 0)) (�B

1

� j� i � B

2

)

is satis�ed. Consequently, a block tridiagonal form results

if B

1

= B

2

= 1 holds, and a block diagonal form results

1

Minimum values reveal the most information about a matrix,

because the constraints are satis�ed in any matrix for the trivial

semi-bandwidths b

1

= b

2

= n � 1. Allowing for negative semi-

bandwidths would enable the speci�cation of arbitrary bands, where

b

1

= b

2

= �1 corresponds to a zero matrix.

if B

1

= B

2

= 0. Similarly, a block lower triangular or

block upper triangular form is de�ned, if (A

ij

6= 0) )

(j � i) or (A

ij

6= 0) ) (i � j) holds respectively. The

o�-diagonal blocks A

pi

and A

ip

for 1 � i < p are referred

to as the lower border and upper border respectively.

If nonzero blocks occur in the borders, this gives rise to

singly bordered diagonal, doubly bordered diagonal,

and bordered block triangular forms.

Although, depending on which blocks are nonzero, the

block form of a matrix is de�ned once a partition of that

matrix is given, block forms corresponding to di�erent par-

titions might di�er in the accuracy of description of the

nonzero structure. As an extreme example, a matrix is in

any block form if the trivial partition A = A

11

is used. The

most accurate description is obtained from a block form that

is de�ned by a minimum partition into that particular block

form, which means that there are no other partitions of the

matrix into that block form for which the corresponding

nonzero blocks have a smaller total area. For example, the

areas of the nonzero blocks of a partition into block diag-

onal and block tridiagonal are determined by the following

formulae:

BDF:

p

P

i=1

n

2

i

BTF:

p

P

i=1

n

2

i

+ 2 �

p�1

P

i=1

n

i

� n

i+1

These numbers are likely to exceed the number of nonzero

elements, since even in a minimum partition the nonzero

blocks are not necessarily full.

Proposition 1 A square matrix has a unique minimum

partition into block diagonal form.

Proof Assume that a matrix has two di�erent minimum

partitions into block diagonal form. Since each diagonal

element is contained in a diagonal block, at least two di-

agonal blocks of these partitions partially overlap or one is

properly contained in the other. This implies that there is

a non-trivial partition into block diagonal form of at least

one of these diagonal blocks, which for the corresponding

partition gives rise to a partition into block diagonal form

of the whole matrix with fewer elements, contradicting the

minimality of both partitions. 4

The following obvious property holds:

Proposition 2 A partition of a square matrix into block

diagonal form is minimum if and only if no corresponding

diagonal block has a non-trivial partition into block diago-

nal form

Proof `)' A non-trivial partition of a diagonal block into

block diagonal form would imply the existence of a partition

into block diagonal form of the whole matrix with fewer el-

ements. `(' Since each diagonal block of the minimum par-

tition into block diagonal form is properly contained in, or

equal to a diagonal block of an arbitrary partition into block

diagonal form, this implies that for a partition into block di-

agonal form where no diagonal block has a non-trivial par-

tition into block diagonal form, each diagonal block must

be equal to a diagonal block of the minimum partition into

block diagonal form, so that both partitions are equal. 4

Similar propositions can be given for the minimal parti-

tions into block lower or upper triangular form. In the con-

text of permutations, a matrix is called reducible if there

is a symmetric permutation PAP

T

with a non-trivial par-

tition into block triangular form [14]. A permuted matrix

is fully reduced, if it has a partition into block triangular

form for which all diagonal blocks are irreducible, so that



this partition is necessarily minimal. In contrast, diagonal

blocks of the minimal partition into triangular form can still

be reducible.

For the previous partitions it was tacitly assumed that

all diagonal blocks A

ii

are non-empty (an 0 � 0 submatrix

is called an empty block). However, in order to general-

ize partitions into bordered block forms and into the cor-

responding block forms without border, it is convenient to

allow that the last diagonal block A

pp

is empty, so that all

border blocks are also empty, as is illustrated below for a

partition into bordered block upper triangular form, where

D and O denote diagonal and o�-diagonal blocks respec-

tively, and � is used for an empty block:

0

B

@

D O O �

D O �

D �

� � � �

1

C

A

Some matrices have several minimum partitions into bor-

dered block form, in which case we will select the partition

that corresponds to the smallest border size. For partitions

into block banded form, empty diagonal blocks will be used

to obtain a block banded form from a more general form, as

will be further explained in section 3.4.

