
Enhancing the Quality of Conceptual Database Speci�cations

through Validation

Andreas Zamperoni Perdita L�ohr-Richter

Leiden University Technical University Braunschweig

Dept. of Computer Science Dept. of Computer Science

Niels Bohrweg 2, NL-2333 CA Leiden Gau�str. 12, D-3300 Braunschweig

The Netherlands Germany

Tel.: ++31/71/27 7103 Tel.: ++49/531/391 7447

Fax.: ++31/71/27 6985 Fax.: ++49/531/391 3298

email: zamper@wi.leidenuniv.nl email: loehr@idb.cs.tu-bs.de

Abstract

In this article, we present a validation approach and method to support the development of

database applications. We explain how validation can cope both with the need for a formalized

evaluation of correctness as well as the need for prototyping of conceptual database schemata. We

de�ne di�erent levels of correctness for such schemata and show how these levels can be achieved

through validationmethods. Furthermore, we describe how our validation framework can be applied

to other conceptual speci�cations.

Keywords: consistency, correctness, database application, database schema, database speci�ca-

tion, extended ER model, test data, validation

1 Introduction

One of the main questions for the development of database speci�cations is:

How can we ensure that our speci�cation is correct and re
ects the desired portion of

reality?

In times of increasingly complex speci�cations of database applications, we need well-structured ap-

proaches to handle this complexity and guarantee qualitative good design results. One indispensable

qualitative property of database speci�cations is correctness. To formally proof this property becomes

soon very complex and may even not be possible. Thus, for the ordinary development work, a prag-

matic approach should be on hand to complement (or even replace) the formal method: validation.

In general, it is not possible to decide whether a speci�cation is de�nitely correct via validation. In-

stead, the correctness property means to minimize the rate of errors within a speci�cation. For this

purpose, validation methods o�er good error detection and diagnosis features which mainly bases on

the generation of suitable test data. This test data can be reused for prototyping activities, mea-

surements of speci�cations, and allows to involve users in early development stages. Due to these

properties, validation suits as a pragmatic approach for the ordinary development work.

In the area of software engineering, testing is a well-known tradition and corresponding theories

exist [OsCl 92, Be 91, Be 84]. These approaches focus on tests of programs or programming systems,

i.e., dynamic structures. In this respect, most of them derive test data to test for functionality,

coverage criteria, boundary cases, etc.

Information systems engineers to cope with di�erent problems. The heart of information systems

consists of complex database structures on top of which the applications' functionality is de�ned. Thus,

the database structures must be shown correct and consistent before the corresponding functionality

can be put on top. Validation approaches which work on this topic [NMLo 93, LeNo 90, DeDa 89,

BrMa 86, No 83] agree on the underlying idea to populate the database speci�cations with (reasonable)

data. By this, they try to show the database speci�cation to be consistent which in general is an

undecidable property [Ma 74]. Additionally, they o�er the generated data to support prototyping of

the database speci�cation and, thus, illustrate the structure of the information and signi�cant details.

We generally agree with this point of view but think it necessary to adapt the validation technique for

the complex semantic data models of today. Such data models belong to early development phases

and, hence, include powerful high-level modeling concepts to ease speci�cation tasks. This powerful

expressiveness of the data models as well as the growing size of database speci�cations make it more

di�cult to judge whether a speci�cation is consistent and o�ers an adequate solution to the modeling

problem, emphasizing the need for an improved validation support.

In this paper, we propose a validation approach for database speci�cations of the early de-

velopment stages, i.e., the conceptual design phase. Our approach comprehends a well-structured

validation strategy and a data model centered algorithm for test data generation. The paper is or-

ganized as follows. In the next section, we introduce our basic validation strategy and show how to

adapt it to conceptual database speci�cations. In section 3, we give a brief look at the objects to be

validated: conceptual database speci�cations in terms of an extended ER model (EER). In section 4,

we adapt and re�ne common correctness criteria for database speci�cations. We use them as goals

and milestones for our validation approach which we present in section 5. The paper concludes with

results concerning the decidability of the correctness criteria we used and gives an outlook of how to

make our approach applicable for other speci�cation techniques, i.e., di�erent semantic data models

or static parts of object models.

2 Validation strategy

Experiences in the �eld of validation and testing show that a lot of testing e�ort is done in an

unstructured, ad hoc manner. Although, such proceeding may suit for small speci�cations, it is

inadequate for complex and large speci�cations. Thus, the validation e�ort itself has to be structured

and de�ned in advance (cf. �g. 1).

