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Abstract. A text can be de�ned as a word w together with a (second)

linear order on its domain f1; :::; jwjg. This second order may be used to

de�ne a hierarchical, tree-like, structure representing the text. The family

of context-free sets of texts is investigated, i.e., sets of texts de�ned by

context-free text grammars. In particular, those sets of texts are stud-

ied in the framework of universal algebra. This allows to compare the

classical notions of equational and recognizable families in an algebra with

context-free sets in the \algebra of texts". Within this algebra the notion

of equational sets coincides with the context-free sets. A grammatical

characterization of the family of recognizable sets is given as a subfamily

of the context-free sets of texts.

1 Introduction

This paper further investigates the class of context-free texts, that was introduced in

[9] generalizing context-free word grammars to the setting of texts.

The notion of a text itself generalizes the notion of a word. A text is a triple � =

(�; �

1

; �

2

) such that � is a labeling function from a domain D to some alphabet, and

�

1

and �

2

are linear orders on the domain D of �. Usually, D = f1; 2; : : : ; ng and �

1

is of the standard form (1; 2; : : : ; n). Hence � may be seen as a word �(1)�(2) � � � �(n)

(referred to as the word of � ) together with an additional linear order �

2

on the domain

f1; : : : ; ng of �.

The traditional role of a context-free word grammar is to de�ne a language as a set

of words (generated by the grammar) and to provide each word in the language with

its syntactic structure (given by a derivation tree of the grammar). In the case of texts,

each text already has an intrinsic tree-like structure, called its shape, a notion which

originates from the decomposition theory of 2-structures (see [5, 6]). Hence, rather than

providing each text with a syntactic structure, the role of a context-free text grammar

is limited to that of de�ning a set of texts.

The tree-like structure used to represent a text hierarchically is a so-called leaf-

labeled bi-ordered tree, which generalizes the concept of a leaf-labeled ordered tree

�

Research supported by the EBRA Working Group ASMICS 2.



giving a structure to a word. A tree is bi-ordered if with each inner node two lin-

ear orderings of its children are associated. These local orderings then determine two

orderings on the leaves of the tree.

If the second order of a text equals the �rst order or the reverse of the �rst order,

then such a forward or backward sequential text is very much like a word: the text does

not impose any structure on the bi-ordered tree representation. On the other hand,

very unlike the case of words, there is an important class of texts that have only one

(rather trivial) representation, where the leaves of the tree are children of the root, and

the associated orderings of the root are the orderings of the text itself. These text are

called primitive.

A bi-ordered tree representation for a text describes a modular decomposition of the

text. This way of decomposing texts is in complete accordance with the decomposition

theory for 2-structures (see [7]), due to a close correspondence between texts and a

certain subclass of 2-structures. Primitive texts, being undecomposable, play the role

of primes in this theory.

It is natural to look for a \maximal" decomposition of a text, i.e., a tree represen-

tation where all nodes have a primitive structure. Such a maximal decomposition may

not be unique, as in the case of sequential texts where many binary bi-ordered tree

representations for each text exist.

However, it turns out that maximal decompositions of a text di�er only in their

binary subtrees representing sequential parts of the text. Now the shape of a text is

the unique bi-ordered tree representing the text such that each inner node is either

primitive or sequential, and for each forward (backward) sequential node, none of its

children is forward (backward, respectively) sequential. Thus, the shape indicates how

the text is built up with words (the sequential nodes) and primitive building blocks.

Every maximal decomposition of a text can be obtained from its shape by decomposing

each sequential node into a binary (bi-ordered) subtree.

Context-free text grammars are direct generalizations of context-free word grammars.

In [9] this class of grammars and their text languages were studied.

A text on the one hand can be seen as a word with an additional ordering, on the

other hand it has an intrinsic tree-like structure (as, e.g., given by its shape). The

main motivation of this paper is to explore this apparent duality. In particular we want

to compare and relate the families of context-free word languages, context-free text

languages, and tree languages generated by \regular" tree grammars.

The natural framework to relate these three di�erent structures is that of universal

algebra. An algebra is a set A together with a collection � of operations on A. If A is

the set of words over a given alphabet, then � contains only concatenation. Choosing

A to be a family of (ranked, ordered) trees, then an operation of rank n in � builds a

tree out of n given subtrees. For texts one may take operations corresponding to the

primitive (de-)compositions of texts.

In this algebra of texts we study the well-established notion of equational lan-

guages, that formalizes (in an algebraic setting) the notion of a language speci�ed by

a set of recursive equations (a context-free grammar can be interpreted as such). Us-

ing elementary techniques we show that the equational text languages coincide with

the context-free text languages. Additionally we consider the recognizable sets, which

extends the idea of languages accepted by a �nite state device.



For text languages, as for word languages, the recognizable sets are strictly included

in the equational sets. For tree languages the two notions coincide.

We isolate a class of context-free grammars that precisely generate the recognizable

text languages. We call a context-free text grammar right-linear if its (bi-ordered)

derivation trees are \right-most" maximal decompositions of the derived texts. (Such

a right-most maximal decomposition is obtained from the shape by decomposing each

sequential node into a \right-most" binary subtree; thus in this way each text has

a unique right-most maximal decomposition.) Hence, derivation trees are allowed to

be \regular tree-like" where the shape has primitive nodes, but they are restricted to

\right-linear" sequential parts. This class of right-linear grammars is more powerful

than the shapely grammars from [9], which allow only shapes as derivation trees.

The paper is organized as follows. We start by giving some preliminaries. In Sec-

tion 3 we present the framework of universal algebra with the classical de�nitions of

recognizable and equational subsets of an algebra. Additionally, in Section 4 we recall

the basic notions and results on texts and their hierarchical representations.

In Section 5 we provide an algebraic framework for texts, and start considering the

recognizable and equational text languages. The equational text languages are then the

context-free text languages from [9].

In Section 6, we give characterizations of recognizable text languages. In particu-

lar we prove that the recognizable text languages are precisely those text languages

generated by the so-called right-linear text grammars (Theorem 6.9). In Section 7 we

consider how the notions of recognizability and equationality for text languages are re-

lated to those for word languages and tree languages. Finally, in Section 8 we consider

some closure properties of families of text languages.

2 Preliminaries

For a (�nite) sequence s = (x

1

; : : : ; x

n

), jsj denotes its length n, and for 1 � i � jsj,

s(i) denotes the i'th element x

i

of s. In particular, we view a word w over an alphabet

� as a sequence of letters of �, but as usual we write w = a

1

� � � a

n

if w(i) = a

i

2 �

for i = 1; : : : ; n.

For a non-empty �nite set D, a linear order (on D) is a relation � on D such that �

is antireexive, transitive, and total, i.e., for all x; y 2 D with x 6= y, either (x; y) 2 �

or (y; x) 2 �. For each linear order � on D there is a unique ordering x

1

; : : : ; x

n

of

the elements in D such that (x

i

; x

j

) 2 � i� i < j. Hence a linear order � on D can

be speci�ed as a sequence of the elements (x

1

; : : : ; x

n

) of D. The terminology and

notations concerning sequences carry over to linear orders.

For a linear order � = (x

1

; : : : ; x

n

), we use dom(�) to denote the set fx

1

; : : : ; x

n

g.

A subset X � dom(�) is a segment of � if there exist i; j 2 f1; : : : ; ng such that

X = fx

`

j i � ` � jg (this includes X = ;).

For linear orders �

1

= (x

1

; : : : ; x

n

) and �

2

= (y

1

; : : : ; y

m

) with disjoint domains,

the sum of �

1

and �

2

, denoted �

1

+ �

2

, is the linear order speci�ed by the sequence

(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

). Note that this sum operation is not commutative.

If a function f on a set D is given, then we shall extend f in the usual way to a

subset X of D, yielding the set f(X), or to a sequence � on D, yielding the sequence

f(�).



By a tree t we mean a directed graph with one designated node, the root of t, such

that each node is connected with the root by a unique directed path from the root.

The nodes without outgoing edges are the leaves of t, the other nodes are the inner

nodes of t. A tree is chain-free if it has no nodes with precisely one outgoing edge. The

out-degree of t is the maximum number of outgoing edges per node. A node-labeled (or

inner-, leaf-labeled) tree is a tree where in addition each node (or each inner node or

each leaf) has a label.

An ordered tree is a tree together with a function ord that associates to each inner

node v a linear order ord(v) on the children of v. These local linear orders induce a

linear order � on the leaves of the tree. The yield of a leaf-labeled ordered tree is the

word formed by the labels of the leaves according to the induced ordering of the leaves.

For our purposes, the identity of the nodes of trees and ordered trees is not important.

Hence we will consider (ordered) trees modulo the identity of their nodes.

A context-free grammar G is denoted by a 4-tuple (N;�; P; S), where N is the

alphabet of nonterminals, � is the alphabet of terminals, P is the set of productions of

the form A! w with A 2 N and w 2 (N [�)

�

, and S 2 N is the axiom. To emphasize

the fact that G is used to generate words we call it a context-free word grammar.

3 Sigma-algebras

We recall here some notions concerning universal algebra | see, e.g., [1]. A ranked

alphabet � is a �nite alphabet of operator symbols, where each operator symbol � 2 �

has a rank r(�) 2 N; for m 2 N, �

m

denotes f� 2 � j r(�) = mg. A �-algebra A is

a pair (A;�), where A is a set and � a ranked alphabet, and each operator � 2 �

m

,

m � 0, de�nes a mapping �

A

: A

m

! A.

Let � be a �xed ranked alphabet.

Let A = (A;�) and B = (B;�) be �-algebras. A homomorphism h from A

to B is a mapping h : A ! B such that for each � 2 �

m

, h(�

A

(a

1

; : : : ; a

m

)) =

�

B

(h(a

1

); : : : ; h(a

m

)) for all a

1

; : : : ; a

m

2 A. A congruence of A is a relation on A

that is invariant under every operator, i.e.,

�

=

is a congruence if, for all � 2 �

m

,

and all a

1

; : : : ; a

m

; a

0

1

; : : : ; a

0

m

2 A, a

i

�

=

a

0

i

for 1 � i � m implies �

A

(a

1

; : : : ; a

m

)

�

=

�

A

(a

0

1

; : : : ; a

0

m

). An elementary translation of A is a mapping ' : A ! A de�ned by

'(v) = �

A

(a

1

; : : : ; a

j�1

; v; a

j+1

; : : : ; a

m

), where � 2 �

m

, 1 � j � m, and a

1

; : : : ; a

j�1

;

a

j+1

; : : : ; a

m

2 A. A translation of A is the composition of elementary translations

of A. A relation on A is a congruence of A i� it is invariant under the (elementary)

translations of A.