3 Automatic Analysis

In this section, techniques to analyze nonzero structures

are presented. It is assumed that all sparse matrices are

available on �le in so-called coordinate scheme storage (see

e.g. [9, 10, 11, 12, 29]). In this scheme, a �le consists of inte-

gers n and m that contain the size of the matrix, an integer

� that indicates the number of stored elements, followed by

� unordered triples (i; j; a

ij

) to indicate row and column in-

dices and value of each entry. Because there is no advantage

in storing particular zeros explicitly, it is assumed that all

stored elements are nonzero.

3.1 Lower and Upper Skyline

The lower skyline of an n � n sparse matrix is de�ned

as the sequence �

i

= maxf(i � j)j(a

ij

6= 0) ^ (j < i)g, for

1 � i � n, and similarly the upper skyline is de�ned as

the sequence �

j

= maxf(j � i)j(a

ij

6= 0) ^ (i < j)g for 1 �

j � n, where the maximum over an empty set is zero. This

implies that the maximum horizontal and vertical distance

from each entry to the main diagonal is stored per diagonal

element (cf. variable band). For example, the skylines of the

15� 15 sparse matrix in �gure 1, where the positions of the

26 nonzeros are shown, are described as �

1

= 0; �

2

= 0; �

3

=

1; : : : ; �

15

= 3 and �

1

= 0; �

2

= 0; �

3

= 2; : : : ; �

15

= 2.

Figure 1: Example Matrix

Skyline information requires O(n) storage and can be ob-

tained in O(�) time in a single pass over the stored nonzero

elements in a �le by execution of the following fragment,

limiting the increase of computational time and storage re-

quirements of the compiler:

read(n,m,nz); =� Assume m=n holds �=

allocate storage for lsky[1..n] and usky[1..n]

for k := 1, nz do

read(i,j,aij);

lsky[i] := max(lsky[i],(i-j));

usky[j] := max(usky[j],(j-i));

endfor

The elements of the arrays lsky and usky, all initialized to

zero, are used to store all �

i

and �

j

. The semi-bandwidths

can be computed:

b

1

= max

1�i�n

�

i

b

2

= max

1�j�n

�

j

For example, b

1

= 4 and b

2

= 3 holds for the matrix in

�gure 1. The bandwidths re
ect the band form of a matrix

and can be used to determine whether a matrix is diagonal,

tridiagonal, or lower or upper triangular. However, skylines

can also be used to obtain more complex characteristics of

the nonzero structure in an e�cient way, as is discussed in

the following sections.

3.2 Block Diagonal/Triangular Form

If, in the search for a partition of a matrix into block diag-

onal matrix form, all diagonal blocks beyond row and col-

umn B already have been identi�ed, then the next diagonal

block can be of size k if for all B � k < i � B, constraints

�

i

+ (B � i) < k and �

i

+ (B � i) < k are satis�ed, as is

illustrated in �gure 2. This gives rise to the following al-

gorithm to construct a partition into diagonal block form

in O(n) time. Starting with k = 1 and B = n, a scan

i = B; : : : ;B � k + 1 is made. At each step i, assignment

k := max(k;max(�

i

; �

i

)+B�i+1) is performed, which pos-

sibly a�ects the lower bound of the scan. However, if this

lower bound is reached, the current k � k diagonal block is

recorded, the base is decreased by k, and k is reset to 1.

This method is repeated until i = 1. Note that in any case,

a diagonal block is recorded after the �nal step.

i

B

lsky[i]+B−i+1

usky[i]+B−i+1

Figure 2: Valid Block in Block Diagonal Form

Proposition 3 Application of the previous algorithm to

the lower and upper skyline of a matrix results in the mini-

mum partition of that matrix into block diagonal form.



Proof By construction each entry is incorporated in a diag-

onal block, so it su�ces to show that the minimal partition

into block diagonal form results, for which proposition 2 is

used. Assume that in the resulting partition, a k � k diago-

nal block, consisting of the elements a

ij

for B�k < i; j � B,

for 1 � B � n, has a non-trivial partition into block diag-

onal form. Consideration of the right lower most diagonal

block in this partition implies that there is k

0

< k, such

that (1) for all B � k

0

< i � B, �

i

+ (B � i) < k

0

and

�

i

+(B� i) < k

0

hold. If k

i

denotes the value of k after step

i, then (2) k

0

< k

B�k

0

+1

holds because the scan proceeded

after i = B�k

0

+1. Furthermore, since 1 � k

0

< k, the scan

proceeded after step i = B, and thus k

B

> 1. Consequently,

k has been adapted, which implies that (3) k

i

= �

j

+B�j+1

or k

i

= �

j

+B�j+1 holds for B�k

0

< i � j � B. Combin-

ing (2) and (3) yields either k

0

� �

j

+B�j or k

0

� �

j

+B�j

for certain B � k

0

< j � B, contradicting (1). 4

If only �

i

or �

i

is used in the assignment to k, the min-

imum partition into respectively block lower or upper tri-

angular forms are constructed, as can be proven similarly.

