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1 Introduction

In this paper we propose a new approach to the design of algorithms. This approach
is based on the view that all algorithms are composed of a computation and a control
component, and that these components can be designed separately. The computation
component is responsible for the correctness of an algorithm. It embodies the
computational knowledge about a problem domain that is needed to solve the
corresponding problem. The control component governs complexity aspects of the
solution method by directing the usage of the computational knowledge. This bisection
allows the problem of how to construct an algorithm to be split into two smaller
problems: "What are the elementary units of computational knowledge for the problem
at hand?" and "In what order should these units be used to (efficiently) obtain a
solution." This way, the concerns of correctness and complexity are separated. We
assert that there are many advantages in separating correctness and complexity in
algorithm design. Hence, we examine properties of programming formalisms that
influence the possibility of separating the design of the computation and control
components of an algorithm.

The paper has the following structure. Section 2 illustrates that an algorithm contains
parts that are solely related to the correctness, and parts that are primarily related to
the complexity of algorithms. In section 3 we argue that the proposed view of
separately designing computation and control leads to an improvement over the
existing methods. In section 4 we investigate in what form computation and control
appear in existing programming paradigms. We look at an example program
expressed in different formalisms and explore which features of programming
languages influence the entanglement of computation and control. This leads to the
identification of aspects of programming languages that cause this entanglement.
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2 Exposing the Distinction between Computation and Control

In this section we study some examples that illustrate the possibility of identifying a
computation component and a control component in algorithms. These examples are
summation and sorting. The notation of quantified operators is copied from [CM88].

2.1 Separating Computation from Control in Summation

We look at the problem of computing the sum of n numbers: s = (+i : 1≤i≤n :: ai ). It
is clear that being able to compute the sum of two numbers is sufficient to solve the
problem of computing the sum of n numbers. Informally speaking, we postulate that
the elementary unit of computational knowledge is captured by the following rule:

"Select any pair of numbers, and compute their sum."

Application of this rule decreases the amount of numbers to be added by one. The
problem is solved by repeatedly computing sums of pairs of numbers until there is only
a single number left. This remaining number must be equal to the sum of the numbers
that made up the initial sequence.

Even though we now know what has to be done to solve the problem, there are still
many ways to do it. We present some solutions, where we use bracketing to indicate
the evaluation order of the expression:

low to high ( ... ( ( a1 + a2 ) + a3 ) + a4 )+ .. an ) (1)

high to low ( a1 + ( ... ( an-3 + ( an-2 + ( an-1 + an ) ) ) ... ) (2)

recursive doubling ( ... ( ( a1 + a2 ) + ( a3 + a4 ) ) + ( ( .. + an ) ) ) (3)

random ( .. ( ( a5 + a1 ) + ( ( a3 + a2 ) + a7 ) + .. a4 ) ) (4)

In the expressions (1), (2) and (3) we recognize some pattern. This pattern is the
result of systematically guiding the application of the rule of computation. In (1), the
result is obtained by adding the element with the next smallest index to the sum of all
previously added numbers. Evaluation of (2) starts with computing the sum of the
elements with the highest indices and consecutively adds the element with the next
highest index. The ordering of (3) represents a scheme of computation that is known
as recursive doubling. This is a recursive scheme that computes the sums of intervals
that repeatedly double in size. Random application of the addition rule is represented
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by (4). Randomly application of the addition rule yields the same result as all of the
systematically guided computations (1), (2) and (3). This fact indicates that the strictly
ordered computations determine aspects of the solution method that are not essential
for the correctness of the computation.

If only a single rule can be applied at a time, then the time complexities of the above
examples are the same, viz. O(n). It is more interesting to examine the parallel
evaluation of computational rules. The ordering of (1) and (2) is linear and, as a
consequence, cannot benefit from parallel evaluation. The third ordering (3) does allow
multiple additions to be computed at the same time. The number of additions that can
be computed in parallel decreases exponentially, but still allows for an overall time
complexity of O(lg n). We cannot make any statement about the complexity of the
random ordering (4) other than that any execution will take time somewhere between
the best case, O(lg n), and the worst case, O(n). Example (4) shows that a well
chosen control strategy may exploit the parallelism that is inherently present in the
solution method. More importantly, it illustrates that the complexity aspect is
determined by each of the systematic methods (1), (2) and (3), while this is still
unresolved in the random (4) computation.