Given a congruence

�

=

of A, the corresponding quotient algebra, denoted by A=

�

=

,

is the �-algebra (C;�), where C consists of the congruence classes of

�

=

, and for � 2

�

m

, �

A=

�

=

(c

1

; :::; c

m

) is the class of �

A

(a

1

; :::; a

m

), where a

i

is a representative of c

i

for

i = 1; : : : ;m.

Homomorphisms and congruences are related as follows : the kernel of a homo-

morphism h from A to B, denoted by ker(h), is the congruence such that a; a

0

2 A

are congruent i� h(a) = h(a

0

) 2 B, and each congruence

�

=

of A is the kernel of the

homomorphism from A to A=

�

=

which assigns to each element of A its congruence

class.



Let V be a set of variables. The set of �V -terms, denoted by F

�

(V ), is the smallest

set of words over �[V [fh; ig that contains V [�

0

, and such that ifm � 1, t

1

; : : : ; t

m

2

F

�

(V ), � 2 �

m

, then �ht

1

� � � t

m

i 2 F

�

(V ). For V = ;, we denote F

�

(;) by F

�

. Note

that F

�

= ; i� �

0

= ;. By considering the variables in V as nullary symbols in � we

identify F

�

(V ) with F

�[V

.

The �-algebra of (ground) terms F

�

= (F

�

;�) is the �-algebra such that

�

F

�

(t

1

; : : : ; t

m

) = �ht

1

� � � t

m

i, for � 2 �

m

with m � 1, t

1

; : : : ; t

m

2 F

�

, and �

F

�

= �

for � 2 �

0

. F

�

is initial in the class of all �-algebras, i.e., for each �-algebra A there

is a unique homomorphism from F

�

to A; if this homomorphism is surjective we say

that A is generated by �.

Let A = (A;�) be a �-algebra, and let fv

1

; : : : ; v

n

g be an (ordered) set of variables.

With each term t 2 F

�

(fv

1

; : : : ; v

n

g) we associate a mapping t

A

: A

n

! A, which is

de�ned by v

A

i

(a

1

; : : : ; a

n

) = a

i

, and �ht

1

� � � t

m

i

A

(a

1

; : : : ; a

n

) = �

A

(t

A

1

(a

1

; : : : ; a

n

)); : : :

: : : ; t

A

m

(a

1

; : : : ; a

n

)); t

A

is a so-called derived operator.

A theory T is a pair (�; E) where � is a ranked alphabet, and E is a set of equations

of the form t = t

0

where t; t

0

2 F

�

(V ) for a set of variables V . The �-algebra A = (A;�)

is called a T -algebra if it satis�es the equations of T : t

A

= t

0A

for each (t = t

0

) 2 E. In

particular, the quotient term algebra F

�

=

�

=

, where

�

=

is the congruence on A generated

by the equations in E, is a T -algebra; moreover it is initial in the class of T -algebras.

3.1 Recognizable and equational sets

We recall the basic notions of recognizable and equational sets, in the setting of �-

algebras (as introduced in [12], see also, e.g., [2], [4], [15]). Let � be an arbitrary, but

�xed ranked alphabet, and let A = (A;�) and B = (B;�) be �-algebras.

The notion of word languages recognizable by �nite state automata can be gener-

alized to subsets of an algebra. Finite algebras take the role of (deterministic) �nite

state acceptors, and the mapping that assigns to each word the state reached is in this

setting a homomorphism of algebras.

De�nition 3.1 A subsetK � A is recognizable if there is a �nite �-algebra Q = (Q;�),

a homomorphism h : A ! Q, and a subset F � Q such that h

�1

(F ) = K.

In view of the natural correspondence of homomorphisms and congruences, one might

alternatively de�ne that K � A is recognizable if there is a �nite congruence of A that

saturates K (i.e., there are �nitely many congruence classes and K is the union of some

of them). It is well known that the greatest congruence saturating a set K, called the

N�erode congruence of K and denoted by

�

=

K

, can be characterized as follows: a

�

=

K

a

0

i� for every translation ' of A, '(a) 2 K i� '(a

0

) 2 K.

Proposition 3.2 K � A is recognizable i�

�

=

K

is �nite. 2

Context-free word grammars may be seen as a recursive mechanism for specifying

languages. In the framework of universal algebra this generalizes to systems of equations

and equational sets.

A polynomial system S is a set of equations fv

i

= t

i1

+ � � � t

ik

i

j i = 1; : : : ; ng,

where fv

1

; : : : ; v

n

g is a �xed set of variables, and each t

ij

is a term in F

�

(fv

1

; : : : ; v

n

g).

With such a polynomial system S one associates a system function S

A

: (2

A

)

n

!



(2

A

)

n

satisfying S

A

(W

1

; : : : ;W

n

) = (W

0

1

; : : : ;W

0

n

), where W

0

i

=

S

k

i

j=1

t

A

ij

(W

1

; : : : ;W

n

),

for W

1

; : : : ;W

n

� A. Being a continuous mapping, the system function S has a least

�xed point, denoted by [S

A

].

De�nition 3.3 A subset K � A is equational if there is a polynomial system S such

that K is a component of the least solution [S

A

].

The next theorem collects some facts concerning the behaviour of homomorphisms

with respect to recognizability and equationality.

Theorem 3.4 Let h : A ! B be a homomorphism.

(1) If L � A is equational, then h(L) � B is equational.

(2) If K � B is recognizable, then h

�1

(K) � A is recognizable.

(3) If h is surjective, and if h

�1

(K) � A is recognizable (equational), then K � B is

recognizable (equational).

(4) If h is injective, and if h(L) � B is recognizable (equational), then L � A is

recognizable (equational).

(5) If K � B is equational, then there exists an equational set L � A such that K =

h(L).

Proof. The results for equational sets rely on the general fact (see [12]) that each

homomorphism preserves the least �xed point of a polynomial system S, i.e., h[S

A

] =

[S

B

], where h is extended to sequences of subsets of A. E.g., claim (5) follows from the

fact that if K is the i'th component of [S

B

] for some i, S being a polynomial system,

then the i'th component of [S

A

] is an equational subset of A and its image under h is

K.

For recognizable sets, (2) and (4) follow immediately from the fact that ifK = j

�1

(F )

for some homomorphism j, then h

�1

(K) = (j � h)

�1

(F ).

The proof of (3) is as follows. Due to the surjectivity of h, for each (elementary)

translation  of B there exists an (elementary) translation ' of A such that h('(a)) =

 (h(a)) for each a 2 A. Assuming that a

�

=

h

�1

(K)

a

0

for some a; a

0

2 A, then also

h(a)

�

=

K

h(a

0

) by the characterization of the N�erode congruence in terms of translations.

Using again the surjectivity of h we may infer that the index of

�

=

K

is not larger than

the index of

�

=

h

�1

(K)

. Consequently, K is recognizable whenever h

�1

(K) is. 2

Note that in particular it follows from this theorem that isomorphisms preserve

recognizability and equationality.

In the case of the term �-algebra F

�

, we have the following result from [12].

Proposition 3.5 For each T � F

�

, T is equational i� T is recognizable. 2

For arbitrary �-algebras that are generated by � this result holds in only one direc-

tion.

Corollary 3.6 Let A = (A;�) be a �-algebra generated by �. If K � A is recognizable,

then K is equational.



Proof. Let h be the unique homomorphism from F

�

to A. Since A is generated by �,

h is surjective. By Theorem 3.4(2), h

�1

(K) � F

�

is recognizable. By Proposition 3.5,

h

�1

(K) is equational. By Theorem 3.4(1), h(h

�1

(K)) is equational. Since h is surjective,

K = h(h

�1

(K)). 2

The general concepts given above can again be specialized to word languages and

tree languages.

The word languages in this paper are all "-free, and hence we work in the semi-group

�

+

rather than in the monoid �

�

. Any semi-group can be viewed as a �-algebra, where

� consists of one operation of rank 2. In the case of the free semi-group �

+

, we may

extend � by adding the elements of � as nullary operators, which makes �

+

an algebra

generated by its ranked alphabet. More precisely, �

+

is a �-algebra, with � = �[f�g

such that � is an operator of rank 2 that is interpreted as word concatenation, and

every nullary operator a 2 � is interpreted as the word a of length 1. Moreover, the

associativity of concatenation can be expressed by stating that �

+

satis�es the equation

e : �hu�hvwii = �h�huviwi, i.e., �

+

is a T -algebra for the theory T = (�; feg);

the freeness of �

+

is expressed by stating that it is an initial T -algebra. As is well-

known (see,e.g., [12]) the recognizable subsets of �

+

are then precisely the ("-free) word

languages recognized by �nite state automata, and the equational subsets of �

+

are

precisely the ("-free) context-free word languages.

For any ranked alphabet �, the terms in F

�

describe node-labeled ordered trees

(modulo the identity of their nodes). Accordingly, the subsets of F

�

are known as tree

languages (for an overview on tree languages, see, e.g., the book [11]). Recognizable

tree languages are usually de�ned as tree languages accepted by so-called deterministic

bottom-up tree recognizers. This de�nition is equivalent with De�nition 3.1.

By Proposition 3.5 a tree language is recognizable i� it is equational. A polynomial

system for an equational tree language corresponds closely with the notion of regular tree

grammar, which is a 4-tuple (N;�; P; S), where � = �

0

, N is the set of nonterminals

disjoint from �, S 2 N , and P consists of productions of the form A! t, where A 2 N

and t 2 F

�

(N). A tree t

0

2 F

�

(N) is derived from a tree t 2 F

�

(N), denoted t)

G

t

0

,

if there is a production A! u in P such that t

0

is obtained from t by substituting the

tree u for an occurrence of A. As usual )

�

G

denotes the transitive and reexive closure

of )

G

. The tree language generated by the regular tree grammar G = (N;�; P; S),

denoted by TrL(G), is the set of trees ft 2 F

�

j S )

�

G

tg. A regular tree grammar is in

normal form if each production is of the form A! �hA

1

� � �A

m

i with � 2 �

m

, m � 0,

and A

1

; : : : ; A

m

2 N .

A regular tree grammar H = (N;�; P;A

k

), where N = fA

1

; : : : ; A

n

g, corresponds

with a polynomial system S with equations A

i

= t

i1

+ � � �+ t

ik

i

, for i = 1; : : : ; n, where

A

i

! t

i1

; : : : ; A

i

! t

ik

i

are the productions in P with A

i

as left-hand side. The k'th

component of [S

F

] equals TrL(H).

