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Abstract
This paper presents a method for designing artificial neural network architectures. The
method implies areverse engineeringof the processes resulting in the mammalian brain.
The method extends the brain metaphor in neural network design with genetic algorithms
and L-systems, modelling natural evolution and growth. It will be argued that a principle
of modularity, which is inherent to the design method as well as the resulting network
architectures, improves network performance.

1. Introduction

Several neural network simulation studies show that many problems can not be solved by a learning
algorithm in conventional fully connected layered neural networks [e.g. 2, 5, 7, 10, 14, 18, 24]. Two
problems that occur frequently are: a lack of generalization and a problem called interference. A trained
network is said to generalize if it gives correct responses to input patterns not seen during training.
Many networks fail to generalize because they have too many degrees of freedom. A large number of
weights often allows a network to implement several different functions that correctly calculate the
response to the patterns in the training set, but do not implement the desired function. One effect that
can be seen in networks with this problem isovertraining (or overfitting [e.g. 8]). This effect happens
when a small set of examples of the total task domain is trained for a very long time. The network ini-
tially learns to detect global features of the input, and as a consequence generalizes quite well. But after
prolonged training the network will start to recognize each individual example input/output pair rather
than settling for weights that describe the mapping for all cases in general. When that happens the net-
work will give exact answers for the training set, but is no longer able to respond correctly for input not
contained in the training set. This behaviour can be compared with curve-fitting with too many free
parameters.

The problem ofinterference (or crosstalk) occurs if two or more unrelated problems are to be learned
by one neural pathway [e.g. 11, 22]. With a very small network it may be that the network is simply not
able to learn more than one of the problems. But if the network is large enough, in principle, to learn all
tasks at the same time, it may still not be able to do so. The different problems seem to be in each others
way: if one of the problems is represented in the weights of the network the other is forgotten, and vice
versa. An example of such interference between more classifications is the recognition of both position
and shape of an input pattern. Rueckl et al. [22] conducted a number of simulations in which they
trained a three layer backpropagation network with 25 input nodes, 18 hidden nodes and 18 output
nodes to simultaneously process form and place of the input pattern. They used nine, 3x3 binary input
patterns at nine different positions on a 5x5 input grid. So there were 81 different combinations of
shape and position. The network had to encode bothform andplace of a presented stimulus in the out-
put layer. It appeared that the network learned faster and made less mistakes when the tasks were proc-
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essed in separated parts of the network, while the total number of hidden nodes stayed the same. Of
importance was the number of hidden nodes allocated to both sub-networks. When both networks had 9
hidden nodes the combined performance was even worse than that of the single network with 18 hidden
nodes. Optimal performance was obtained when 4 hidden nodes were dedicated to theplace network,
and 14 to the apparently more complex task of theshape network. It needs to be emphasized that
Rueckl et al. tried to explain why form and place are processed separately in the brain. The actual
experiment they did, showed that processing the two tasks in one unsplit hidden layer caused interfer-
ence. However, when experimenting with this example ourselves, we found that they failed to describe
that removing the hidden layer completely, directly connecting the input and output layer, leads to an
even better network than the optimum found using 18 hidden nodes in separate sub-networks.

In a follow-up paper [11] Jacobs et al. distinguished two types of crosstalk: spatial and temporal. Spa-
tial crosstalk occurs when the output units of a network provide conflicting error information to a hid-
den unit. Temporal crosstalk occurs when units receive inconsistent training information at different
times.

In order to eliminate these kind of problems a lot of research is being done on how to find the optimal
networkarchitecture given the problem it has to learn [e.g. 2, 5, 7, 8, 14, 24, 27]. A small example of
how much depends on the architecture of a neural network is the XORproblem [e.g. 2, 23] in which a
neural network has to learn to calculate the logical exclusive-or function. If the network has a simple
layered architecture: two input units, two hidden units and one output unit, it takes on average 1650
epochs to train the network. If two additional connections are made, connecting the input directly to the
output, only 30 epochs are needed to achieve the same residual errori. This paper will present a network
design method that is largely inspired by the way in which the human brain is believed to have evolved.