Application of these algorithms to the matrix of �gure 1,

yields the block diagonal, block lower and upper triangu-

lar forms that are shown in �gure 3. The total number of

elements that are contained in the nonzero blocks of these

block forms (respectively 67, 140 and 138) can be used as a

measure of the description accuracy, which implies that the

block diagonal form reveals the most information about the

nonzero structure of this matrix.

Figure 3: Block Forms

3.3 Bordered Block Form

Nonzero elements that occur in the borders of a matrix

might be responsible for large values in the two skylines,

so that the size of the resulting diagonal blocks increases.

For the matrix in �gure 4, for example, 176 elements appear

in the nonzero blocks of the minimum partition into block

upper triangular form, which is large in comparison with

the total number of elements. Since only the trivial par-

tition de�nes a block diagonal and lower triangular form,

the minimal partitions into these forms even contain more

elements.

Figure 4: Block Upper Triangular Form

Therefore, it might be useful to have algorithms that also

construct a minimum partition into bordered block forms.

In a naive approach, such a partition is found by application

of the algorithms of the previous section to the submatrix

that remains for every border size, followed by selection of

the partition with the fewest corresponding elements. How-

ever, even if a limited number of border sizes is considered,

this approach would have unacceptable complexity [8], since

a reasonable upper bound on the border size must be ex-

pressed in terms of n. Fortunately, it is also possible to

obtain the best border size in O(n) time.

Suppose that for a certain border size b

0

, the minimum

partition of the remaining (n� b

0

)� (n� b

0

) submatrix into

block upper triangular form is determined by application of

the previous algorithm, i.e. each next diagonal block is com-

puted by a scan i = B; : : : ;B � k + 1, where k is increased

if necessary. After each step i, it can also be decided to dis-

card the partition found so far, and to start the algorithm

for B = i� 1 and k = 1 after a new border size b = n� i+1

has been recorded. Selection of this border is only pro�table

if the number of extra elements that are included in the bor-

der (loss) is less than the number of elements that are gained

by starting with a new partition (gain). If the new parti-

tion remains within the old diagonal block, gain consists of

elements in that block only, as illustrated in �gure 5.

...

Gain

Loss k

kb

b

iVBV

iIBI

I

V

Figure 5: Gain and Loss within Diagonal Block

However if a diagonal block of this new partition ex-

ceeds the old diagonal block, more elements are included in

the gain. The loss decreases because k would have been in-

creased toB

I

�B

V

+k

V

in the old partition, where subscripts

I and V are used to denote the values of the variables in this

particular run at initiation time (i = n�b+1) and veri�-

cation time (when i becomes B

I

�max(k

I

; B

I

�B+k)+1)

respectively, as illustrated in �gure 6.

bd

...

Gain

Loss

b

b

k

k

BI

iI

BV

iV

V

I

Figure 6: Gain and Loss outside Diagonal Block



If Z contains the number of elements in the zero blocks of

the partition found so far, the loss and gain can be computed

as l(b; b

0

) = Z

I

+ (B

V

� k

V

) � (B

I

� i

I

+ 1) and g(b; b

0

) =

Z

V

� (B

V

� k

V

) � (i

I

� B

V

� 1) respectively, so that the

improvement is determined as I(b; b

0

) = g(b; b

0

) � l(b; b

0

) =

Z

V

� Z

I

� (B

V

� k

V

) � (B

I

� B

V

). If the gain exceeds

the loss, i.e. I(b; b

0

) > 0, it is pro�table to continue the

algorithm with the current partition by recording this next

block, while for I(b; b

0

) � 0 the old partition (corresponding

to border size b

0

) must be restored. Moreover, the next block

of size max(k

I

; B

I

�B+k)+1) can be recorded immediately

(i.e. without any backtracking).