For now, we conclude that it is possible to describe a correct solution, without also
determining its complexity. In section 4, we argue that the complexity of a solution
method is determined by the ordering of computations and the selection of data.

2.2 Imposing Control over Computation in Sorting

We established that it is possible to specify a correct solution without settling
complexity-related issues. If we have a complexity-free representation of a
computation, then this may be understood as a non-deterministic specification.
Different choices for the removal of the non-determinism lead to different algorithms.
Consequently, such a non-deterministic specification represents a class of more
determined algorithms.

An identical observation was made in the area of logic programming. The following
quotation is from an article by K.L. Clark on logic programming [Cl82]

"A logic program with control unspecified is a non-deterministic
algorithm. It is the family of all the deterministic algorithms that can be
obtained by adding specific computation and choice rule control. By
partially specifying this control we obtain a new non-deterministic
algorithm that is a subfamily of this family of algorithms."
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We show that the ordering of computations can be specified explicitly and independent
of the computations themselves. Correctness and complexity aspects of a solution
method are, when expressed in an existing programming language, represented by
a single text. We make the conscious decision of separating the representations of
these aspects. When something is changed that concerns the complexity of the
solution method, the representation of the correctness related issues remains
unchanged.

Different ways of introducing control — or removal of non-determinism — lead to more
detailed descriptions of algorithms that perform the same task. This will be illustrated
by presenting different control components for sorting algorithms that are all based on
the same computational component.

We design a computation component for sorting a sequence, and reason about the
correctness of this solution. We continue by showing that it is possible to superimpose
different controlling strategies on the same computation component. Additional
knowledge about the problem domain can be exploited by the control component to
gain a lower time complexity.

Input to the sorting problem is a sequence A = a0 , a1 , ..., an . A solution is a
sequence B = b0 , b1 , ..., bn such that B is a permutation of A, and the elements
of B are in increasing order: ( ∀ i, j : 0 ≤ i < j ≤ n :: bi ≤ bj ).

In a sorted sequence smaller values precede larger values. If we take a pair of values
from a sequence, of which the larger value precedes the smaller one, and exchange
their positions, we get a sequence that is better sorted. This single rule is called swap
(also known as compare-exchange). This knowledge provides the elementary rule of
computation for solving sorting problems:

"Select two elements that are in reverse order relative to each other, and
interchange the positions of these elements."

This rule decreases the amount of numbers that are in reverse order relative to each
other, and consequently increases the amount of numbers that respect their proper
ordering. Repeated application of this rule must ultimately result in a sequence in
which all numbers are in the correct order.

This rule can be defined formally by a pre- and a postcondition.

{ ai > aj ∧ i<j ∧ Perm( A, A0 ) } swap(i, j) { ai < aj ∧ i<j ∧ Perm( A, A0 )}
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Execution of swap(i, j) results in values ai and aj swapping positions in the sequence
if they are in reverse order relative to each other, otherwise nothing changes. In the
case of sorting, the computation component consists of this single rule only. We
explain in detail that this single rule suffices for solving the sorting problem.

The rule swap changes the position of the values in the sequence, but does not
change any values themselves. Thus if previous to the execution of swap the
sequence is a permutation of A, then execution of swap leaves this invariant.

A combination of two elements ai and aj such that ai > aj and i < j is called an
inversion. The maximum number of inversions that can be present in a sequence of
n elements is ½ n (n-1) . The sorted sequence is characterized by the fact that it
contains no inversions at all. Execution of rule swap, reduces the number of inversions
in the sequence with at least one.

The random strategy for applying swap consists of choosing values i and j randomly,
and establishing the postcondition if the precondition for swap(i, j) holds. If we assume
that the random selection of data is fair, then the repeated random application of swap
at a sequence that initially contains a finite number of inversions, must at some point
yield a sequence that has no inversions left. The only sequence without any inversions
is the sorted sequence. Consequently, randomly applying the rule swap will eventually
sort any sequence of finite length.