1.1 Learning as entropy reduction

A neural network, when trained, is performing aninput-output mapping. The mapping that is imple-
mented by the network depends on the architecture of the network and its weights. When the architec-
ture is fixed, the mapping of the network is solely determined by the weights. The set of all possible
weight configurations (weight space) of a network determines aprobability distribution over the space
of possible input-output mappings that can be implemented with the fixed architecture. Theentropy of
this distribution is a quantitative measure of the diversity of the mappings realizable by the architecture
under consideration (see e.g. [4, 8, 24]).

Learning from examples reduces the intrinsic entropy of the untrained network by excluding weight
configurations which realize mappings incompatible with the training set. The residual entropy of the
trained network is a measure of its generalization. The goal of this research has been to design a method
to find a network architecture for a given task, that has a residual entropy approaching zero after train-
ing from examples, which means that the network converges to a state that implements the desired
mapping independent of the initial weight configuration before training. If a network architecture is
able to give several different mappings as a result of the training from examples, the residual entropy
will not be zero. This will probably lead to a bad generalization because onlyexamples of the complete
domain are used for training, and it is possible to extract the same set of examples from many different
mappings. An optimal architecture of a network will only allow for the mapping that is actually wanted.
If the residual entropy after training is not zero, small deviations from the input patterns in the training
set can give large errors in the output. This can happen, for example, when we have a weight space with
a large number of minima, each implementing exactly the mapping of the training set, but just one (or
none!) representing the mapping actually wanted.

Important is also the selection of the training set, because the error surface of the weight space depends
on the training data. Different training sets can result in quite different error surfaces. Minima of the

i. We used backpropagation with a momentum term. Our experiments showed that the actual setting of
the parameters did not matter very much if the architecture was optimal. The ‘standard’ 2-2-1 network
performed optimal with a learning rate parameter of 0.6 and a momentum term of 0.65.
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error surface at the same location in weight space, that appear with different training sets can be
expected to show a better generalization.

1.2 Definition of entropy

In order to give a definition of the entropy of a neural network, the probability of a network implement-
ing a mapping  has to be defined. Given a network architecture and its corresponding weight space
(the set of all possible weight settings ), Solla [24] defines thea priory probability of the network for
a mapping  as:

,

where  equals the total volume of the allowed weight space, and

is the volume in the initial weight space that implements the desired mapping with

So in other words:  is the probability the network implements the desired mapping with an arbitrary
setting of . Obviously the network should be able to implement the desired mapping: . If ,
the network is unable to learn the desired input/output mapping.

Selecting a network structure defines a class of functions that are realizable with that network. A useful
measure of the diversity of possible mappings  that can be implemented with the chosen architecture is
the a prioryentropy [4]:

of the a priory probability distribution of a given network. Since  not just for the desired mapping
 but also for mappings , the distribution of  is such that the entropy .

The definition of thea priory probabilityand theentropy of neural networks give a mathematical
notion of the necessity to find networks with a good architecture. A correct network architecture results
in a high a priory probability, which in turn leads to a low intrinsic entropy of the untrained network. It
is the intrinsic entropy  of the untrained network that needs to be eliminated via a learning process.
The purpose of training is to confine the configuration space to the region , thus elimi-
nating all ambiguity about the input-output mapping implemented by the trained output. Note that a
high a priory probability of implementing the wanted function does not imply that the learning algo-
rithm is always able to find it.

Network entropy, however, can be reduced by fairly straightforward architectural constraints, improv-
ing the network’s capability to learn a desired I/O mapping [5, 24]. It is a major difficulty that thus far
there are no general methods or guidelines providing useful architectural constraints.

1.3 Reverse engineering

The human brain itself appears to have a modular organization [1, 17, 25] closely related to its neural
functions [7, 12, 18, 19]. This modular organization appears already to be partially present at birth, and
is assumed todirect learning [7]. The modules on the smallest scale, of which most of the cortex is
built, can be seen as the elementary computing units of the brain. These modules, often calledminicol-
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umns [17, 25], consist of approximately 100 neurons. It is hypothesised [13] that the eventual function-
ality of each module is determined by the afferent signals received during growth and learning.