Let us note here that also the notion of \context-free tree grammar" exists (see [13]).

In such a grammar non-terminals may have nonzero rank. The class of tree languages

generated by these context-free tree grammars strictly contains the class of equational

tree languages occurring in this paper.



4 Texts and text languages

All notions and results given in this section are from [5, 6, 7, 9]. We have tried to

keep this overview as brief as possible. For additional technical details we refer to the

above-mentioned papers.

4.1 Texts and bi-orders

Let � be an alphabet.

De�nition 4.1 A text � (over�) is a triple (�; �

1

; �

2

), where �

1

and �

2

are linear orders

such that dom(�

1

) = dom(�

2

), and � is a function from dom(�

1

) to �.

For a text � = (�; �

1

; �

2

), the domain of � , denoted by dom(� ), is dom(�

1

); the word

of � , denoted by word(� ), is the word �(�

1

) 2 �

+

.

The pair (�

1

; �

2

) determines the structural properties of the text � . A pair of linear

orders � = (�

1

; �

2

) such that dom(�

1

) = dom(�

2

) is called a bi-order; the common

domain of �

1

and �

2

is denoted by dom(�).

Bi-orders (and hence texts) correspond with a speci�c kind of labeled 2-structures

([7, 9]). As a consequence the decomposition theory of 2-structures has a translation to

bi-orders. We give here only the result of this translation, and not the details concerning

2-structures.

For a bi-order � = (�

1

; �

2

), a subset X � dom(�) is a clan of � if X is a segment of

both �

1

and �

2

. Note that for each bi-order �, the subsets ;, dom(�), and the singletons

in dom(�) are all clans of �, the so-called trivial clans. A bi-order is primitive if it has

no non-trivial clans; it is sequential if all segments of both of its linear orders are clans.

There are two possible forms for a sequential bi-order � = (�

1

; �

2

): either �

1

equals �

2

(then � is called forward sequential ) or �

1

and �

2

are reverses of each other (then � is

called backward sequential ). These notions carry over to texts.

In this paper, we will work with abstract bi-orders and texts, i.e., isomorphism classes

of bi-orders and texts. Formally, bi-orders � = (�

1

; �

2

) and �

0

= (�

0

1

; �

0

2

) are isomorphic

if there is a bijection  : dom(�)! dom(�

0

) such that  (�

1

) = �

0

1

and  (�

2

) = �

0

2

. The

length of an (abstract) bi-order �, denoted by j�j, is #dom(�

0

) for some representative

�

0

of �.

Texts � = (�; �

1

; �

2

) and �

0

= (�

0

; �

0

1

; �

0

2

) are isomorphic if (�

1

; �

2

) and (�

0

1

; �

0

2

) are

isomorphic and for the corresponding bijection  : dom(� ) ! dom(�

0

), �

0

= � �  

�1

.

Hence isomorphic texts have the same word; this allows us to say that an (abstract)

text is a pair (w; �) where � is an (abstract) bi-order, and w is a word of length j�j.

The length of � = (w; �), denoted by j� j, is j�j.

Note that isomorphism of texts or bi-orders respects clans and hence also the above

de�ned properties based on clans.

Sometimes, e.g., in examples, we have to give an abstract bi-order a concrete repre-

sentation. We then write for a bi-order � of length n simply the order (i

1

; : : : ; i

n

) which

comes from the representative ((1; 2; : : : ; n); (i

1

; : : : ; i

n

)) with domain f1; 2; : : : ; ng. Ac-

cordingly, � = (w; �) is written as (w; (i

1

; : : : ; i

n

)). This notation is called the standard

form of a bi-order (or of a text).

Note that the only bi-orders that are both primitive and sequential are the forward

sequential bi-order of length 2, which will be denoted by �

f

in the sequel, the backward

sequential bi-order of length 2, denoted by �

b

, and the bi-order of length 1. The set of



primitive bi-orders of length > 1 is denoted by PRIM. The bi-orders in PRIM�f�

f

; �

b

g

are called strictly primitive. There are in�nitely many strictly primitive texts.

A text of length 1 is called a singleton text. A singleton text � represented by

(�; (x); (x)) with �(x) = a 2 � is shortly denoted by a.

4.2 Hierarchical representation of texts

In the theory of 2-structures, the notion of a clan underlies the decomposition of 2-

structures by forming quotients. By repeatedly applying this quotient decomposition

one obtains a decomposition tree which is a hierarchical representation of a 2-structure.

In the case of bi-orders, bi-ordered trees serve as hierarchical representations. This

notion generalizes an ordered tree in that it is a tree t together with two orderings

ord

1

(v) and ord

2

(v) associated to its inner nodes such that for each inner node v,

(ord

1

(v); ord

2

(v)) is a bi-order on the children of v.

Remark 4.2 Note that equivalently, one can imagine a bi-ordered tree as an ordered

tree where each inner node is labeled by an (abstract) bi-order. Then for an inner node

v, its bi-order should be matched with its children in such a way that the �rst order is

precisely the order ord(v) from the tree. 2

Given a bi-ordered tree t, t represents a bi-order as follows. Similar to the situation

for ordered trees, the local linear orders ord

1

(v) and ord

2

(v) each induce a linear order

on the leaves of t. The bi-order represented by t is (�

1

; �

2

), where �

1

and �

2

are the

respective induced leave orderings.

Just as an ordered tree which is leaf-labeled hierarchically represents a word, viz. its

yield, a leaf-labeled bi-ordered tree t represents the text (w; �), where w is the yield of

the leaf-labeled ordered tree obtained from t by forgetting the second ordering function

ord

2

, and � is the bi-order represented by the underlying bi-ordered tree. The text

represented by a leaf-labeled bi-ordered tree t is denoted by txt (t).

Thus, a leaf-labeled bi-ordered tree is a hierarchical representation of a text. It

corresponds with a decomposition of the text by repeatedly forming quotients into

clans (analogous to the decomposition theory of 2-structures). Conversely, given a text

� , each decomposition tree of � , obtained by repeatedly dividing into clans, is a leaf-

labeled bi-ordered tree which represents � as described above. All this is best illustrated

by an example.

Example 4.3 Consider the leaf-labeled bi-ordered tree t from Figure 1.

For each inner node, the �rst associated order on the children is the left-to-right

order, and the given label determines the second order (cf. Remark 4.2 | this label
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Figure 1: bi-ordered tree representing � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2))



is the standard form of the bi-order associated with the node). E.g., the second order

on the children of the root is �rst the middle child, then the rightmost child, and then

the leftmost child. By naming the leaves 1 to 8 from left to right, and reading from the

tree the order on the leaves induced by the second orders, we obtain the standard form

of txt (t) : � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2)).

The tree t corresponds with the decomposition of � into f1; 2; 3; 4g, f5g, f6; 7; 8g at

the root level, followed by decomposing into singletons. Note that these subsets are

indeed clans of � , i.e., segments in both (

z }| {

1; 2; 3; 4;

z}|{

5 ;

z }| {

6; 7; 8) and (

z}|{

5 ;

z }| {

6; 7; 8;

z }| {

3; 1; 4; 2).

The node corresponding with f6; 7; 8g can be further re�ned into f6g and f7; 8g,

and thus we obtain the decomposition tree t

1

, depicted as the leftmost tree in Figure 2.

By additionally re�ning the root of the tree we obtain t

2

, the middle tree in the �gure.

Note that the node with associated bi-order (3; 1; 4; 2) allows no further re�nement. The

rightmost tree t

3

gives another decomposition of � , but t

3

is not obtained by re�ning t.

Note that t

1

; t

2

; t

3

are indeed representing the text � . 2

Obviously, adding nodes with a single outgoing edge (i.e., chains) to a leaf-labeled

bi-ordered tree does not change the represented text. Throughout this paper, bi-ordered

trees are assumed not to have chains, unless they serve as \derivation trees" (see sub-

section 4.3).

For a (leaf-labeled) bi-ordered tree we write simply that an inner node is primitive

(or sequential) if the node is labeled by a primitive (or sequential) bi-order.

A primitive representation of a text � is a leaf-labeled bi-ordered tree representing

� such that each inner node is primitive. A primitive representation of a text � corre-

sponds with a \maximal" decomposition of � in the sense that further decomposing is

impossible. In general a text may have more than one primitive representation.

The shape of a text � , denoted by shape(� ), is the unique leaf-labeled bi-ordered tree

representing � such that each inner node is primitive or sequential and, for each forward

(backward) sequential node, none of its children is forward (backward, respectively)

sequential. The notion of a shape comes from the theory of 2-structures. The shape

is obtained by repeatedly decomposing into clans of maximal size that do not overlap

other clans. This way of partitioning forces the quotients to be primitive or sequential;
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Figure 3: the shape of � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2))

the uniqueness of the shape follows from the fact that such partitions are uniquely

determined for each bi-order.

Example 4.4 In Example 4.3 neither t nor t

1

is a primitive representation or the shape

of � , since the root is neither primitive nor sequential. t

2

and t

3

are both primitive

representations of the text � . Neither of them is the shape of � , since the second child

of the root is forward sequential, and has a child which is also forward sequential. The

shape of � is given in Figure 3; its root is backward sequential, the second child of the

root is forward sequential. 2

Given a primitive representation of � , the shape of � can be obtained by contract-

ing subsequent nodes with label �

f

into one forward sequential node, and contracting

similarly nodes with label �

b

. This entails the following result, shown in [9] (see also

[8]).

Proposition 4.5 Each primitive representation of a text � can be obtained from

shape(� ) by re�ning the sequential nodes into subtrees the nodes of which have asso-

ciated bi-orders �

f

or �

b

. 2

We denote by op(� ) the set of bi-orders occurring in a primitive representation of � .

By the above proposition this set is well de�ned.

A leaf-labeled bi-ordered tree t representing a text � can be obtained by step-wise

decomposing � . Conversely, one can view the recovering of � from t as a step-wise com-

position of � . Then one step amounts to applying the operation of simultaneous substi-

tution. For a bi-order � of lengthm � 1, and texts �

1

= (w

1

; �

1

); : : : ; �

m

= (w

m

; �

m

), the

text [�  (�

1

; : : : ; �

m

)] is de�ned as follows : let (�

1

; �

2

); (�

(1)

1

; �

(1)

2

); : : : ; (�

(m)

1

; �

(m)

2

) be

representatives of �; �

1

; : : : �

m

with mutually disjoint domains, then [�  (�

1

; : : : ; �

m

)]

is the text (w

1

� � �w

m

; �

0

) where �

0

is the bi-order with representative ( �

(�

1

(1))

1

+�

(�

1

(2))

1

+

� � �+ �

(�

1

(m))

1

; �

(�

2

(1))

2

+ �

(�

2

(2))

2

+ � � �+ �

(�

2

(m))

2

).