Structural frame

To start a validation e�ort, we have to formulate goals for it, i.e., express the (special purpose)

correctness criteria we want to achieve. These criteria have to be de�ned as a set of hypotheses

which re
ects presumptions about the correctness of the considered speci�cation. These hypotheses

remain constant during the validation procedure and determine the results which we expect at its

end. The next step is to execute a testing method. This method should be planned to support or

to reject the chosen hypotheses. After the execution of the testing method, its results are compared

with the expected results. Through such an evaluation, we decide whether we achieved our goals and

can terminate the validation procedure or have to continue because the goals have not been achieved.

In the latter case, we detect and classify characteristics of the failure in the delivered results. This

classi�cation leads to three di�erent conclusions:

� The speci�cation is not correct wrt. our set of hypotheses. Thus, we have to modify the

speci�cation.

testing method

evaluation of
results

Quit

Stop
classification of
detection and

characteristics

test results delivered

changed parameters

not correct

parameters:
specification, testing parameters

correctness criteria 1. consistency
2. minimal rate of errors

==> develop a set of hypotheses

goals:

reaching the goals
is judged to be unlikely

goals
not achieved

goals
achieved

of the testing method

specification
modify

modify constraints

meaningless
test results

Figure 1: Structural frame for validation e�ort

� The delivered results are insu�cient to evaluate our set of hypotheses, e.g., a hypothesis can

neither supported nor rejected. Thus, the constraints of the testing method have to be

modi�ed.

� Reaching the goals, i.e., satisfying the hypotheses, is judged to be unlikely. In this case, the

validation procedure should be aborted.

After modifying the incorrect or unsuitable parameters, we reiterate the validation procedure with the

same set of hypotheses until it either stops (goals achieved) or is aborted (human judgement).

Incremental validation

Obviously, validation of database speci�cations is a complex task. Accordingly, it is necessary to break

it up into smaller tasks. For this purpose, parts of the database speci�cation must be identi�ed which

can be validated independently. To determine such parts, we use a simple property of conceptual

database speci�cations: their inherent dependency structure [L�o 92]. This structure results from

dependency relations between speci�cations parts. For example, a generalization relationship between

two (or more) object classes induces a dependency of the generalized objects on the existence of the

more speci�c objects. All sorts of relationships between speci�cation objects can be transformed into

dependencies [L�o 92]. We use these dependencies to split the complete validation task into incremental

tasks and to de�ne an execution order on all partial tasks (whether complex or incremental).

For this purpose, we introduce a graph structure, the so-called dependency graph [L�o 92], to which

a speci�cation can be transformed. The graph's nodes represent the speci�cation elements and it's

edges represent the relationship by which the speci�cation elements depend on each other (cf. �g. 2).

dd = 0 1 2

object class 1

part of
generalized

 from
object class 2

object class 3

object class 4
part of

associated

to

associated
to

generalized
from

object class 6

object class 5

Figure 2: Partial dependency graph for database speci�cations

Such a graph determines a dependency degree (dd) for each object class within a speci�cation

1

. The

object classes without outgoing edges receive the dd = 0 which corresponds to independent object

classes. The object classes depending onto those get the dd = 1 and so forth. Generally, an object

class O receives the dd as follows:

dd

class O

:= maxfdd of all object classes on which O directly dependsg+ 1

Now, it is easy to de�ne an execution order for the incremental validation method

2

. It starts with

the most independent elements of a speci�cation (lowest dd). If these can be successfully validated

the validation successively continues with the elements marked with the next higher dd. By this

proceeding, we determine a well-structured and stepwise execution order of the validation process.

In parallel, we ensure that already validated parts of a speci�cation, i.e., parts with lower dd 's, remain

validated as long as errors only occur in more dependent parts of a speci�cation, i.e., parts with higher

dd 's. This, in fact, enables us to proceed the validation task in an incremental manner, avoiding to

evaluate again already validated objects.

3 Validation objects: conceptual speci�cations

The conceptual speci�cation of a database application consists of a database schema, a set of integrity

constraints, and a set of transactions. The schema (together with static integrity constraints) de�nes

the static structure of the problem domain. On top of this structure, the behavior of the database

application is described through transactions and dynamic integrity constraints. In turn, integrity

constraints need a correct database schema, transactions need correct (dynamic) integrity constraints.