The actual architecture of each module and the overall structure of the brain has to be genetically coded
in some way and is expressed in a growth process during the development of the brain. The evolution-
ary process must have discovered that it was profitable just to make more and more of the same cortical
units. That this is what actually happened can be concluded from the fact that the architecture of the
basic unit does not vary very much across species and cortical areas [13]. This kind of repeating the
same module over and over can be seen almost everywhere in nature [e.g. 3].

We propose a reverse engineering of the natural processes that resulted in the brain, to design artificial
neural network architectures that capture the functional and structural characteristics of biological neu-
ral systems. To this aid, a model used to describe growth in nature: L-systems [15, 16, 20, 21], is com-
bined with genetic algorithms [6, 9] in an attempt to extend the brain metaphor in neural network
design with genetic search and artificial growth. Results of experiments with this method performed so
far indicate this method to be very promising [2].

2. L-systems

L-systems are a mathematical construct developed to model the biological growth of plants [15] and
can be seen as a special class of fractals [16]. L-systems are based on a parallel string rewriting mecha-
nism. The resulting strings, after repeatedly applying production rules on an initial axiom, can be inter-
preted in several ways depending on the semantics of the symbols used [15, 20, 21]. The most used
interpretation is used to generate line drawings in the shape of trees. To describe graph topologiesi, an
interpretation was constructed that enabled context-sensitive graph rewriting. The use of L-systems for
generating neural network architectures is expected to introduce self-similar and modular architectural
constraints, repeatedly and recursively reusing useful neural processing principles.

2.1 Strings coding topology

The strings used in this research consist of characters from the rather arbitrarily chosen alphabet {A–H,
0–5, [, ]}. A node from the network is represented by a letter from this alphabet, and can be seen as the
smallest possible module. Larger modules can be created by grouping nodes (or other modules)
between square brackets. Connections are made by inserting digits, orskips, between the modules.
When a digitx is encountered, the preceding module is connected to the module that isx skips to the
right. Since we used the backpropagation algorithm to test the quality of the network architecture repre-
sented by the string, onlyfeedforward networks were generated. Recurrent network architectures can
easily be generated by allowing negative skips. Alloutput nodes of the first of the two connected mod-
ules are then connected to allinput nodes of the second. An input node of a module is a node that
receives no input from within the module. An output node of a module has no output to other nodes
within the module. If a skip from within a module goes beyond the closing bracket of this module, the
skip is continued after this bracket. As treated below, this specific way of coding network architectures
allows for a repeated and recursive application of good production rules. It is expected that architecture
constraints beneficial on a small scale, will also benefit performance when applied to large-size struc-
tures. This reusing of the same rules results in fractal-like network architectures.

In the alphabet we used, the maximum skip distance is 5, which restricts the kind of networks that are
possible. It is easy to prove that allowing infinite skip distances makes it possible to describe all possi-
ble graphs with the strings described above. It is unknown whether this limitation seriously restricts the
quality of the possible solutions, and for small problems it restricts the search space of the genetic algo-
rithm hereby speeding up convergence.

i. In this work graphtopologies are used to describe networkarchitectures.
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2.2 Production rules

The strings described in the previous section are generated by applying production rules to an initial
string (axiom). The L-systems we used are 2L-systems: every production rule can have both a left and a
right context. The production rules have the following format:

L < P > R → S.

The four elements of the production rule can not be arbitrary strings from our alphabet; we made the
following restrictions:

• ThepredecessorP may contain skips and modules, and should contain at least one letter.

• These same restrictions apply to thesuccessorS, which is also allowed to be empty.

• ThecontextsL andR may also be empty, but no loose digits are allowed: each digit must be
contained in a module.