For a leaf-labeled bi-ordered tree t, txt (t) can be obtained from t by repeatedly

substituting texts corresponding with subtrees into the bi-order associated with the

parent of these subtrees. More precisely, if t is a leaf-labeled bi-ordered tree where the

root has associated bi-order �, and the direct subtrees of the root are t

1

; : : : ; t

m

, then

txt(t) = [� (txt (t

1

); : : : ; txt (t

m

))].

The following proposition gives a reformulation of the fact that for each text one can

construct a primitive representation (see also [8]), and a consequence of the fact that

such a primitive representation is a re�nement of the shape (Proposition 4.5).



Proposition 4.6

(1) Each text can be obtained from singleton texts by repeated substitution into primitive

bi-orders.

(2) If � = [� (�

1

; : : : ; �

m

)] with � 2 PRIM, then for each primitive representation of

� the root has bi-order �; if � is strictly primitive, then the direct subtrees of its root

are primitive representations of �

1

; : : : ; �

m

, respectively. 2

We will also use the notion of singular substitution of texts, which is a special case

of simultaneous substitution. For a text � of length m with word(� ) = a

1

� � � a

m

, a text

�

0

, and 1 � i � m, the substitution of �

0

into � at i, denoted by subst(�; i; �

0

), is the

text [�  (a

1

; : : : ; a

i�1

; �

0

; a

i+1

; : : : ; a

m

)]. (Recall that here a

j

denotes the singleton

text with word a

j

). Singular substitution underlies the notion of a derivation step in a

text grammar.

4.3 Text grammars

A set of texts K is called a text language. For an alphabet �, TXT(�) denotes the set

of all texts over �. Also, for a �nite subset � of PRIM, we use TXT

�

(�) to denote

the set of texts over � that have a primitive representation using only bi-orders from

�, i.e., TXT

�

(�) is the set of texts � over � for which op(� ) � �.

A context-free text grammar is a 4-tuple G = (N;�; P; �

0

), where N and � are

disjoint alphabets, P is a �nite set of productions A ! � , where A 2 N and � 2

TXT(N [�), and �

0

is a singleton text over N . As usual, we say that the letters of �

are the terminals, and that the letters of N are the nonterminals of the grammar.

Let G = (N;�; P; �

0

) be a text grammar.

Let � = (w; �) and �

0

be texts in TXT(N[�). � (directly) derives �

0

(in G), denoted

� )

G

�

0

, if there is a production A! � 2 P and 1 � i � j� j with w(i) = A such that

�

0

= subst(�; i; �).

The transitive closure of )

G

is denoted by )

+

G

, and the reexive and transitive

closure by )

�

G

. We omit the subscript G whenever the grammar G is clear from the

context.

TxL(G) denotes the text language generated by G, i.e., TxL(G) = f� 2 TXT(�) j

�

0

)

�

G

�g.

Next we de�ne derivation trees in the text grammar G. First recall that in a bi-

ordered tree, with each inner node v a bi-order (ord

1

(v); ord

2

(v)) on its children is

associated. Now in a node-labeled bi-ordered tree, we can associate with each inner

node v a text on its children, where the word of the text is formed by the labels of the

children according to the �rst ordering ord

1

(v). For a node-labeled bi-ordered tree t,

we denote by di(t) the leaf-labeled bi-ordered tree that is obtained from t by removing

the labels of the inner nodes, and, if occurring, its chains.

Now for a text � 2 TXT(N [ �) and A 2 N , a derivation tree of � from A in G

is a node-labeled bi-ordered tree t such that the root has label A, di(t) represents � ,

and for each inner node v of t, the production B ! � is a production of P , where B

is the label of v and � is the text associated to v as described above. As usual, for

A 2 N , and � 2 TXT(N [�), A)

�

� i� there is a derivation tree of � from A. By a

derivation tree we mean a derivation tree of some � 2 TXT(�) from S, where S is the

nonterminal specifying �

0

. We denote by Di(G) the set fdi(t) j t is a derivation tree

in Gg.



A text language K is a context-free text language if there exists a context-free text

grammar G such that K = TxL(G). In [9] it was shown that every context-free text

language has �nitely many primitive subtexts. Consequently, we have the following

result, where op(K) = fop(� ) j � 2 Kg.

Proposition 4.7 For each context-free text language K, op(K) is �nite. 2

Hence for every context-free text language K, there exists a �nite subset � � PRIM

and an alphabet � such that K � TXT

�

(�).

By a standard construction productions of the form A! B with A;B nonterminals

can be eliminated, i.e., each context-free text grammar has an equivalent chain-free

grammar. Therefore, in what follows we assume that each context-free text grammar is

chain-free. Hence the only possible chains in derivation trees are ending in a leaf. Also,

obviously, we may assume that text grammars are reduced, i.e., for each nonterminal

A there is a derivation of a text of the generated language that uses A.

By decomposing the right-hand sides one obtains for each context-free grammar

an equivalent text grammar in so-called primitive normal form. A context-free text

grammar G = (N;�; P; �

0

) is in primitive normal form, abbreviated PNF, if for each

production A ! � in P , � is a primitive text. G is in Chomsky-like primitive normal

form, abbreviated CPNF, if G is in PNF and for each production A ! � , either

word(� ) 2 �, or word(� ) 2 N

+

.

Note that for each derivation tree t of a context-free text grammar in PNF di(t) is a

primitive representation of the generated text. For the following class of text grammars

the derivation trees are the shapes of the generated texts.

De�nition 4.8

(1) A context-free text grammar G is shapely if Di(G) = fshape(� ) j � 2 TxL(G)g.

(2) A text language K is shapely if there is a shapely grammar generating K.

A text language K is limited i� there exists a constant C such that, for each � 2 K,

the outdegree of the nodes in the shape of � is bounded by C. By Proposition 4.7, for

a context-free text language the outdegree of primitive nodes in the shapes is bounded.

However, the sequential nodes in the shapes may in general be of unbounded outde-

gree. The requirement that these too are bounded forms a necessary and also su�cient

condition for the language to be shapely.

Proposition 4.9 ([9, Theorem 6.1]) A text language K is shapely i� K is context-free

and limited. 2

To show the non-context-freeness of text languages, we may use the following pump-

ing lemma, where the meaning of the notation subst

k

(�; i; �

0

) is inductively de�ned as

�

0

if k = 0, and as subst(�; i; subst

k�1

(�; i; �

0

)) for k > 0.

Proposition 4.10 ([9, Theorem 7.3]) Let K be a context-free text language. There

exist constants p and q such that for each � 2 K with j� j > p, there exist texts �

1

; �

2

; �

3

,

1 � i � j�

1

j, 1 � j � j�

2

j such that

(1) � = subst(�

1

; i; subst(�

2

; j; �

3

)),

(2) j�

2

j > 1,

(3) jsubst(�

2

; j; �

3

)j � q,

(4) for each k � 0, subst (�

1

; i; subst

k

(�

2

; j; �

3

)) 2 K. 2



5 An algebra of texts

We give an algebraic structure to the set of texts TXT

�

(�), where � is a �nite subset

of PRIM, and � is a (�nite) alphabet. Each of the primitive bi-orders � 2 � will act

as an operator on TXT

�

(�); its associated mapping is the simultaneous substitution

in �.

Let � = � [� be the ranked alphabet such that the rank of each � 2 � is j�j and

the rank of each a 2 � is 0. Then T

�

= (TXT

�

(�);�) is the �-algebra de�ned by

�

T

�

(�

1

; : : : ; �

m

) = [�  (�

1

; : : : ; �

m

)] for � 2 �

m

, m � 2, �

1

; : : : ; �

m

2 TXT

�

(�), and

a

T

�

= a for a 2 �

0

.

Let F

�

= (F

�

;�) be the term �-algebra. As mentioned in subsection 3.1 we think

of the elements of F

�

as trees; for this speci�c choice of � as � [ �, the trees in F

�

are, by Remark 4.2, primitive bi-ordered trees which are hierarchical representations of

texts over �. Hence the notion of a primitive representation of a text is in this setting

an algebraic expression of a text.

The mapping txt : F

�

! TXT

�

(�) which assigns to each t 2 F

�

the text txt (t)

represented by t is a homomorphism of �-algebras. First of all, it should be noted that

txt(F

�

) � TXT

�

(�), because, for each tree t 2 F

�

, op(txt(t)) consists of bi-orders

labeling inner nodes of t, and so op(txt (t)) � �. Also, txt is indeed a homomorphism,

since for each a 2 �, txt (a) = a = a

T

�

, and for each � 2 �

m

, m � 2, and all t

1

; : : : ; t

m

2

F

�

, txt(�ht

1

� � � t

m

i) = [� (txt(t

1

); : : : ; txt(t

m

))], as explained in subsection 4.2.

Hence txt is the unique homomorphism from the initial term �-algebra F

�

to T

�

.

By Proposition 4.6(1), txt is surjective. We conclude that T

�

is generated by � and

that T

�

is isomorphic with the quotient algebra F

�

= ker(txt).

Consider the congruence given by the kernel of txt . Two primitive bi-ordered trees

are in the same congruence class i� they represent the same text. By Proposition 4.5,

such trees di�er only in the way the sequential nodes of the shape are re�ned. It follows

that ker(txt) is precisely the congruence generated by the equations �

f

hu�

f

hvwii =

�

f

h�

f

huviwi, �

b

hu�

b

hvwii = �

b

h�

b

huviwi, where u; v; w are variables. Hence T

�

is a T -

algebra, where T is the theory (�; E) such that E is the set consisting of the above two

equations expressing the associativity of �

f

and �

b

. Moreover, T

�

, being isomorphic

with the quotient term algebra F

�

= ker(txt ), is initial in the class of T -algebras. Of

course, if some of the operations �

f

; �

b

are not in �, then we restrict E to a subset of

these equations. In particular, if � \ f�

f

; �

b

g = ;, then E = ; , and T

�

is isomorphic

with the term �-algebra F

�

.

Note also that if � = f�

x

g, with x 2 ff; bg, then the corresponding �-algebra of

sequential texts T

�

= (TXT

f�

x

g

(�);�), with � = f�

x

g [ �, is isomorphic with the

semi-group �

+

seen as a �-algebra (see subsection 3.1).