Because the remaining (i

V

� 1) � (i

V

� 1) submatrix

would be further partitioned identically for both border sizes,

I(b; b

0

), in fact, indicates the di�erence between the number

of elements in the nonzero blocks of the partitions that would

result for border sizes b and b

0

respectively. Consequently,

although the value of I(b; b

0

) is only constructed for certain

b

0

< b, this new de�nition re
ects the fact that properties

like I(b; b

0

) = �I(b

0

; b), I(b; b) = 0 and, more important

I(b; b

00

) = I(b; b

0

) + I(b

0

; b

00

) hold. This latter property is

exploited to consider all border sizes in a single pass over

the skyline. If at a veri�cation I(b; b

0

) > 0 holds, pend-

ing veri�cations of b

0

with respect to smaller border sizes b

00

can be converted into veri�cation of b with respect to b

00

,

since I(b; b

00

) > I(b

0

; b

00

) holds, so that in any case it is more

pro�table to select b than b

0

. If I(b; b

0

) � 0 holds, this ver-

i�cation can be abandoned safely, since I(b; b

00

) � I(b

0

; b

00

)

holds for all pending veri�cations of b

0

with respect to b

00

.

No improvement can be obtained from a border size n�i+1

if at step i a block is recorded, and the following algorithm

to construct a minimum partition into bordered block up-

per triangular form results. The border size is initially 0,

corresponding to an empty last diagonal block:

Z:=0; B:=n; k:=1; b:=0; s:=0; p:=0;

for i:=n, 1 step -1 do

k:=max(k,lsky(i)+B-i+1);

if (i = B-k+1) then =� Block Detected �=

while ((s > 0) cand

(i = sB[s]-max(sk[s],sB[s]-B+k)+1)) do

if ( (Z-sZ[s]-(B-k)�sB[s]-B)> 0 ) then

s:=s-1;

else

k:=max(sk[s],sB[s]-B+k); Z:=sZ[s];

B:=sB[s]; b:=sb[s]; p:=sp[s]; s:=s-1;

endif

enddo

Z:=Z+k�(B-k); B:=B-k; k:=1; p:=p+1; part[p]:=i;

else =� No Block Detected �=

s:=s+1; sZ[s]:=Z; sB[s]:=B;

sk[s]:=k; sb[s]:=b; sp[s]:=p;

Z:=0; B:=i-1; k:=1; b:=n-i+1;

endif

endfor

Five auxiliary arrays are used in a stack-like manner with

pointer s to save and restore states if necessary. Array part

with pointer p is used similarly to record the left upper cor-

ner of each diagonal block in the partition, so that an old

partition can be discarded by restoring the corresponding

pointer value. As soon as improvement is obtained, s is

simply decremented by 1, which e�ectively converts pend-

ing veri�cations into veri�cation of the current border size

because of the formulation of the improvement function.

Moreover, the old partition below row n � b that still re-

sides on the stack, can be eliminated afterwards. Although

a while-loop occurs inside the loop body, this algorithm runs

in O(n) time because each border can only be moved to and

from the auxiliary arrays once.

If the upper skyline or both skylines are considered, this

algorithm determines the minimum partition into bordered

block lower triangular form or doubly bordered block diago-

nal form respectively, because the same improvement func-

tion can be used (ignoring a factor of 2 in the latter case).

For example, application of this algorithm to the matrix of

�gure 4, yields the bordered block forms shown in �gure 7

with 113 (viz. 225 � 2 � 56), 157 (viz. 225 � 68) and 162

(viz. 176 � 14) elements, for I(3;0) = 56, I(2; 0) = 68 and

I(3; 0) = 14 respectively:

Figure 7: Bordered Block Forms

The block upper triangular form, for example, is repre-

sented in array part after elimination of the partition below

row 12 as shown below:

12 11 10 8 6 5 4 2 1

Application of this algorithm to the matrix with 22 nonzero

elements in �gure 8, results in a minimum partition into bor-

dered block upper triangular form with 166 elements in the

nonzero blocks because I(1; 0) = 21. However, the nonzero

blocks of the partitions corresponding to border sizes 2 and 3

also contain 166 elements, which illustrates that a matrix

does not have a unique minimum partition into a particu-

lar bordered block form. Because a border is denied if the

gain is equal to the loss, all ties (in this case I(3; 2) = 0

and I(2; 1) = 0, and thus, I(2; 0) = 21 and I(3; 0) = 21) are

solved in favor of the smallest associated border size.

Figure 8: Di�erent Minimum Partitions

3.4 Block Banded Form

Even if no entries occur within the borders, large diagonal

blocks might result if the size of the next diagonal block

is increased each time before the end of a scan has been

reached. In �gure 2, for example, k is increased at step i,

although k = 3 was valid before that step. This implies

that many zeros are incorporated in the partition into diag-

onal form. Therefore, construction of a partition into block

banded form is also useful. In this section, we consider a

form with identical semi-bandwidths.