We use these global dependencies to subdivide entire database speci�cations into validation subob-

jects, namely the three parts of the speci�cation. In turn, we employ the dependency structure within

each of these validation subobjects to subdivide themselves into more re�ned validation subobjects.

We represent the various validation subobjects as nodes of a dependency graph (cf. �g.3). The edges

express the validation dependencies between the elements of the graph, i.e., the validation subobjects.

Explicitly, each edge indicates that the target node of the arrow has to be validated before the source

node of the arrow. These dependencies imply the order of the validation process on the validation

1

Note, that here A �! B means thatA depends from B, i.e., A can be validated only if B has been validated.

2

How to handle cyclic dependencies is shown in [L�o 92] and section 5

(sub)objects (cf. section 2). As mentioned in section 1, we focus on database schemata as the central

component of database applications. Therefore, the validation subobject \database schema" is shown

in more detail. To describe the schemata, we use an extended ER model.

We will give a brief overview over this speci�cation technique in the following.

database specification

{ database schema } { integrity constraints } { transactions }

{ data types } { entity types } { relationship types }

{ attributes } { components } { attributes }

{ database schema }

Figure 3: The dependency graph

A conceptual database schema: The EER schema

The EER model [EGHH+ 92] is an extension of Chen's ER model [Ch 76]. Due to the additional

concepts and the intuitive graphical speci�cation language, the EER schema especially supports the

development of non-standard database applications (e.g. geoscienti�c databases). The main extensions

to Chen's original ER model include:

multi, complex, and entity valued attributes: List, set, bag and record constructors are used to

specify the range of attributes. In this way, abstract data types are built on top of already de�ned

or existing data types. Entity valued attributes (\components") use an entity type as range and

may as well be multi or complex valued. With this extension, association and aggregation of

entities are modeled

3

.

CASTLE PERSON

Site : Geo_position

Owner : SET OF

Figure 4: Attributes in the EER model

3

The concept of entity valued attributes was introduced mainly for modeling purposes. Structurally it is equivalent

to a ?:N-relationship type.

In �gure 4, Owner is a set of PERSON entities, Site uses the abstract data type Geo Position

which could be a record of longitude, latitude, and height over sea level.

generalization and specialization of entities: For this purpose, the EER model provides the con-

struct of a \type constructor". With a type constructor entities of \input types" can be grouped

into new entity types, i.e., the \output types". For generalizations, we have many input types,

i.e., the speci�c types, and one output type, i.e., the general type. For specializations, we have

one input type, i.e., the general type, and many output types, i.e., the speci�c types. A type

constructor can be partial or total. In case of a partial type constructor, not every entity of an

input type needs to appear in one of the output types. For total type constructors holds that

every entity of an input type has to appear in (exactly) one of the output types. Additional

attributes can be de�ned for the output types, which in principle inherit the attributes of the

input types.

WATERS

Type : [river, stream, ...]

RUNNING_
WATERS

STAGNANT_
WATERS

NAVIGABLE_
WATERS

Name

Type : [ocean, sea, lake,...]

Capacity

ParTot

Figure 5: Type constructor in the EER model

Figure 5 gives an example for the use of type constructors. Input type WATERS is (totally)

specialized to RUNNING WATERS and STAGNANT WATERS, adding a new attribute Type to both

output types. From the specialized entity types a (partial) generalization NAVIGABLE WATERS is

then created, adding the attribute Capacity to the output type.

role concept for relationship types: Through di�erent labeled roles, entity types can participate

multiple times in the same relationship type (cf. �g. 6). By using roles, we distinguish di�erent

entities of the same entity type participating in one relationship.

cardinality intervals for relationship types: Cardinality intervals specify how many times an en-

tity of an entity type may participate in relationships of a relationship type.

PERSON SHIPrespon-
sible_of

Owner (1 , *)

Captain (0 , 1)

Voyage

(0 , 1)

Figure 6: Relationship type in the EER model

In �gure 6, an entity of type PERSON (i.e., a person) can be responsible for a ship through two

di�erent roles: as owner and/or as captain. The cardinality intervals determine that a person

owns at least one ship and may own as much ships as he/she can a�ord. In the contrary, a

person is only allowed for once (or not at all) to work on a ship as captain.

A detailed discussion of the concepts and semantics of the EER schema is provided in [EGHH+ 92].