The random strategy that is illustrated for addition and sorting can be generalized to
computation components that consist of a number of rules of arbitrary (finite) arity.
Using this chaotic evaluation mechanism, every computation component can be
executed. It is very unlikely though, that the random execution of any program will give
an optimal computational complexity. Even the average performance may not meet
the required time complexity.

For the "random" method for sorting we can derive an upperbound. From a sequence
of length n we can choose ½ n (n-1) pairs. Swapping some of these pairs will give
a better sorted sequence, while swapping others might introduce inversions. If we
select a pair that is already relatively ordered, then we do not swap them. Assuming
that we start with the sequence that has the most inversions — a reversely sorted
sequence, we have to select O(n2 lg n) pairs in the worst case before the sequence
is sorted.

For most programs a particular course of execution can be thought of that leads to a
better performance than can be expected from the random execution mechanism. In
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such cases it pays off to specify a control component that explicitly plans the
application of computation rules.

Most sorting algorithms use the swap operation as elementary computational step, but
differ in the strategy that is used to apply it. Well-known sorting algorithms such as
bubblesort, quicksort, mergesort, insertion sort, selection sort, odd-even sort, and
Batcher’s baffler can all be described as particular orderings of the swap computation.
The different control components of these algorithms are responsible for the
differences in efficiency.

A control component is an imperative statement that defines an ordering on
computations that should be respected by any execution. At each step, a control
component specifies which computation or group of computations is liable to be
executed next, and which data is to be used. For describing the ordering on
computations we use three constructs: sequential execution, denoted by the familiar
semicolon ";", parallel execution, denoted by a double bar " ", and conditional
execution, denoted by "if .. then .. else". The keywords "for" and "forall" are used to
denote repeated sequential or parallel composition.

for i ← 1 to n :: Si ≡ (..(S1 ; S2) ; S3); ... ; Sn-2) ; Sn )

forall i : 1 ≤ i ≤ n :: Si ≡ (..(S1 S2) S3) ... Sn-1) Sn )

Using this notation we can write down the control strategy for Bubblesort and its
parallel relative Odd-Even sort.

The sequential Bubblesort performs O(n2) swaps. Because it computes only one swap

Bubblesort

for i ← 1 to n ::
for j ← 1 to n-i :: swap(j, j+1)

at a time, it sorts a sequence of length n in O(n2) time. By pipelining the swaps that
Bubblesort performs, we get a sorting method that still executes O(n2) swaps, but by
executing O(n) of them at a time, we achieve a time complexity of O(n). For an
account of the relation between Bubblesort and Odd-Even Sort see for example
[Kn73].

A characteristic of both of Bubblesort and Odd-Even sort is that the computations that
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have to be done as well as their relative ordering are known in advance. This can only

Odd-Even Sort

for i ← 1 to n ::
forall j : 1 ≤ j < n ∧ Odd(i)=Odd(j) :: swap(j, j+1)

be the case when these properties are independent of the input-values. A more
complex control component is needed to describe Quicksort, where the number of
computations and their relative ordering do depend on the input values. A control
strategy for Quicksort is depicted in the box below.

In this section the problem of sorting was used as an example to show how complexity

Quicksort

split(lb, l, r, rb) =

if l<r
then if a l+1 < a lb

then swap(l,l+1); split(lb, l+1, r, rb)
else swap(l+1,r); split(lb, l, r-1, rb)

else if lb<l-1 then split(lb, lb, l-1, l-1)
if r+1<rb then split(r+1, r+1, rb, rb)

begin
split(1, 1, n, n)

end.

information can be separately specified from correctness information. This gives two
separate texts, each of which is dedicated to one aspect of the solution method. The
conjunction of these isolated representations is easier to understand than a
representation that combines the correctness and complexity in one text. The
importance of a separate representation of complexity related information was stressed
by Hayes.