A deviation from conventional 2L-systems is the handling of context, that now has to take the skips
into account. Whereas in conventional 2L-systems the context is matched at the characters directly to
the left and right of the predecessor, on our L-system the context is determined by looking at the actual
network that is coded by the string that is being rewritten. Because of this, the context string should be
seen as a list of modules, all of which should be connected to the predecessor in the current network
before the production rule may be applied. The left context of the predecessor is the set of modules or
nodes that give input to (parts of) the predecessor, the right context is defined in an analogous way. Fur-
thermore, we used the convention that production rules with larger matching contexts prevail.

For example, look at the production rules shown in figure 1. IfA is taken as axiom, the rewriting proc-
ess is as follows:

A → B0B0B → [CD]0[CD]0C → [CC1]0[CC]0C.

Hereafter no more rules apply. The successive networks of this growth process are shown in figure 2. It
is very easy to make production rules that can be applied infinitely, so that the growing process never
stops. For example the ruleA → AA will grow exponentially. For this reason we restricted the maxi-
mum number of steps to 6.

The strings that resulted from the L-system in our simulations were transformed to adjacency-matrices
at every step in the rewriting process in order to be able to calculate the left and right contexts for the
next step. The adjacency-matrix that resulted from the last rewriting step was pruned to remove uncon-
nected and useless nodes.

1: A → B0B0B
2: B > B → [CD]
3: B → C
4: C < D → C
5: D > D → C1

Fig. 1 Production rules
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3. Genetic Algorithms

The Neo-Darwinian theory of evolution is modelled with genetic algorithms [e.g. 3, 6]. A population of
strings is manipulated, where each string can be seen as a chromosome (the genotype), consisting of a
number of genes. These genes are used to code the parameters for a problem. Each string can be
assigned a fitness, which indicates the quality of the solution (the phenotype) it encodes. The strings
used by the algorithm reproduce proportional to their fitness. A new generation is created by selecting
and recombining existing strings based on their fitness, using genetic operators like selection, crosso-
ver, inversion and mutation. From generation to generation the mean fitness of the population should
increase. Genetic algorithms have proved to provide a powerful method for solving multiple constraint
problems. The specific genetic algorithm used is derived from the GENITOR algorithm [26, 27] that
uses a static population model. In this model, that uses rank based selection, each new member of the
population is inserted in the population according to its fitness, removing the population’s worst mem-
ber and keeping the population sorted according to fitness.

3.1 Coding the production rules

Searching efficient network architectures proceeds by having a genetic algorithm define and optimize
the production rules of an L-system. Here, a chromosome encodes a set of production rules (the L-sys-
tem). Each character from the alphabet was represented with a six bits long binary string. The 17 sym-
bols that were coded include the 16 characters from our alphabet plus a special symbol (an asterisk),
used to separate the constituent parts of production rules (context, predecessor, successor) within a
chromosome. The asterisk may be compared to the start and stop markers used for the transformation
from RNA to protein. Production rules are extracted from a chromosome according to the following
procedure:

1. Read the chromosome, six bits at a time.
2. Translate each group of six bits to an asterisk or a symbol of our alphabet, according to a

translation table. This results in a string of symbols.
3. Find all minimal substrings containing 5 asterisks of this symbol string. These substrings

begin and end with a asterisk, and have three asterisks somewhere in between.
4. Each substring now codes one production rule. The symbols of our alphabet between two

asterisks form a part of the production rule. For example**A*BBB*C* codes the rule
A > BBB → C. Notice that two asterisks next to each other indicate an empty part of the pro-
duction rule.

5. Throw away all production rules that do not conform to the restrictions given in paragraph
2.2, leaving only valid production rules.

6. Repeat steps 1–5 by starting to read the bitstring not just at the first bit, but also at bit 2–5.
7. Repeat steps 1–6, starting at the end of the bitstring, reading the bits in the opposite direction.

All production rules that are extracted in this way form the L-system for one network. Since our algo-
rithm starts atall bit positions and reads inboth directions, the chromosome of one member of the pop-
ulation is readtwelve times, which may eventually increase the level of implicit parallelism of the
genetic algorithm. It even allows two or more production rules to be coded by the same bits.