Remark 5.1

One could add the (primitive) bi-order of length 1 as a unary operation to the ranked

alphabet �. Its interpretation in T

�

is the identity, and the terms in F

�

describe then

also trees with chains. If the equation `�

1

(v) = v', where �

1

stands for the bi-order of

length 1 is added to E, then again T

�

is a T -algebra, with T = (�; E). Including �

1

in

this way would not a�ect any of the results in this paper, but for technical simplicity

we have chosen to leave it out. 2

We consider recognizability and equationality of text languages, interpreting De�-

nitions 3.1 and 3.3 in a �-algebra T

�

of texts as described above. Note that if K is a



recognizable (or equational) text language in this sense, then for every choice of � and

� such that K � TXT

�

(�), K is recognizable (or equational) w.r.t. the corresponding

ranked alphabet � = � [�.

In particular, for a forward sequential text language K, K is recognizable or equa-

tional i� K is a recognizable or equational subset of TXT

f�

f

g

(�) i� the underlying

word language is recognizable or equational w.r.t. the isomorphic f�

f

g [ �-algebra

�

+

. This immediately provides easy examples of text languages that are equational

but not recognizable, e.g., the text language f(a

n

b

n

; (1; : : : ; 2n)) j n � 1g.

We will show that the equational languages are precisely the context-free text lan-

guages. Recall that every context-free language, as every equational language, is a

subset of TXT

�

(�) for some �nite � � PRIM and �.

Remark 5.2 There is a close correspondence between context-free text grammars for

text languages in TXT

�

(�), and regular tree grammars generating tree languages in

F

�

.

For a regular tree grammar H = (N;�; P; S), we denote by txt (H) the text gram-

mar (N;�; P

0

; S), where P

0

= fA ! txt (t) j A ! t 2 Pg. Then TxL(txt (H)) =

txt(TrL(H)). If H is in normal form, then txt(H) is in CPNF, and Di(txt (H)) =

TrL(H).

Conversely, let G = (N;�; P; S) be a context-free text grammar. Let H =

(N;�; P

0

; S) be a regular tree grammar such that P

0

contains for each A! � 2 P one

production A! t where t 2 F

�

is such that txt(t) = � . Then txt(TrL(H)) = TxL(G).

If G is in CPNF, then H is in normal form, and Di(G) = TrL(H). 2

Example 5.3 Let G = (N;�; P; S) be the context-free text grammar such that N =

fS;A;Cg;� = fa; cg, and P consists of the productions

S ! (AS; (1; 2)); A! (aC; (2; 1)); C ! (cCac; (3; 1; 4; 2)); S ! a;C ! c;A! a.

Then the regular tree grammarH = (N;�; P

0

; S) generates Di(G), where P

0

consists

of the productions S ! �

f

hASi, A ! �

b

haCi, C ! �hcCaci, S ! a, C ! c, A ! a,

where � is the abstract bi-order with standard form (3; 1; 4; 2). 2

Lemma 5.4 A text language is equational i� it is context-free.

Proof. Let K be a text language. It follows from Remark 5.2 that K is context-

free i� there exists a tree language T , generated by a regular tree grammar, such that

txt(T ) = K. By Theorem 3.4(1) and (5) and the fact that a tree language is generated

by a regular tree grammar i� it is equational (see subsection 3.1), it follows that K is

context-free i� K is equational. 2

Through this connection between polynomial systems and text grammars, the con-

struction in [12, Lemma 3.1] which yields a \normal form" for polynomial systems is

related to the result (in [9]) that each context-free text language has a context-free text

grammar in CPNF. Also, this connection is a special case of the situation described in

[4], see also [3], where it is shown that given a �-algebra A = (A;�), one can de�ne a

well-behaved substitution device in A such that the equational subsets of A given by

a polynomial system are precisely the sets generated (using this substitution) by an

\abstract" context-free grammar.

We end this section by formulating the consequences for text languages following

from subsection 3.1 and this section.



Theorem 5.5 Let K � TXT

�

(�) be a text language.

(1) K is context-free i� it equals txt (T ) for some recognizable tree language T .

(2) K is recognizable i� txt

�1

(K) is a recognizable tree language.

(3) If K is recognizable, then K is context-free. 2

6 Recognizable text languages

We have seen that equational text languages coincide with the text languages generated

by context-free text grammars, which were investigated in [9].

We now consider the family of recognizable text languages. Like for generated alge-

bras in general, in the case of texts the class of recognizable sets is included in the class

of equational sets. Hence, each recognizable text language is generated by a context-

free text grammar (Theorem 5.5(3)). Like for words, but unlike trees, this inclusion

of recognizable sets in equational sets is strict. As the main result of this section we

give a grammatical characterization of the recognizable text languages by restricting

the context-free text grammars to a natural subclass. This generalizes to texts the

well-known characterization of regular word languages by right-linear grammars.

Previously we have de�ned recognizability of text languages using �nite algebras.

Reformulating Proposition 3.2, which characterizes the recognizable subsets of an alge-

bra in terms of their N�erode congruences, we obtain the following result.

Lemma 6.1 A text language K � TXT

�

(�) is recognizable i� the congruence

�

=

K

is

�nite, where for �

1

; �

2

2 TXT

�

(�), �

1

�

=

K

�

2

i� for all � 2 TXT

�

(�), and for all i

with 1 � i � j� j, subst (�; i; �

1

) 2 K i� subst(�; i; �

2

) 2 K. 2

Each text has a natural structure, its shape. As we have discussed, all primitive

hierarchical representations of a text di�er from the shape only by the re�nement of

sequential nodes into binary subtrees. This implies that if the root of the shape is

strictly primitive, then this is the root of every primitive representation of the text

(see Proposition 4.6(2)). As a derivation tree for a context-free text grammar gives a

representation for the derived text we can translate this observation to derivations in

text grammars.

Lemma 6.2 Let G = (N;�; P; �

0

) be a context-free text grammar in PNF. Let � 2

PRIM with j�j = m > 2, and let � = [�  (�

1

; : : : ; �

m

)], where �

1

; : : : ; �

m

2 TXT(N [

�). Then A)

�

� i� there exist A

1

; : : : ; A

m

2 N [� such that A! (A

1

� � �A

m

; �) and

A

j

)

�

�

j

for j = 1; : : : ;m. 2

More generally, in a derivation tree of a text the subtrees consisting of strictly prim-

itive nodes are determined by the text itself (i.e., by its shape). The only structural

freedom in deriving a text lies in the possible decompositions for the sequential nodes of

the shape. A natural restriction to context-free text grammars is to force the grammar

to choose right-linear derivations for these sequential (word-like) substructures. In other

words, we forbid left-recursion in derivation trees: subtrees of the form �

x

h�

x

ht

1

t

2

it

3

i

where x 2 ff; bg. Note that each text � has a unique primitive representation that has

no left recursion; we denote this tree by nlr (� ).

We formulate this requirement in terms of productions, rather than in terms of

derivation trees.



De�nition 6.3 A context-free text grammar G = (N;�; P; �

0

) is right-linear if G is

in PNF and for each production A ! (BC; �

x

) 2 P , with A;B 2 N;C 2 N [�, and

x 2 fb; fg, if B ! (w; �) 2 P , then � 6= �

x

.

Example 6.4 Let G = (N;�; P; S) be the context-free text grammar such that N =

fS;A;B;Cg;� = fa; b; cg, and P consists of the productions S ! (AS; (1; 2)), S ! b,

A ! (aB; (2; 1)), B ! (AB; (1; 2)), B ! b, A ! (cB; (1; 2)). Then G is not right-

linear, since S ! (AS; (1; 2)) 2 P , and A! (cB; (1; 2)) 2 P . 2

Lemma 6.5 A context-free text grammar G is right-linear i� Di(G) = nlr (TxL(G)).

2

The following observation turns out to be crucial in our considerations on right-

linear grammars. It is a reformulation of the intuition that sequential substructures

of a text are generated by the grammar in a right-linear way. We say that a text �

is of type x 2 ff; bg if the root of a primitive representation of � has label �

x

(cf.

Proposition 4.6(2)).

Lemma 6.6 Let G = (N;�; P; �

0

) be a right-linear text grammar.

A )

�

[�

x

 (�

1

; �

2

)] for x 2 ff; bg, A 2 N , and texts �

1

and �

2

over N [�, i� there

exists a B 2 N such that A )

�

[�

x

 (�

1

; B)] and B )

�

�

2

. Additionally, if �

1

is not

of type x, then A)

�

[�

x

 (�

1

; �

2

)] i� there exists a production A ! (CB; �

x

), where

C 2 N is such that C )

�

�

1

. 2

It is perhaps instructive to notice that in the case of words this lemma says that in

a right-linear grammar A)

�

w

1

w

2

i� there is a B such that A)

�

w

1

B and B )

�

w

2

.

In the de�nition of right-linearity we have forced the context-free grammar to gener-

ate texts according to a speci�c structure on the derivation trees. We will now de�ne a

dual class of grammars. Rather than choosing one normal form for the derivation trees

we will impose on the grammar that if it generates a text in any way, then it can also

do so according to all primitive representations of the text. This notion generalizes the

property of Lemma 6.2 to the case where j�j = 2.

De�nition 6.7 A context-free text grammar G = (N;�; P; �

0

) is complete if G is in

PNF and for each A 2 N , and for each � = [�

x

 (�

1

; �

2

)], where x 2 ff; bg and �

1

; �

2

2

TXT(�), if A )

�

� , then there exist A

1

; A

2

2 N [� such that A ! (A

1

A

2

; �

x

) 2 P

and A

j

)

�

�

j

for j = 1; 2.

Note that every complete text grammar has an equivalent complete text grammar

in CPNF.

The completeness property is perhaps more intuitive when stated in terms of deriva-

tion trees of the grammar.

Lemma 6.8 A context-free text grammar G is complete i� Di(G) = txt

�1

(TxL(G)).

2

It turns out that complete grammars and right-linear grammars characterize recog-

nizable text languages.

Theorem 6.9 Let K be a text language. The following statements are equivalent.

(1) K is recognizable.

(2) There is a complete context-free text grammar G such that K = TxL(G).

(3) There is a right-linear context-free text grammar G such that K = TxL(G).



Proof. Note that (in each of the three cases) we can assume that � and � are given

such that K � TXT

�

(�); let � = � [� be the corresponding ranked alphabet.