Hayes: "In conventional programming languages there is no separation
of the logical and control aspects of the language. [...] Assigning a clear
semantics [to programs expressed in such a language] is difficult, for
whichever aspect one concentrates upon, the other is lost; and yet both
are important."
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pp. 110, [Ha73]
Hayes: "Control information, in the form of detailed descriptions of how
to go about deductions, is first-class information and should be treated
as such: it deserves its own, carefully designed, language."
pp. 114, [Ha73]

It is sensible to represent the control component of an algorithm using an imperative
rather than a declarative formalism, because it is responsible for the efficiency of the
solution. Usually a lot of work has to be done, to extract information from declarative
statements. This extraction effort produces additional computing load that negatively
influences the performance. If the interest in a specification is solely mathematical,
then there is no theoretical obstacle that prevents us from specifying the control
component declaratively.

2.3 Conclusion: Algorithm = Computation + Control

The examples in the preceding sections show that it is possible to determine which
computations have to be done to solve a problem, without also knowing in what order
to perform them. We claim that the computation and the control of an algorithm can
be specified separately. Interpreting algorithms as the composition of a computation
and a control component is useful because it leads to a clear separation of the
correctness (mathematical semantics) and complexity (operational semantics) in the
design as well as in the analysis of algorithms. In section 3 we will expound the
advantages of this view on algorithms.

The first step in solving a problem is building an abstract (mathematical) model. The
parameters in this model generate a problem space. The information that is sufficient
to solve a problem, regardless of efficiency, is called the computation component of
an algorithm. The computation component specifies the elementary computational
knowledge that leads to a solution of the problem. This knowledge is formulated in
terms of transformations of the problem space.

The control component specifies in what order actions (state transformations) must be
performed. A computation component alone contains enough information to solve the
problem. The control component is added in order to obtain efficient solutions by
imposing a smart order on the applications of the rules of computation. In doing so,
the control component determines the O-order of the algorithm.

After having stated in detail what we mean by computation and control component, we
define correctness, complexity and efficiency. A program is correct if the result it
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computes, meets its specification. Complexity is a property of a problem. A problem
requires a minimum number of operations before a solution is obtained. Efficiency is
an aspect of a solution method. It denotes the degree in which the available resources
are utilised (for instance with respect to the optimal solution). Usually the relevant
resources are time and (memory)space. We conform to the accepted nomenclature,
and use the terms time-complexity and space-complexity, when we mean to refer to
the efficiency of an algorithm with respect to time and space.

3 Advantages of Separating Computation and Control

Now that we have made it plausible that computation and control are separable
concerns in algorithm design, the question arises whether it is a good idea to actually
make this separation. In this section we answer this question positively by listing a
number of issues that benefit from this approach to algorithm design.

Software Engineering

The main benefit of separating computation from control is the improved ease of
design of algorithms. The design is split into phases that deal with clearly defined
aspects of an algorithm. Firstly, focus is on the declarative point of view. A
computation component is designed that forms the basis of any correct solution.
Secondly, a strategy is devised that steers the computations to obtain an efficient
solution. Especially the design of a computation component becomes easier, because
one does not have to worry about the operational aspects of the solution. But even
without control information it is possible to prove or disprove the correctness of the
computation component. The fact that in the correctness stage of the development,
it does not have to be taken into account whether the programs are intended for
parallel or sequential execution, has important consequences for the correctness
proofs of the computation component. Where proofs for (imperative) concurrent
programs are often blurred by operational details, the correctness of computation
components can be demonstrated by concise proofs. Algorithms can therefore be
expected to be correct more often and easier to understand.

Furthermore, when control is left unspecified, the computation component can still be
used as a program. It can be executed using the random application mechanism. This
is generally not very efficient, but the executability of the computation components
allows it to be used for rapid prototyping. When a computation component is judged
adequate, the design can be continued by adding a control strategy for reasons of
efficiency.
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Parallelism

The order in which the operations of an algorithm are performed is determined by the
control strategy. In particular, any decision regarding sequential or parallel execution
of the algorithm can be postponed until a control strategy must be selected. The
absence of control implies the absence of the Von Neumann bottleneck. The
computation component in principle contains all parallelism that is inherent in the logic
of the program. Hence, if the logic of the program allows for a massively parallel
execution, then so does the computation component. The control strategy, in its turn,
decides whether or not to exploit the available parallelism. In the case of the sorting
example, the computation component does not specify whether a single pair or
multiple pairs of elements should be compared and exchanged at the same time. The
control strategy resolves this in favour of sequential execution by dictating Bubblesort,
or in favour of parallel execution by dictating Odd-Even sort. When a programmer
cannot discover the potential parallelism of a solution method, this does not have to
refrain him from designing a computation component (because this is independent of
sequential or parallel execution). Examination of a computation component often
naturally leads to insights about potential parallelism.