Suppose that after step i = U , the next diagonal block

would consists of a square with the left lower corner in row

L. As long as during the scan i = U; : : : ; L, inequality

L � i � max(�

i

; �

i

) holds, this next block remains valid.

However, as soon as i � max(�

i

; �

i

) < L holds at step i,

unnecessary incorporation of zeros is avoided by recording a

diagonal block that extends rows i + 1; : : : ; U that has one

o�-diagonal block, while the new square is recorded for fu-

ture computations. This process is repeated until the end of

the �rst square is reached, thereby possibly further dividing

the o�-diagonal blocks as is illustrated in �gure 9.

L

U

NewSquare

Figure 9: Blocks in Block Banded Form

At the end of a square, the number of o�-diagonal blocks

for all diagonal blocks outside the next square is known, be-

cause these blocks cannot be divided any further. Subse-

quently, this next square is considered. If no next square

has been recorded, the end of a real diagonal block has been

reached, and the number of o�-diagonal blocks for all cur-

rent diagonal blocks is known. This process is repeated until

the whole matrix has been partitioned, as expressed in the

following algorithm:

next:=n+1; num:=0; s:=0; sc:=1; p:=0; pv:=1;

lc[0]:=n+1; rec[0]:= 0;

for i:=n, 1 step -1 do

left:=i-max(lsky[i],usky[i]);

if (left < next) then =� Initiate New Square �=

if (i+1 6= lc[sc-1] then

p:=p+1; part[p]:=i+1; num:=num+1;

endif

s:=s+1; rc[s]:=i; lc[s]:=left; rec[s]:=num;

left:=next;

endif

if (i = lc[sc]) then =� End of Current Square �=

p:=p+1; part[p]:=i+1; num:=num+1;

sc:=sc+1;

row:=(sc � s) ? rc[sc] : i-1;

cnt:=num-rec[sc-1]-1;

while (part[pv] > row) do

sky[pv]:=cnt; pv:=pv+1; cnt:=cnt-1;

enddo

endif

enddo

Arrays lc and rc are used to record the left and right

corner of each square. Array part has the same function as

in the algorithm of section 3.3. Parallel to this array is sky,

which is used to record the number of o�-diagonal blocks per

diagonal block. Again, the nested while-loop does not a�ect

the O(n) time, since each diagonal block is only considered

once. Finally, sc contains the index of the current square, s

indicates following squares and array rec and variable num

are used to determine the number of o�-diagonal blocks at

the end of each square. Application of this algorithm to the

matrix of �gure 1 and two other example matrices results in

the partitions shown in �gure 10.

Figure 10: Block Forms

Since the semi-bandwidths in the resulting block forms

vary, a completion method is required to obtain a block

banded form with one bandwidth. A possible completion

method is based on the observation that in a block banded

form, the semi-bandwidths of the left upper diagonal blocks

form a sequence 0; 1; : : : ; B � 1, followed by an arbitrary

number of semi-bandwidths B. Within the partition this

sequence can be `simulated' by insertion of B empty blocks.

as is illustrated below for a block tridiagonal form, where, al-

though the semi-bandwidths are all 1, the semi-bandwidths

appear to be 0,1,1,0,1:

0

B

B

B

B

@

D O

O D O

O D �

� � �

� D O

O D

1

C

C

C

C

A

Consequently, it is easy to construct a partition into

block banded if the semi-bandwidths form such a feasible

sequence by insertion of empty blocks. For example, this

method inserts a total of three empty blocks in the par-

tition of the �rst matrix, while the partition of the second

matrix remains una�ected. Block forms with respectively 65

and 117 elements result. For the third matrix, however, ad-

ditional o�-diagonal blocks must be inserted to obtain a fea-

sible sequence (i.e. semi-bandwidth 0; 1; 1; 1; 2; 1; 2; 3; 2; 2; 2

sequence is converted into 0; 1; 2; 3; 3; 3; 3; 3; 3; 3; 3).

A partition into block banded form with 127 elements

that is shown in �gure 11 results. If additional o�-diagonal

blocks are inserted, the resulting partition is not always min-

imal. For example, the matrix of �gure 11 also has a par-

tition into block tridiagonal form with only 99 elements.

However, it provides an easy way to obtain a block banded

form of a matrix.

Figure 11: Block Banded Form



3.5 Statistical Information

In this section, it is explained how some statistical informa-

tion about the nonzero structure of a matrix can be deter-

mined e�ciently. A more advanced tool kit for statistical

analysis of sparse matrices is described by Saad in [19].