4 Validation goals: correctness criteria

In the introduction we stated that the correctness of a speci�cation is one of the most important ques-

tions posed in applications development. Often designers use an intuitive, experience based notion of

a speci�cation's correctness to decide to what level their work is correct. Nevertheless, a more formal

classi�cation of \correctness" is necessary to capture the levels of quality in the development

process, and to serve as goals for goals for our validation process

4

.

We distinguish three levels of correctness for database schemata:

De�nition 1: Syntactical correctness

A database schema is syntactically correct if it doesn't violate syntactical and context-

sensitive rules of the speci�cation language used.

This level of correctness can be easily checked by a parser.

Although satisfying syntactical and context-sensitive rules, a schema might, of course, violate seman-

tical constraints. The �rst step to approach semantical correctness is to detect contradictions in the

schema, i.e., to check whether the schema is consistent. For this purpose, possible interpretations

("populations") of that schema have to be analyzed. Following logics, an interpretation of a speci�ca-

tion is a collection of possible instances for every element of the speci�cation (in case of EER schemata:

entities for every entity type, relationships for every relationship type, etc.). The size of this collec-

tion, i.e., how many instances each element may have, is determined by the structure of the schema.

Speci�cation languages contain rules with which the population of a schema can be constraint. For

example, cardinality intervals restrict the amount of possible instances of relationship types. We call

these rules "quantitative dependencies". They numerically constrain the possible interpretations

of a schema. To check satis�ability of quantitative dependencies only one of all possible interpretation

has to be constructed, thereby proving that instantiation of the speci�cation is - in principle - possible.

De�nition 2: Consistency

A database schema is consistent, when at least one interpretation exists that contains

�nite, non-empty sets of allowed instances for each element of the database schema.

In the terminology of logics, such an interpretation is called "model". In logics, empty or in�nite

models exist, too. Nevertheless, these kind of models make no sense for database speci�cations. An

empty or in�nite model implies that the set of instances (for at least one speci�c element of that

schema) is always empty or in�nite. This is not meaningful for data to be stored in a database.

That syntactical correctness does not necessarily imply consistency, can be seen in �gure 7.

E F

R

Q

(1,1) (2,3)

(1,1)(1,*)

b) a)

c)d)

Figure 7: Example of an inconsistent EER schema

4

Here, the term of \correctness" addresses one of the necessary quality criteria for speci�cations, as opposed to

optional criteria like user-friendliness, portability, etc. as described in [GhJM 91].

Edge a implies that the number of instances of relationship type R is at least twice as high as the

number of instances of entity type F. According to edge b, the number of instances of entity type

E consequently has to be twice the number of F in order to ful�ll the cardinality intervals of the

relationship. That means, for each f of type F at least two and at most three e's of type E are needed

to establish the demanded relationship R between E and F.

On the other hand, relationship Q (c and d) forces the number of instances of A to be lower or equal

than the one of B. This happens because each a consumes at least one b and is allowed to consume

more b's via the unrestricted participation in relationships of type Q. All conditions together lead to

an inconsistent (although syntactically correct) speci�cation.

Semantical correctness forms the highest level of correctness. It demands a database schema to re
ect

the desired portion of the problem domain. This level of correctness is, of course, a non-decidable

quality [Ma 74] which has to be evaluated individually. This holds especially if the constraints of the

problem domain have been speci�ed only informally (as often the case).

De�nition 3: Semantical correctness

A database schema is semantically correct in regard of the problem domain if the database

schema is consistent and its (possible) interpretations are equivalent to the (possible)

interpretations of the problem domain.

To check for semantical correctness involves generating a set of interpretations and \compare" them

with the interpretations developers have in mind, as known from prototyping activities.

5 Validation method: idea and algorithm

According to de�nition 2, consistency of a database schema can be proved through the generation of

(at least) one suitable interpretation. If we use our validation strategy presented in section 2 to show

the consistency of a speci�cation, we will choose as a hypothesis \an interpretation exists" and apply

the method \generate an interpretation wrt. correctness level 2". Thereby, we do not only generate

consistent populations of a database schema, but additionally are able to build meaningful test data

collections for that schema. Thus, we deal with two di�erent levels of correctness for our kind of

database schema, i.e., EER schema, by:

1. o�ering a method to decide whether an EER schema is consistent or not

2. generating meaningful populations (test data) to support the evaluation of semantical correctness

These two aspects are discussed in the following.

Consistency through validation

The main question here is whether it it is possible to determine if the various quantitative depen-

dencies within an individual EER schema allow in principle the generation of an interpretation or not.