Portability versus Efficiency

In many programming languages there is a trade-off between portability and efficiency.
When computation and control are designed separately, no compromises have to be
made in favour of one of these. Since the computation component is independent of
the underlying machine, it can remain completely unchanged when ported to another
architecture. Yet it is still possible to achieve efficiency of the solution method,
because the control component can be adapted to any target architecture. This
possibility is expected to be especially useful for parallel and distributed systems
because architectural differences among the plethora of parallel machines are much
more significant than among sequential machines. The proposed design method
combines a high degree of portability without restrictions on efficiency by localising
implementation dependent concerns.

4 Correctness and Complexity in Computing Science

We assert that correctness and complexity are identified as the two most important
aspects of an algorithm by people from different areas of computing science. This
claim is supported by a number of citations. The quotations included in this paper are
only a few among the many passages that can be found in which these two concerns
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are juxtaposed. After these excerpts from the literature, we investigate why no one has
been able to separate computation and control as nicely as is illustrated by the
examples in section 2.

4.1 Excerpts from Literature

Followers of different computing paradigms find that two, more or less separable
concerns, are involved in the design and analysis of algorithms. The terminology used
for these concerns differs slightly, but the fundamental concepts coincide. We use the
terms "correctness" and "complexity" (as defined in section 2.2).

First, some quotations from textbooks on imperative algorithm design.

Gries: "The programmer has two main concerns: correctness and
efficiency [...] When faced with any large task, it is usually best to put
aside some of its aspects for a moment and to concentrate on the others
[...] This important principle is called Separation of Concerns."
pp. 237 [Gr81]

Baase: "There are two aspects to an algorithm: the solution method
and the sequence of instructions for carrying it out."
[Ba88]

Chandy and Misra: "1.2.6 Separation of Concerns: Correctness and
Complexity [...] The correctness of a program is independent of the
target architecture and the manner in which the program is executed; by
contrast, the efficiency of a program execution depends on the
architecture and manner of execution."
pp. 7-8 [CM88]

Kaldewaij: "There are two factors by which algorithms may be judged:
their correctness (do they solve the right problem?) and their
performance (how fast do they run and how much space do they
use?)."
pp. ix [Ka90]

Statements of similar intent can be found in literature on logic programming.

Kowalski: "[...] when logic is separated from control, it is possible to
distinguish what the algorithm does, as determined by the logic
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component, from the manner in which it is done, as determined by the
control component."
[Ko79]

Bratko: "It [..] makes sense to distinguish between two levels of meaning
of Prolog programs; namely,

• the declarative meaning and,
• the procedural meaning.

The declarative meaning is concerned only with the relations defined by
the program. The declarative meaning thus determines what will be the
output of the program. On the other hand, the procedural meaning also
determines how this output is obtained; that is, how are the relations
actually evaluated by the Prolog system."
pp. 24 [Br86]

Jaquet: "Most of the interest taken in logic programming comes from the
possibility to ascribe two different complementary semantics to logic
programs. The declarative semantics refers to the semantics of first
order logic [...] At the opposite, the procedural semantics is machine-
oriented and refers to a model of execution."
[Ja91]

The article by Kowalksi was the first widely disseminated article that acknowledges the
benefits of separating what he called "logic" and "control". In texts on functional
programming one may find statements of the following kind.