Under the assumption that each nonzero element is stored

exactly once in coordinate scheme, the average number of

nonzero elements per row or column in an m � n sparse

matrix A can be computed directly as

�

m

and

�

n

, while the

density of A is determined as

�

m�n

. However, more character-

istics of the nonzero structure of a matrix can be determined,

if during the pass over all � nonzero elements the total num-

ber of nonzero elements in each row, column and diagonal

are accumulated in O(n+m) storage for arrays rowc[1::m],

colc[1::n] and diagc[1 �m::n� 1], by incrementing rowc[i],

colc[j] and diagc[j� i] for each entry a

ij

. The resulting con-

tents of diagc for the matrix of �gure 1 is shown below for

indices -5 through 5.

0 1 1 0 3 15 2 2 2 0 0

These arrays can be used to compute the density in a

particular row i, column j, or diagonal k:

rowc[i]

n

;

colc[j]

m

;

diagc[k]

min(m;n� k)�max(1; 1� k) + 1

Consequently, the number of diagonals in which elements

occur can be determined by counting the number of ele-

ments in diagc that are nonzero, while the number of full

diagonals is determined similarly by counting the number of

diagonals with density 1. Note that if the de�nition of semi-

bandwidths is extended to arbitrary matrices, this implies

that diagc[i] = 0 for i � j > b

1

and j � i > b

2

. The per-

centage p of nonzero elements that are con�ned a band with

given semi-bandwidths B

1

and B

2

is computed as follows:

p =

1

�

�

B

2

P

k=�B

1

diagc[k]� 100%

On the other hand, the smallest band with bandwidth 2 �

B + 1 in which p% of the nonzero elements is contained, is

computed as follows:

B = min

�

b � 0 j

b

P

k=�b

diagc [k] � d

p

100

� �e

�

For example, for the matrix of �gure 1, B = 3 results

for p = 90%, so that the corresponding bandwidth is 7.

Accumulating for B

1

= 2 and B

2

= 2 yields p � 85%. Four

diagonals are used in the matrix of �gure 12, while three

diagonals are full.

Figure 12: Statistical Example

3.6 Detection of Dense Submatrices

In [1, 26, 27, 28] the use of quad trees, well-known from

image processing and computer graphics [15, 21], for repre-

senting sparse matrices is proposed. A matrix of order n

is embedded in a 2

dln ne

� 2

dln ne

matrix and padded appro-

priately. If the resulting matrix consists of only zeros or a

single scalar, it is represented by a nil pointer or the value

of that scalar respectively. Otherwise, it is represented by

a tree with four subtrees (labeled 0,1,2 and 3) correspond-

ing to left upper, right upper, left lower and right lower

quadrant. This data structure provides a uniform way of

representing dense and sparse matrices, while it also sim-

pli�es the implementation of algorithms that are based on

matrix partitioning. For example, the sum of two matri-

ces is assembled recursively, which terminates if one of the

operands is the nil pointer, resulting in the other operand, or

if two scalars have to be added. An example of a quad tree

representation for a sparse matrix is shown in in �gure 13.

A particular element is accessed by the tree walk de�ned

by successively accessing the subtrees de�ned by the next

pair of bits, starting with the most signi�cant bits in the

binary representation of the row and column index, if these

are numbered from 0 to 2

dln ne

� 1. For example, element

a

21

is stored in row 01 and column 00. It is accessed along

the boldfaced path in �gure 13, using the labels 00 and 10.

a11

a22

a33

a44

a21

a21 a22 a33 a44a11

0 1 2 3

0 1 2 30 1 2 3

Figure 13: Quad Tree Representation

The same idea can be used to detect the occurrences

of dense submatrices in an arbitrary sparse m � n matrix

if another stop criterion is used. A matrix for which the

density exceeds a given threshold � is considered to be a

dense matrix, while a zero matrix is not considered any fur-

ther. Otherwise, these criterions are applied recursively to

the submatrices in its quadrants, as formulated in the fol-

lowing algorithm. The dense blocks in an m � n matrix A

are recorded by the call `P(Nonz

A

; 1;m; 1; n)', where Nonz

A

indicates the index set of all nonzero elements.

procedure P(I; i

l

; i

h

; j

l

; j

h

)

begin

if (jIj > 0) then

a:=(i

h

� i

l

+ 1) � (j

h

� j

l

+ 1)

if (

jIj

a

< �) then

i

c

:=b

i

l

+i

h

2

c; j

c

:=b

j

l

+j

h

2

c;

P(f(i; j) 2 Ij(i � i

c

) ^ (j � j

c

)g; i

l

; i

c

; j

l

; j

c

);