(1)) (2). IfK is recognizable, then by Theorem 2.4(2), txt

�1

(K) � F

�

is recognizable,

and hence there is a regular tree grammar H for txt

�1

(K). We may assume that H is

in normal form. Since K = txt(txt

�1

(K)), the context-free text grammar G = txt(H)

generates K, and Di(G) = txt

�1

(K) (see Remark 2.1). Hence, by Lemma 6.8, G is

complete.

(2) ) (3). Let G = (N;�; P; �

0

) be a complete context-free text grammar in CPNF

such that TxL(G) = K. We transform G into a right-linear text grammar by forcing it

to choose right-linear derivation trees.

Formally, let G

0

= (N

0

;�; P

0

; �

0

) be the context-free text grammar with

N

0

= N [ fA

f

; A

b

j A 2 Ng, and

P

0

= fA

0

! (w; �) j A! (w; �) 2 P;A

0

2 fA;A

f

; A

b

g; � 62 f�

b

; �

f

gg

[ fA

0

! (B

x

C; �

x

) j A! (BC; �

x

) 2 P;A

0

2 fA;A

y

g with y 6= x; x 2 ff; bgg:

It is not di�cult to see that G

0

is a right-linear context-free text grammar, and that

TxL(G

0

) � TxL(G). Since G is complete, by Lemma 6.8, for each text � 2 TxL(G)

there is a derivation tree in G without left recursion. This derivation tree can be

made into a derivation tree of � in G

0

by adding superscripts f and b to some of the

non-terminal labels. Hence TxL(G) = TxL(G

0

).

(3) ) (1). Let G = (N;�; P; S) be a right-linear grammar in CPNF such that

TxL(G) = K. Based on G, we will de�ne a �nite �-algebra Q = (Q;�), and a

homomorphism h : T

�

! Q such that K = h

�1

(F ) for some F � Q.

Let W be the set N � ff; bg � N . Let Q = 2

N[W

, and let Q = (Q;�) be the

�-algebra de�ned as follows :

(i) for a 2 �

0

, let V = fA 2 N j A! a 2 Pg. Then

a

Q

= V [ f(A;x;C) 2 W j A! (BC; �

x

) 2 P;B 2 V g

(ii) for � 2 �

m

, m > 2, V

1

; : : : ; V

m

2 Q, let

V = fA 2 N j A! (A

1

� � �A

m

; �) 2 P;A

i

2 V

i

for i = 1; : : : ;mg:

Then

�

Q

(V

1

; : : : ; V

m

) = V [ f(A;x;C) 2 W j A! (BC; �

x

) 2 P;B 2 V g

(iii) for x 2 ff; bg, V

1

; V

2

2 Q, let

V = fA 2 N j (A;x;C) 2 V

1

; C 2 V

2

g:

Then

�

Q

x

(V

1

; V

2

) = V

[ f(A;x;C) 2 W j (A;x;B) 2 V

1

; (B;x;C) 2 V

2

g

[ f(A; y;C) 2 W j A! (BC; �

y

) 2 P;B 2 V g, where y 6= x:



For notational convenience, we will use � �

x

B as shorthand for [�

x

 (�;B)], where

x 2 ff; bg, B 2 N , and � 2 TXT

�

(�).

Let h : TXT

�

(�)! Q be the mapping such that

h(� ) = fA 2 N j A)

�

�g [ f(A;x;C) 2 W j A)

�

� �

x

Cg

Claim 6.10 h is a homomorphism from T

�

to Q.

Proof.

(i) Let a 2 �. Since G is in CPNF, A)

�

a i� A! a 2 P , and A)

�

a�

x

C

i� there is a B 2 N such that A ! (BC; �

x

) 2 P and B ! a 2 P . It follows

that h(a

T

�

) = h(a) = a

Q

.

(ii) Let � 2 �

m

, m > 2, let �

1

; : : : ; �

m

2 TXT

�

(�), and let � =

�

T

�

(�

1

; : : : ; �

m

) = [� (�

1

; : : : ; �

m

)]. By Lemma 6.2, and since G is in CPNF,

A )

�

� i� there exist A

1

; : : : ; A

m

2 N such that A ! (A

1

� � �A

m

; �) and

A

j

)

�

�

j

for j = 1; : : :m.

Using Lemma 6.6, we see that A )

�

� �

x

C i� there is a B 2 N such

that A ! (BC; �

x

) 2 P and B )

�

� . Hence, A 2 h(� ) i� there exists A !

(A

1

� � �A

m

; �) 2 P such that A

j

2 h(�

j

) for j = 1; : : : ;m, and (A;x;C) 2 h(� )

i� there exists A! (BC; �

x

) 2 P such that B 2 h(� ).

Consequently h(� ) = h(�

T

�

(�

1

; : : : ; �

m

)) = �

Q

(h(�

1

); : : : ; h(�

m

)).

(iii) Let x 2 ff; bg, let �

1

; �

2

2 TXT

�

(�), and let � = �

T

�

x

(�

1

; �

2

) = [�

x

 

(�

1

; �

2

)]. By Lemma 6.6, A )

�

� i� there exists a C 2 N such that A )

�

�

1

�

x

C and C )

�

�

2

. Hence A 2 h(� ) i� (A;x;C) 2 h(�

1

) and C 2 h(�

2

) for

some C 2 N .

Since � = �

T

�

x

(�

1

; �

2

), we may write ��

x

C = [�

x

 (�

1

; �

2

�

x

C)] due to the

associativity of �

x

. As before, A)

�

� �

x

C i� there exists a B 2 N such that

A)

�

�

1

�

x

B and B )

�

�

2

�

x

C. Hence (A;x;C) 2 h(� ) i� (A;x;B) 2 h(�

1

)

and (B;x;C) 2 h(�

2

) for some B 2 N .

Using once more Lemma 6.6, observe that A)

�

� �

y

C i� there is a B 2 N

such that A ! (BC; �

y

) 2 P and B )

�

� . Hence for y 6= x, (A; y;C) 2 h(� )

i� A! (BC; �

y

) 2 P and B 2 h(� ) for some B 2 N .

By combining the above three cases it follows that h(� ) = �

Q

x

(h(�

1

); h(�

2

)).

2

Note that the above homomorphism h from T

�

to Q is unique, by the fact that T

�

is an initial T -algebra over the theory T given in the previous section. Also Q itself is

a T -algebra, since �

f

and �

b

are associative in Q.

Now let F � Q be the set fV 2 Q j S 2 V g. Then h

�1

(F ) = f� 2 TXT

�

(�) j

h(� ) 2 Fg = f� 2 TXT

�

(�) j S 2 h(� )g = f� 2 TXT

�

(�) j S )

�

�g = K. Hence K

is recognizable. 2

Theorem 6.9 can be understood as follows. Each context-free text language TxL(G)

is of the form txt(Di(G)), where Di(G) is a recognizable tree language. By requiring

that G is complete, it is ensured that Di(G) is a so-called \saturated" subset of trees;

right-linearity of G ensures that Di(G) is a subset of \well-formed representatives". For

both types of recognizable tree languages we have that the corresponding text languages

are recognizable.

The next theorem says that shapely text languages form a proper subclass of the

class of recognizable text languages.
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Figure 4: families of text languages

Theorem 6.11 Let K be a text language. The following statements are equivalent.

(1) K is shapely.

(2) K is recognizable and limited.

(3) K is context-free and limited.

Proof.

(1) , (3) This is Proposition 4.9.

(1) ) (2) Let G be a reduced shapely grammar for K. By Proposition 4.9, K is

limited. We continue by showing that K is recognizable. G can be transformed into an

equivalent text grammar by replacing each sequential production A! (B

1

� � �B

m

; �) by

the set of productions A ! (B

1

A

1

; �

x

), A

1

! (B

2

A

2

; �

x

); : : : ; A

m�2

! (B

m�1

B

m

; �

x

),

where A

1

; : : : ; A

m�2

are new nonterminals, and x = f or x = b when � is forward or

backward sequential, respectively.

Note that from the shapeliness of G it follows that there are no sequential productions

(of the same type as �) applicable to any of the nonterminals B

1

; : : : ; B

m

. Hence the

resulting grammar is right-linear, and, by Theorem 6.9, K is recognizable.

(2) ) (3) Follows immediately from Theorem 5.5(3). 2

The diagram in Figure 4 represents the situation. Here CFT, RECT, SHAP, and

LIM denote the families of all context-free, recognizable, shapely, and limited text

languages, respectively.

7 Comparing text, word, tree languages

In comparing texts with words and trees, we take two approaches. First, more or less

on the surface, one may view them as three types of objects, ordered by decreasing

structure : (bi-ordered) trees can be projected onto texts, and texts can be projected

onto words. The other point of view is that words and trees are \inside" a text : they

compose the internal structure of a text, in the form of sequential nodes and strictly

primitive subtrees of its shape.

We start by taking the �rst point of view. For given � and � with corresponding

ranked alphabet � = � [ �, the projections involved are the mappings txt : F

�

!

TXT

�

(�), and word : TXT

�

(�)! �

+

.

The question addressed here is then : how do these mappings behave with respect

to the notions of recognizability and equationality?



Table 1: behaviour with respect to equationality and recognizability

preserves reects

word , txt , equat. yes no

yield recogn. no no

word

�1

, txt

�1

, equat. no yes (if)

yield

�1

recogn. yes yes (if)

For txt we obtained some results by applying Theorem 3.4 (see Theorem 5.5). For

word we can do the same : one may view it as a homomorphism of �-algebras, where

every operation of � of rank m � 2 is interpreted in �

+

as the concatenation of m

words.

If �

2

6= ;, which is the case i� word is surjective, then the notions of recognizability

and equationality are stable under this extension of the semi-group �

+

to a �-algebra.

Hence in that case Theorem 3.4 can be applied directly. Table 1 presents the results,

where we have added the projection from trees to words, yield : F

�

! �

+

(which is

de�ned for an arbitrary ranked alphabet � with �

0

= �, see also [11]). Here we say

that a mapping reects a property of languages if, given that the image of a language

has the property, it follows that the original language has the property. Recall that for

tree languages, equationality and recognizability coincide.

In the case that �

2

= ;, then at the places where \(if)" is added the claim is not im-

mediate for the mappings word and yield ; a su�cient condition is that word(word

�1

(L))

= L and that yield(yield

�1

(L)) = L, respectively.

We now illustrate the no's in the table by giving some examples. First note that

the fact that recognizability is not preserved is a consequence of Theorem 3.4(5) and

Proposition 3.5, and that by claim (3) of Theorem 3.4 it can be shown that txt

�1

and

yield

�1

do not preserve equationality.