Hudak: "Parafunctional programming isolates functional behaviour from
other behaviour so you can express, reason about, and ultimately
debug the behaviour independently."
pp. 59 [Hu88]

Meertens: "Programs can themselves be viewed as specifications, in two
ways. One is the operational viewpoint: programs as specifying a
process for some (abstract) machine. The notion of efficiency is
intimately tied to this viewpoint: it is meaningless to discuss the
efficiency of a program outside the context of a mapping to a process on
a machine. [...] We can also abstract from the internal process aspects
by identifying observably equivalent processes, and consider the
meaning of a program as a point in the resulting abstract space. We
then obtain the ’declarative’ viewpoint of programs as specifications."
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[Me89]

Also from the area of process calculi comes the analogous statement

Milner: "[...] thus one of the outstanding challenges in concurrency is to
find the right marriage between logical and behavioural approaches. In
fact it is one of the outstanding challenges in computer science
generally, because the whole subject is concerned with the relationship
between assertion and action - or, if you like, between the specification
of systems and their performance."
pp.4 [Mi89]

These quotations demonstrate that a number of people have noticed the separable
aspects of computation and control. This invites investigation into what has prevented
the emergence of a programming model that capitalises on the benefits of addressing
these issues separately?

4.2 Requirements for Separating Computation and Control

In this section we look at summation programs expressed in different programming
languages. We examine these programs to find out where problems occur when we
want to separate computation from control.

If we would code a summation algorithm in some imperative language, we would use
an array to represent the input and use a for-loop to repeatedly add a new number to
an intermediate result.

sum ← 0;
for i ← 1 to n do

sum ← sum + a[i]

In a functional language we represent the input by a list. A recursive traversal of the
list, adding numbers as we go, would be the most evident solution.

sum [] = 0
sum x:xs = x + sum xs

For completeness sake, we give a representation of the program in a logical
formalism, although it is not essentially different from the functional program.
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sum ([], 0).
sum ([H|T],X) :- sum(T,Y), X is Y+H.

We illustrate that the above programs impose an irrelevant ordering on the
computations.

Both programs prescribe an ordering like (1) in section 2.1 — a sequential evaluation
ordering. This is an overdetermination of the ordering of the computations. The
associativity property of the addition function allows any pairing of elements and
accordingly any evaluation ordering would suffice. The computation as described by
the above programs also limits the order of the processing of data. Even though it is
not essential to the (correctness of the) algorithm, the programs dictate that data be
added starting from the first element (with index 1), and consecutively add the
elements with the next highest index in the sequence. This restrains the order in which
data is processed, because addition is commutative, and thus any ordering of the data
yields the correct result.

The observation that programs are often needlessly restrictive holds in general, and
has been noticed before. In Dijkstra’s authoritative work on program design, A
Discipline of Programming, he presents an algorithm that solves Hamming’s problem.
The algorithms contains three pairs of variables that need to be updated — each pair
independent of the others. This is done by three consecutive do-loops, about which
Dijkstra notes

Dijkstra: "The fact that the three repetitive constructs, separated by
semicolons, now appear in an arbitrary order does not worry me: it is the
usual form of over-specification that we always encounter in sequential
programs prescribing things in succession that could take place
concurrently."
pp. 133 [Dij76]

The ways in which programs are restrictive is with respect to the ordering of
computations (time), and with respect to the ordering of data (datastructure). A
prerequisite for being able to separate computation from control, is that the
specification of the computations has several degrees of freedom; namely: freedom
in time, and freedom in space (datastructure). We will use the addition problem again
to illustrate this categorisation.
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Figure 1 Sequential Addition
Figures 1 and
2 depict an
ordering of
computations (circles with a "+" inside) and data (squares) in time. The ordering
should be read from left to right; i.e. elements left from another element, should be
computed before elements to their right

The linear ordering of figure 1 requires n steps. The recursive doubling order of figure
2 can be computed in lg n steps. This illustrates that there is a degree of freedom in
ordering the computations in time.

Figure 2 Parallel Recursive Doubling Addition

Squares in the figures represent elements ai . The figures show orderings in time of
the computations that produce the desired result for any substitution of data. We
observe that there is a degree of freedom in choosing in what order we place the
values ai on the squares. In the above examples, the ordering of data is independent
of the ordering of computations. This is not generally the case with algorithms. Some
algorithms require that the distribution of data complies with the ordering of
computations. In practice we often see the reverse case. Once the choice to use a
certain datastructure has been made, then the ordering of the computations is partially
fixed, because a datastucture allows its contents to be accessed in a particular
fashion. In such a case the time-complexity is (partially) determined by the
datastructure.