P(f(i; j) 2 Ij(i � i

c

) ^ (j

c

< j)g; i

l

; i

c

; j

c

+ 1; j

h

);

P(f(i; j) 2 Ij(i

c

< i) ^ (j � j

c

)g; i

c

+ 1; i

h

; j

l

; j

c

);

P(f(i; j) 2 Ij(i

c

< i) ^ (j

c

< j)g; i

c

+ 1; i

h

; j

c

+ 1; j

h

);

else

record block(i

l

; i

h

; j

l

; j

h

);

endif

endif

end procedure



Application of this algorithm takes O(n � log n) time for

an n � n matrix. O(�) storage su�ces for the index set, if

at each call in-place sorting is applied to a global array that

contains I and pointers are passed as parameters instead.

For example, respectively 54 and 235 dense submatrices re-

sult for a 32�32 matrix with 331 nonzero element for � = 0:5

and � = 1:0 respectively, as illustrated in �gure 14. This ex-

ample clearly illustrates the shortcomings of this method.

Although the submatrices reveal the nonzero structure of

this matrix, too many submatrices might result because ar-

bitrary divisions of the index set are made. Decreasing the

threshold � partially reduces this problem, but clusters of

dense submatrices might still result in general.

Figure 14: Dense Submatrices (� = 0:5 and � = 1:0)

4 Implementation and Motivation

The algorithms presented in this paper have been imple-

mented in the analysis engine of the prototype compiler

MT1 [5]. First, the skylines of a sparse matrix are deter-

mined in a single pass over the �le. In fact, only the index

set is needed, since actual values are not used in the anal-

ysis. Subsequently, the semi-bandwidths are determined,

and if b

1

= 0 and b

2

= 0, or b

1

= 0, or b

2

= 0 holds, a

diagonal, upper or lower triangular form are recorded. Oth-

erwise, the minimum partitions into bordered block forms

and block banded form are constructed, and the partition

with the fewest number of elements in the nonzero blocks is

selected. If this number does not exceed a certain threshold,

expressed as a fraction f of the size of the matrix, the cor-

responding form is used as characterization of this matrix,

while a general sparse matrix is assumed otherwise. Finally,

some statistics are determined for the matrix and recorded

for later use in the compiler. Consequently, analysis of an

n�nmatrix takes O(�+n) time, or O(�+n�log n) if a search

Figure 15: impcol e

for dense submatrices is performed. An overview of the re-

sults of the analysis is prompted to the user. For example,

for matrix impcol e of the Harwell-Boeing Sparse Matrix

Collection [10], of which the nonzero structure is illustrated

in �gure 15, the following output results:

Size : 225 x 225

#Entries : 1308

Density : 0.026

Av.#Entries p. row : 5.81

Av.#Entries p. col.: 5.81

Semi-Bandwidths : 92 <-> 35

(B90) : 129

(P22) : 11.93

#Used Diagonals : 120

#Full Diagonals : 0

Type : Block Banded Form

#Elements (D/L/U/B): 50289 34552 49778 27931

(bs/bs/bs/B): 56 0 142 13

(#blocks) : 2 15 12 49

#Dense Blocks : 556 (Density: 0.50)

Figure 16: Output for impcol e

Entry B90 and P22 denote the bandwidth in which 90%

of all nonzero elements is contained, and the percentage of

nonzero elements within a band with bandwidth 5 . (B

1

= 2

and B

2

= 2). The total number of elements in the computed

block diagonal, block lower and upper triangular and block

banded form (D/L/U/B) is given, together with the border

size or semi-bandwidth respectively (bs/B), and the total

number of diagonal blocks in the partitions, excluding the

diagonal block in the border. The partition of the block

form that is selected as characterization of the matrix is

made available to the compiler in a data structure that is

similar to the array used in the construction algorithms.

Figure 17: jagmesh2

The results of analysis on jagmesh2, illustrated in �g-

ure 17, are given in �gure 18. The matrix is lower triangular

and no information about block forms is determined.