The �rst example in Example 7.1 con�rms that txt and yield do not reect recogniz-

ability (nor equationality). The second example shows that also word does not reect

recognizability or equationality: a non-context-free text language with a recognizable

underlying word language is given. Even if we restrict ourselves a priori to context-free

text languages, then still word does not reect recognizability, as is shown in the third

example. This example also illustrates that, as opposed to the case of word languages,

not all context-free text languages over a one-letter alphabet are recognizable.

Then the only claim left in the above table is that word

�1

does not preserve equa-

tionality, which is shown by the fourth example.

Example 7.1

(1) Let T be the tree language f�

f

ht

(n)

`

t

(n)

r

i j n � 1g, where t

(n)

`

and t

(n)

r

are trees

inductively de�ned by t

(1)

`

= t

(1)

r

= a and for n > 1, t

(n)

`

= �

f

ht

(n�1)

`

ai and t

(n)

r

=

�

f

hat

(n�1)

r

i. The tree language T is not recognizable, whereas txt (T ) and yield (T ) are.

(2) Let � be a primitive bi-order such that j�j = 4. Let K be the text language that

consists of all texts with a shape as sketched in Figure 5.

Then word(K) = fa

6n+4

j n � 0g is a recognizable word language. Using Proposi-

tion 4.10 it can be shown that K is not context-free.
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Figure 5: the shapes of a non-context-free text language

(3) Let G = (N;�; P; S) be a context-free text grammar such that N = fS;A;Bg,

� = fag, and P consists of the productions S ! (ASB; (1; 2; 3)), S ! (AB; (1; 2)),

A! (a

4

; (2; 4; 1; 3)), B ! (a

5

; (2; 5; 3; 1; 4)).

Let K = TxL(G). Then word(K) = fa

9n

j n � 1g. Clearly, word(K) is a

recognizable word language. However, K is not a recognizable text language. We

will show this using Lemma 6.1. For j � 1, we de�ne �

j

and �

j

as follows. Let

(�

1

; �

2

; �

3

; �

4

) = (2; 4; 1; 3), and (�

1

; �

2

; �

3

; �

4

; �

5

) = (2; 5; 3; 1; 4). If j = 4k +m with

m 2 f1; 2; 3; 4g, then �

j

= 4k + �

m

; if j = 5k + m with m 2 f1; 2; 3; 4; 5g, then

�

j

= 5k + �

m

. Then we can write K as

f(a

9n

; (�

1

; : : : ; �

4n

; 4n + �

1

; : : : ; 4n + �

5n

) j n � 1g

For i � 1, let �

(i)

be the text represented by (a

5i

; (�

1

; : : : ; �

5i

)). Then for all i; j � 1

with i 6= j, there exists a text � such that j� j = 4i + 1, subst(�; 4i + 1; �

(i)

) 2 K and

subst(�; 4i+ 1; �

(j)

) 62 K. Hence for all i; j with i 6= j, �

(i)

6

�

=

K

�

(j)

, which implies that

6

�

=

K

is not �nite. By Lemma 6.1, K is not recognizable.

(4) Let L be the context-free word language fa

3n+2

b

3n+2

j n � 0g. Let � be a ranked

alphabet containing the bi-order � from (2). Then the texts with a shape as in Figure 5

but with underlying word a

3n+2

b

3n+2

are in word

�1

(L). It follows that word

�1

(L) is

not a context-free text language, otherwise we could infer from Proposition 4.10 that

word

�1

(L) contains a text � with word(� ) = a

i

b

j

with i 6= j. 2

In the case of word, claim (5) of Theorem 3.4 says that each context-free word

language is the projection of a context-free text language. This was noticed in [9],

where moreover it was shown that each context-free word language is the projection of

a shapely language.

We now take the second point of view, i.e., seeing words and trees as blocks com-

prising a text. Intuitively, since recognizability and equationality coincide for tree lan-

guages, recognizability of context-free text languages depends only on the word parts.

To make this observation explicit, we in some way \extract" word languages from a

context-free text grammar. Then a text language is context-free, recognizable, shapely

i� these \extracted word languages" are context-free, recognizable, �nite (Theorem 7.2).

This characterization is in particular helpful in the next section, where we consider clo-

sure properties.



Formally, we proceed as follows. Let G = (N;�; P; �

0

) be a context-free text gram-

mar in PNF. De�ne V

p;G

; V

f;G

; V

b;G

� N as follows:

V

p;G

= fA 2 N j there exists A! � 2 P with � strictly primitiveg

V

f;G

= fA 2 N j there exists A! (w; �

f

) 2 Pg

V

b;G

= fA 2 N j there exists A! (w; �

b

) 2 Pg

Let i

f

and i

b

denote the two embeddings from �

+

to TXT(�) de�ned by, for w 2 �

+

with jwj = n, i

f

(w) = (w; (1; 2; : : : ; n)), and i

b

(w) = (w; (n; : : : ; 2; 1)).

For x 2 ff; bg, de�ne �

x;G

= V

p;G

[ V

y;G

[�, where y 2 ff; bg is such that y 6= x,

and for A 2 N , let

L

x;G

(A) = fw 2 �

+

x;G

j A)

+

i

x

(w)g

Note that if A 62 V

x;G

, then L

x;G

(A) is empty or a set of singletons. Finally, let

L

G

= fL

x;G

(A) j A 2 N;x 2 ff; bgg

Theorem 7.2 Let K be a text language.

(1) K is context-free i� there exists a context-free text grammar G in PNF generating

K such that each L 2 L

G

is a context-free word language.

(2) K is recognizable i� there exists a context-free text grammar G in PNF generating

K such that each L 2 L

G

is a recognizable word language.

(3) K is shapely i� there exists a context-free text grammar G in PNF generating K

such that each L 2 L

G

is a �nite word language.

Proof. We will use the notations given above, where we omit the subscript G if the

context-free text grammarG is clear from the context. Note that for the proof it su�ces

to consider the languages L 2 L

G

of the form L

x

(A) with A 2 V

x

.

(1) The if-part is, of course, trivial. Let K be a context-free text language, and let

G = (N;�; P; �

0

) be a context-free text grammar in PNF for K. Consider L 2 L

G

.

Suppose that L = L

f

(A) for some A 2 V

f

. We show that L is a context-free word

language by giving a context-free word grammar for L. The set of nonterminals is

N

f

= fA

f

j A 2 V

f

g and the set of productions is

P

f;A

= fA

f

! w j A! i

f

(w

0

) 2 P;w 2 '(w

0

)g

where ' is the substitution such that for B 2 N [�,

'(B) =

8

>

<

>

:

fB

f

g B 2 V

f

� (V

p

[ V

b

)

fB

f

; Bg if B 2 V

f

\ (V

p

[ V

b

)

fBg otherwise

Then for the context-free word grammar G

0

= (N

f

;�

f

; P

f;A

; A

f

), L(G

0

) = L

f

(A) =

L.

Similarly, if L = L

b

(A) for some A 2 V

b

, then L is a context-free word language.

(2) Let K be a recognizable text language, and let G be a right-linear context-free text

grammar for K. Then the context-free grammar G

0

constructed for L 2 L

G

as in (1) is

a right-linear word grammar. Hence L = L(G

0

) is a recognizable word language.

Suppose that G is a context-free text grammar for K such that each L 2 L

G

is

recognizable. For each L 2 L

G

, let G

L

be a right-linear context-free word grammar in



Chomsky normal form with production-set P

L

. These grammars G

L

can be chosen in

such a way that the following conditions are satis�ed :

- the axiom of G

L

is A if L = L

x

(A), x 2 fb; fg,

- A does not occur in any right-hand side of P

L

, and

- the remaining nonterminals of G

L

are disjoint from those of G

L

0

for all L

0

2 L

G

, and

disjoint from N .

We remove all sequential productions from G, and add the productions

fX ! i

f

(w) j X ! w 2 P

L

; L = L

f

(A) for some Ag and

fX ! i

b

(w) j X ! w 2 P

L

; L = L

b

(A) for some Ag.

The thus obtained context-free text grammar is right-linear and equivalent to G. Hence,

by Theorem 6.9, K is recognizable.

(3) Let K be a text language, and let G be a context-free text grammar in PNF for

K. Let � 2 K, and let t be a derivation tree of � in G. By Proposition 4.5, di(t) is a

re�nement of the shape of � . It follows that for each sequential node of the shape of � ,

say with n children, there is a corresponding derivation A )

+

i

x

(w) in G such that

jwj = n and w 2 L

x

(A).

Conversely, if w is a word of length n in some L

x

(A) 2 L

G

, then there is a derivation

tree t in G of a text � 2 K with the following property : there is a subtree of t which is a

derivation tree of i

x

(w) from A and moreover this subtree corresponds with a sequential

node with n children in the shape of � .

Hence the outdegrees of the sequential nodes in the shapes of K are precisely the

lengths of the words occurring in the languages L 2 L

G

. It follows that K is limited i�

every L 2 L

G

is �nite. By Proposition 4.9, this proves (3). 2

In (1) and (3) of the proof it is in fact shown that K is context-free (shapely) i� for

each context-free text grammar G in PNF generating K each L 2 L

G

is a context-free

(�nite) word language. Concerning (2), it is shown that K is recognizable i� for each

right-linear grammar G generating K each L 2 L

G

is a recognizable word language;

here we can not replace \right-linear" by \in PNF" as Example 7.3 will show.

Example 7.3 Let G = (N;�; P; (S; �

1

)) be a context-free text grammar such that P

consists of the productions S ! (ASB; (1; 2; 3)), S ! (AB; (1; 2)), A! (a

4

; (2; 4; 1; 3)),

and B ! (a

4

; (2; 4; 1; 3)).

Then TxL(G) is recognizable. However, L

f

(S) = fA

n

B

n

j n � 1g is a non-

recognizable word language. 2

8 Closure properties

Most operations on text languages given in this section are de�ned for arbitrary text

languages, i.e., with possibly in�nite set of operations op(K), except for the \algebraic

closure", which must be de�ned w.r.t. a �xed text algebra T

�

.

First we introduce the operations which will provide an operational characterization

of the context-free text languages (Theorem 8.4). These operations are the natural

extensions of substitution and substitution closure on word languages.