3.2 Evolution

The genetic algorithm generates a population of initially random bit strings. Each bitstring (chromo-
some) is a member of the population. A solution is evaluated by having the decoded L-system produce
the network architecture. A neural network simulator (in this research the backpropagation algorithm)
then trains the network for a specified problem. The obtained residual error after a certain training
period is then transformed into a measure of fitness. This fitness is returned to the genetic algorithm,
which produces a new solution from the population to be evaluated, etcetera.

One should however be very careful with the interpretation of the solution to which the genetic algo-
rithm converges. Since the parameters of the learning algorithm are not also subject to the optimization
process, the obtained best network architecture depends on these parameters. If, for example, in order
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to reduce the execution time of the evolutionary process the number of training epochs is reduced to
100, say, it may very well be that the resulting network architecture performs much worse than an other
network architecture when the training time is extended. A possible solution might be to include these
parameters in the evolutionary process, but that will increase the search space for the genetic algorithm
considerably.

4. Results

One of the problems that were presented to the outlined method is the TC-problem [23]. The network
has to learn whether a T or a C is presented to it. Each letter, consisting of 3x3 pixels, can be rotated 0,
90, 180, or 270˚ and can be anywhere on the 4x4 input grid, see figure 3. The network that resulted after
7500 genetic recombinations is shown in figure 4. Notice that the network has just 13 instead of 16
input nodes, the last three positions in the grid were not used. We compared this network architecture
with networks with one hidden layer, varying the number of hidden nodes from 3–8i. We presented the
32 patterns 250 times to the networks, and repeated this 50 times after resetting the networks with ran-
dom initial weightsii . Of these 50 times, the evolved network of figure 4 did classify all 32 patterns cor-
rectly in 45 cases, where the network with one hidden layer with 6 nodes did classify correctly in only
30 cases. The other networks we tried were even worse.

A more difficult task for backpropagation is derived from [10]. In this research it was tried to have a
neural network correctly classify a 10x10 map into four classes using backpropagation, see figure 5.
The input of this problem consisted of two values between 0 and 1, defining a coordinate in a plane.
The network had to classify the input values into four classes. This only succeeded for the map he used

i. We used backpropagation with momentum. The learning parameter was set to 0.4 and the momentum
parameter was set to 0.9.
ii. The incoming weights of each module were initialized with values chosen from a uniform distribution
from the interval , where  is thefan-in of the module, which prevents the learning algo-
rithm to start from one of the many plateaus in weight-space.

Fig. 3 The 8 possible letters and one sample input grid of 4x4.

Fig. 4 Network for the TC-problem

3 n⁄− 3 n⁄,[ ] n
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with a network of 3 hidden layers with 20 nodes each. This network frequently reached a local opti-
mum. Using our design method we found a much smaller network architecture that learned the problem
significantly faster (the network converged in 100 epochs on average). The resulting network is shown
in figure 6. It could correctly classify 99 of the 100 points, each time the problem was presented to it.

5. Conclusion

Our simulation results indicate that the combined use of genetic algorithms and L-systems results in an
efficient search, characterized by fast convergence towards a solution and better architectures. This
might be explained by a number of theoretical advantages of the use of L-systems to code network

Fig. 5 The input map
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topologies over ‘blueprint representations’ where the genetic algorithm has to specify every single con-
nection:

1. Coding can be sparse (less free parameters). A few production rules can produce already very
complex architectures.

2. Scalability of solutions. Arbitrarily large architectures can easily evolve from small architec-
tures by relatively minor changes in a fixed number of production rules. This significantly
reduces the time needed for genetically optimizing large architectures, see also [14].

3. Modularity of solutions. The same production rules can be applied many times in the growth
process resulting in the multiple application of efficient pieces of architecture, and self-simi-
lar fractal-like architectures.

4. This method of encoding network topologies is much related to the way biological architec-
tures are genetically encoded and might therefore be expected to provide some efficient
design principles.
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