Finally, we illustrate how nonzero structure information

can be used by a sparse compiler, as described in [4, 6]. In

case nonzero structures are static, i.e. �ll-in does not occur,

the only concern of the compiler is to select a data structure



Size : 1009 x 1009

#Entries : 3937

Density : 0.004

Av.#Entries p. row : 3.90

Av.#Entries p. col.: 3.90

Semi-Bandwidths : 991 <-> 0

(B90) : 101

(P22) : 50.39

#Used Diagonals : 244

#Full Diagonals : 1

Type : Lower Triangular Form

#Dense Blocks : 2035 (Density: 0.50)

Figure 18: Output for jagmesh2

according to the nonzero structure characteristics. Since in

some cases, explicit storage of some zeros results in storage

schemes with less overhead, set E

A

, for which Nonz

A

�

E

A

� f1 : : :mg�f1 : : : ng is used to denote the index set of

explicit stored elements, referred to as entries. However, for

dynamic data structures the compiler must determine which

properties are preserved during execution, so that only those

properties are exploited. The results of nonzero structure

analysis can be given in terms of constraints of the form

a

ij

6= 0 ) P (i; j) where P (i; j) is some predicate. For

example, for a lower triangular matrix, this predicate has

the form j � i. If a data structure is selected by the compiler

such that (i; j) 2 E

A

) P (i; j) still holds, contra position

:P (i; j) ) (i; j) =2 E

A

can be used to reduce the iteration

set [6]. For example, since in the following dense fragment

for matrix-vector multiplication, condition (i; j) 2 E

A

is

associated with the assignment statement to indicate the

instances that must be executed, the compiler can transform

this fragment as shown below if (i; j) 2 E

A

) (�4 � j� i �

5) holds:

DO I = 1, M

DO J = 1, N

Y(I) = Y(I) + A(I,J) * X(J)

ENDDO

ENDDO

First, a unimodular transformation [2] is applied so that all

elements a

ij

for j� i = J are accessed in one iteration of the

outermost loop:

DO J = 1 - M, N - 1

DO I = MAX(1,1-J), MIN(M,N-J)

Y(I) = Y(I)+ A(I,J+I) * X(J+I)

ENDDO

ENDDO

Subsequently, iteration space reduction is applied, based on

the nonzero structure characteristics:

DO J = -4, 5

DO I = MAX(1,1-J), MIN(M,N-J)

Y(I) = Y(I)+ A(I,J+I) * X(J+I)

ENDDO

ENDDO

Statistical information about the density in the remain-

ing diagonal that are accessed can be used subsequently to

select sparse or dense storage for these diagonals, so that one

of the following versions result (see [6] for further details of

code generation):

sparse band:

DO J = -4, 5

DO AD = ALOW(J+5), AHIGH(J+5)

I = AIND(AD)

Y(I) = Y(I) + AVAL(AD) * X(J+I)

ENDDO

ENDDO

dense band:

DO J = -4, 5

DO I = MAX(1,1-J), MIN(M,N-J)

Y(I) = Y(I) + ADNS(I-MAX(1,1-J)+1,6-J) * X(J+I)

ENDDO

ENDDO

In the second fragment, E

A

consists of the whole band

that is stored in a two-dimensional dense array ADNS, while

in the �rst fragment, arrays ALOW and AHIGH are used to

point to the start addresses of sparse vectors that are stored

conform the diagonals in two parallel arrays AVAL and AIND.

Since appropriate initialization code is generated by the

compiler, the exact structure E

A

along the band will only be

constructed at run-time.

2

Clearly, this code is more suited

for this particular matrix than the code that would result

for e.g. sparse row-wise storage of a general sparse matrix,

shown below. The overhead in this code is clearly more

intrusive, because many short sparse vectors are traversed.

DO I = 1, M

DO AD = ALOW(I), AHIGH(I)

J = AIND(I)

Y(I) = Y(I) + AVAL(AD) * X(J)

ENDDO

ENDDO

Similarly, block forms, stored in arrays like part can be

used to transform fragments into the corresponding block

algorithms, while statistical information is used to deter-

mine whether sparse or dense storage is used for all nonzero

blocks of the partition. If the nonzero structure changes dur-

ing execution, i.e. �ll-in occurs, a dynamic data structure

must be used to account for these changes. In such cases,

the compiler must determine which properties are preserved

during program execution, which requires an advanced form

of program analysis.

5 Conclusions

In this paper we have presented techniques to analyze the

nonzero structures of sparse matrices in an e�cient way.

More research is necessary into techniques to use this in-

formation in the data structure selection and code gener-

ation phase of a sparse compiler, and in program analysis

techniques that determine which properties are preserved in

case �ll-in occurs. The results from this research can also be

used for the automatic generation of analysis code in sparse

codes that select a particular routine that is optimized for

speci�c nonzero structures. Other issues, such as reorder-

ing of matrices in order to reduce the �ll-in, must also be

accounted for.
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2

This is a strong argument for user annotations for nonzero struc-

tures in case only certain properties of the nonzero structure are

known in advance, but the exact nonzero structure is not available.
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