De�nition 8.1 A mapping j : TXT(�)! 2

TXT(�)

is an alphabetic (text) substitution

(on �) if there is a mapping j

0

: �! 2

TXT(�)

such that for � = (a

1

� � � a

m

; �),

j(� ) = f[� (�

1

; : : : ; �

m

)] j �

i

2 j

0

(a

i

) for i = 1; : : : ;mgg

j is a unary alphabetic substitution at a if j

0

(x) = fxg for every x 2 � with x 6= a.



We will use j to denote both the mapping j and the mapping j

0

. The adjective

alphabetic is used to distinguish this notion of substitution from the singular and simul-

taneous substitutions on texts as de�ned in Section 4.

De�nition 8.2 Let a 2 � and let K � TXT(�). The alphabetic substitution closure

of K at a is de�ned to be

S

1

n=0

j

n

(fag), where j is the unary alphabetic substitution at

a such that j(a) = K [ fag.

Alphabetic text substitution and alphabetic text substitution closure are the coun-

terparts of the regular operations on tree languages : tree concatenation and tree con-

catenation closure (called \forest products" in [11]). We now give the counterparts of

the regular operations on word languages.

The operations given by the bi-orders of PRIM generalize concatenation of word

languages (and correspond with so-called \top-concatenation" of tree languages). Let

� 2 PRIM with rank m � 2. For text languages K

1

; : : : ;K

m

� TXT(�), [�  

(K

1

; : : : ;K

m

)] is the text language f[� (�

1

; : : : ; �

m

)] j �

i

2 K

i

for i = 1; : : : ;mg.

By the algebraic closure (w.r.t. � = � [�) of a text language K � TXT

�

(�) we

mean the language f[�  (�

1

; : : : ; �

m

)] j (w; �) 2 TXT

�

(�) for some w 2 �

+

with

jwj = m; �

1

; : : : ; �

m

2 Kg, i.e., the sub-algebra of T

�

generated by K. Algebraic closure

generalizes Kleene closure of word languages.

Theorem 8.3

(1) CFT is closed under union, the operations of PRIM, algebraic closure, alphabetic

substitution, alphabetic substitution closure, and intersection with recognizable text lan-

guages.

(2) CFT is not closed under intersection and complement.

Proof. (1) By standard constructions as in [11, Ch. II-4], and [14, Ch. I-3]. See also [4],

where in particular it is shown that the intersection of an equational and a recognizable

set is again equational (w.r.t. to an arbitrary �-algebra).

As an example we will give the proof for the operations of PRIM and for the alpha-

betic substitution operation.

Let � 2 PRIM with j�j = m, and letK

1

; : : : ;K

m

2 CFT be such that K

i

= TxL(G

i

)

with G

i

= (N

i

;�

i

; P

i

; S

i

) for i = 1; : : : ;m. Let K = [�  (K

1

; : : : ;K

m

)]. K is

generated by the context-free text grammar G = (N;�; P; S), where S 62

S

m

i=1

N

i

,

N = (

S

m

i=1

N

i

) [ fSg, � =

S

m

i=1

�

i

, and P = (

S

m

i=1

P

i

) [ fS ! (S

1

: : : S

m

; �)g. Hence

K = TxL(G) 2 CFT.

Let K 2 CFT be a text language over �, and let j be an alphabetic substitution on

�. For a 2 �, let G

a

= (N

a

;�; P

a

; S

a

) be a context-free text grammar in PNF for j(a)

such that if a 6= b, then N

a

\N

b

= ;. Let G = (N;�; P; S) be a context-free grammar

in CPNF for K such that N is disjoint from each N

a

. Now G

0

= (

S

a2�

N

a

[N;�; P

0

; S)

is a context-free text grammar generating j(K), where P

0

= (

S

a2�

P

a

)[ fA! � 2 P j

j� j � 2g [ fA! � j A! a 2 P; S

a

! � 2 P

a

g.

Hence TxL(G

0

) = j(K) is a context-free text language, i.e. j(K) 2 CFT.

(2) Let L

1

; L

2

be context-free word languages such that L

1

\ L

2

is not context-free.

Consider the corresponding forward sequential text languages, i.e., K

1

= i

f

(L

1

) and

K

2

= i

f

(L

2

). Then K

1

and K

2

are context-free text languages, and word(K

1

\K

2

) =

word(K

1

)\word(K

2

) (note that this is not generally true for arbitrary context-free text

languages K

1

,K

2

). Then K

1

\K

2

is a text language which is not context-free, otherwise



word(K

1

\K

2

) = L

1

\ L

2

would be a context-free word language. For the complement

a similar argument applies. 2

The following theorem gives an operational characterization of context-free text lan-

guages. It is a consequence of Theorem 8.3 and the fact that each context-free text

language can be obtained from �nite text languages by union, alphabetic substitution,

and alphabetic substitution closure, which can be shown by Theorem 5.5(1) and the

analogous result for tree languages (Theorem 5.8 in [11], where tree languages obtained

from �nite tree languages using the analogous operations are called \regular"), or by

directly performing a similar construction as in the proof given there in terms of texts.

Theorem 8.4 CFT is the smallest family of text languages containing the �nite text

languages that is closed under union, alphabetic substitution, and alphabetic substitution

closure. 2

It is well-known (and easy to prove) that recognizable subsets (w.r.t. to any �-

algebra) are closed under union, intersection, and complement.

In [4] closure properties of recognizable subsets of algebras over a theory are inves-

tigated, depending on the form of the equations in the theory. From this we obtain

that for each so-called \relabeling" r : � ! �, if K � TXT(�) is recognizable, then

r(K) � TXT(�) is recognizable. Note that a relabeling is a special case of alpha-

betic substitution. We will show that in our speci�c case of texts, RECT is closed

under the operations of PRIM, algebraic closure, and alphabetic substitution. This

is a consequence of the fact that recognizable word languages are closed under (word)

concatenation, Kleene plus, and (word) substitution, respectively.

Theorem 8.5

(1) RECT is closed under union, intersection, complement, the operations of PRIM,

algebraic closure, and alphabetic substitution.

(2) RECT is not closed under alphabetic substitution closure.

Proof. (1) Let � 2 PRIM with j�j = m � 2. Let K

1

; : : : ;K

m

be recognizable text

languages, and let K = [�  (K

1

; : : : ;K

m

)]. By Theorem 7.2, for each i 2 f1; : : : ;mg,

there is a context-free text grammar G

i

= (N

i

;�

i

; P

i

; S

i

) in PNF generating K

i

such

that each L 2 L

G

i

is a recognizable word language.

Let G be the text grammar from the proof of Theorem 8.3 that generates K. We will

use the notations from Section 7 used in Theorem 7.2. Let A 2 V

f;G

. If A 2 V

f;G

i

for

some i 2 f1; : : : ;mg, then L

f;G

(A) = L

f;G

i

(A), which is a recognizable word language

by Theorem 7.2. The case that A 62 V

f;G

i

for each i 2 f1; : : : ;mg occurs i� � = �

f

and A = S; then L

f;G

(S) = L

f;G

1

(S

1

) � L

f;G

2

(S

2

). Since L

f;G

1

(S

1

) and L

f;G

2

(S

2

) are

recognizable word languages by Theorem 7.2, and recognizable word languages are

closed under concatenation, it follows that L

f;G

(S) is recognizable.

Similarly, we show that the word languages, L

b;G

(A), A 2 V

b;G

, are recognizable.

Consequently, each L 2 L

G

is recognizable, and it follows by Theorem 7.2 that

TxL(G) = K is a recognizable text language.

This proves that RECT is closed under the operations of PRIM.

Let K be a recognizable text language, generated by the grammar G = (N;�; P; S).

Let � = �[� be a ranked alphabet such that K � TXT

�

(�). Let G

0

= (N;�; P

0

; S),

where P

0

= P [fS ! (S

m

; �) j � 2 �; j�j = mg. Then TxL(G

0

) is the algebraic closure



ofK w.r.t. �. For x 2 ff; bg, L

x;G

0

(A) = L

x;G

(A) for all A 6= S, and L

x;G

0

(S) = L

x;G

(S)

if �

x

62 �, L

x;G

0

(S) = (L

x;G

(S))

+

otherwise. Hence L

G

0

consists of recognizable word

languages, which implies that TxL(G

0

) is a recognizable text language. Hence RECT

is closed under algebraic closure.

Now let j be an alphabetic substitution. Let G

0

be the text grammar in PNF from

the proof of Theorem 8.3 that generates j(K). Let x 2 ff; bg, and let A 2 V

x;G

0

. If

A 2 N

a

for some a 2 �, then A 2 V

x;G

a

, and L

x;G

0

(A) = L

x;G

a

(A) is a recognizable word

language. If A 2 N , then L

x;G

0

(A) = j

x

(L

x;G

(A)), where j

x

is the word substitution on

N [ � de�ned by j

x

(A) = A for each A 2 N and j

x

(a) = L

x;G

a

(S

a

) for each a 2 �.

Since, by Theorem 7.2, the word languages of the form L

x;G

a

(S

a

) are recognizable and

recognizable word languages are closed under substitution, it follows that L

x;G

0

(A) is

recognizable.

Hence each L 2 L

G

0

is recognizable, and K = TxL(G

0

) is a recognizable text lan-

guage. Consequently, RECT is closed under alphabetic substitution.

(2) This follows immediately from the fact that RECT � CFT combined with (1)

and Theorem 8.4. 2

One could also prove (2) using the fact that recognizable word languages are not

closed under substitution closure.

For recognizable text language we do not have a characterization as in Theorem 8.4.

The operations derived from regular word operations do not characterize the recog-

nizable text languages, but the rational text languages. In [15], rational subsets of

arbitrary �-algebras are de�ned as those subsets built from �nite languages by union,

the operations of � and algebraic closure w.r.t. �. A general property of rational sets

in an arbitrary algebra (cf. Theorem 3.4) is that the homomorphic image of a rational

set is rational. It may happen that the class of recognizable sets is strictly contained in

the class of rational sets (e.g., in arbitrary monoids), or that the class of rational sets is

strictly contained in the class of recognizable sets (as shown for tree languages in [15]).

By Kleene's Theorem, the rational word languages are precisely the recognizable word

languages.

For text languages we have by Theorem 8.5 that RAT � RECT, where RAT is the

class of rational text languages. Considering the homomorphism word as in Section 7,

we obtain, by Kleene's Theorem, that the underlying word languages of rational text

languages are recognizable (cf. the case of recognizable text languages, where the

underlying word languages are context-free). This shows that RAT � RECT.

Summarizing, we can extend Figure 4 yielding the inclusion diagram in Figure 6.

'
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$

%

CFT
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'
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Figure 6: families of text languages
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