Assuming that the ordering in time is fixed according to figure 2, and a hypercube
topology is given as the target architecture for execution of the algorithm, then the
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following figure illustrates how the control component could combine the ordering in
time and an ordering in space:

Figure 3 Mapping of an ordering in
time into space

These degrees of freedom with respect to time and space that should ideally be
present in the computation component, can later be eliminated by the control
component. These freedoms are often lacking in programming models. We point out
two of the main reasons for this:

Inhibiting datastructures

The benefits of separating the computation component from the control component
have been acknowledged in the area of logic programming. The ideas could not be
exploited because implementations of logic languages chose to use recursive data
structure for the representation of data. The elements of a recursive structure can only
be accessed one at a time. Before one finds out what the value at a certain position
in a structure is, all preceding elements have to be removed one by one. Functional
programming also suffers from the fact that it offers only recursive datatypes like lists
and trees. This sequential mode of accessing data imposes irrelevant orderings in
time.

For the highest degree of freedom in data it would be desirable to have a data
structure that allows all of its constituents to be accessed directly.

The array from the imperative world might seem to be a solution, but also this
representation has aspects that are not ideally suited for our purposes. One aspect
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depends on the implementation of the programming language. When an array a is
declared in the language C, the value of a[1] is stored next to a[2] in memory. In our
opinion an array should be used as a logical structuring device, and not as a physical
one. For efficiency reasons, it is desirable to be able to indicate where in space (could
be a place in memory or a particular processor in a network) a particular variable must
be stored. In many programming languages this is not possible.
Furthermore, an array requires that its elements be accessed by an index. This
requires that the collection of data that is modelled is suitable for this kind of
referencing. One can imagine that this clashes with the modelling of, for instance, a
multiset with multiple identical elements.

Inability to explicitly determine control

Functional and logic programming stem from purely mathematical models. This makes
these programming models conceptually elegant. For their execution, they rely
completely on automatic control mechanisms. The same elegance that is beneficial
from a mathematical point of view, becomes a weakness when programs are put into
practice, because these models have no notion of execution efficiency.

Functional and logic programming have justly received much attention because they
have the potential of alleviating the programmer from the operational details of
programs. Unfortunately this claim is not fully fulfilled by either of the paradigms. Once
a correct functional program has been written, the development of the program
continues by successive rewriting for the sole reason of achieving efficiency. In logic
programming on the other hand, the programmer has access to operators that
intervene with the automated execution mechanism.

In both cases concessions have been made that introduce the ability to increase
efficiency, at the expense of blurring the fundamental ideas of the respective
paradigms.

Functional programming has an advantage over logic programming by having higher-
order (or meta) functions. The essence of higher-order functions is that they steer the
application of first-order functions. In this, we recognize a partial acknowledgement of
the importance of an explicit control component.

There is active research, e.g. [Ma92], in extending logical and functional programming
with arrays, or additional constructs such that the programming language offers more
opportunities for exploiting parallelism.
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5 Conclusion

Even though the opinion that the two most important aspects of an algorithm are
correctness and complexity is prevalent in computer science, there exists no design
methodology that exploits the benefits of separately addressing these issues. We have
presented some examples that illustrated that correctness and complexity can be
separated in algorithm design. The correctness component defines the basic
operations to be performed in order to solve the problem at hand. The control
component imposes an order on the execution of the operations with the objective to
obtain an efficient solution.

The separation of correctness and complexity improves the ease of programming. The
resulting computation component contains all parallelism that is inherent in the
solution. The abstraction of (architectural) implementation details combines portability
with efficiency.

By examining small programs expressed in existing programming languages, we
identified features of programming formalisms that inhibit the separation of
computation from control. These observations lead to the recommendations about the
desirable properties of programming languages.

• Computation information and control information should be represented by distinct
texts. This will make the correctness and complexity aspects of an algorithm easier
to design, and easier to understand.

• A programming model should be able to separately address the ordering in time and
the ordering in space. Ordering in time and in space both belong in the control
component because they are concerned with the efficiency of the ultimate program.
Consequently, the representation of the computation component must leave these
issues uncovered.

Research in search of an ideal programming model is continued, and in the near
future we expect to finish the design of a model that fully supports the separate design
of the computation and control components of algorithms.
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