The quantitative dependencies we have to deal with arise from cardinality constraints between entity

types and relationship types, grouping of entities through type constructions, and entity typed key

attributes of our EER schema. Figure 8 provides an example for the di�erent types of dependencies.

Thus, the central problem of interpretation/test data generation comprises whether it is possible to

ful�ll the quantitative dependencies or not.

Our �rst approach to analyze quantitative dependencies is to draw up a linear inequality system for

the schema. In this system, each inequality represents a quantitative dependency contained within

R

E 2

E 3 E 4Tot

E 1

(1,1) (2,*)

Figure 8: Example of quantitative dependencies in an EER schema. The \�" at E

3

indicates that E

4

is an (entity-valued) key attribute of E

3

.

the schema. For our example in �gure 8 holds (small letters are used for the number of instances of

the schema elements labeled with capital letters):

a) r � 2 � e

3

cardinality constraint

b)� c) e

2

= r (, e

2

� r ^ e

2

� r) cardinality constraint

d)� e) e

1

+ e

2

= e

3

(, e

1

+ e

2

� e

3

^ e

1

+ e

2

� e

3

) type construction

f) e

4

� e

3

key attribute

g)� k) e

1

; e

2

; e

3

; e

4

; r � 1 no empty sets of instances

The solution of this system of inequations describes the size of the population of the schema. In our

example, in terms of inequalities, we have r � 2 � e

3

b)

) e

2

� 2 � e

3

d)

) e

3

� e

1

� 2 � e

3

- a contradiction.

No solution exists, and thereby we can easily show that this schema is not consistent.

We can observe that a \dependency cycle" exists in our example which causes that every element

of that cycle quantitatively depends from itself. For example, E

3

refers to itself through the type

constructor, E

2

, and R.

For those parts of a schema, which contain no such dependency cycles, it is always possible to �nd

an (integer) solution for the number of instances for every schema element. This holds because in

a non-cyclic path no contradictions in the ratios of the participating schema elements can occur. In

terms of the corresponding system of inequations, this means that more variables than inequations

exist (parametrized system) [PaSt 82], the related system of inequalities is always integer-solvable.

Special care must be taken for cyclic dependencies which cause the system of inequations to be (row)

degenerated, i.e., more inequations than variables exist (cf. �g. 8: 5 variables, 11 inequations)

5

.

In general, determining the existence of a (nonempty, �nite) interpretation for an individual EER

schema corresponds to solving the related system of inequations.

To draw up the system of inequalities for an EER schema, we apply the following transformation:

De�nition 4: System of inequalities

6

� for each cardinality constraint E

i

(P

k

) �!

(x;y)

R

j

with x > 0:

r

j

� x � e

i

� for each cardinality constraint E

i

(P

k

) �!

(x;y)

R

j

with y <1:

r

j

� y � e

i

� for each type construction with input classesE

1

; : : : ; E

n

and output classes E

n+1

; : : : ; E

m

,

(m � n+ 1):

5

\row degenerated" refers to the coe�cient matrix of the system of inequalities

6

Notation: E

i

(P

k

) �!

(x;y)

R

j

means that an entity of E

i

participates through role P

k

at relationships of R

j

at least

x times and at most y times.

e

1

+ : : :+ e

n

� e

n+1

+ : : :+ e

m

� for each total type construction with input classes E

1

; : : : ; E

n

and output classes

E

n+1

; : : : ; E

m

, (m � n + 1) additionally:

e

1

+ : : :+ e

n

� e

n+1

+ : : :+ e

m

� for each key component E

k

(entity typed key attribute of an entity type E

i

):

e

k

� e

0

i

If E

i

has more than one key attribute, e

k

, the number of required key components

values for E

k

decreases, because a combination of values is possible to build the key

for an entity of E

i

. Therefore, we write e

0

i

, with e

0

i

� e

i

. For how to calculate e

0

i

,

cf. [Za 92].

� for each E

i

, R

j

of the schema:

e

i

; r

j

� 1

In [Za 92], we show that it is decidable whether a solution for such a system of inequalities exists. An

equivalent proof for Chen's ER model was �rst presented in [LeNo 90]. We extended it to be applicable

to systems of inequalities re
ecting EER schemata. The proof uses the so-called \Ellipsoid-Algorithm"

together with the algorithm \fractional dual" of [PaSt 82] to de�nitely decide about the existence of

an integer solution for a system of linear inequations.

Through this proof, the consistency of the EER schema becomes a decidable quality.

Unfortunately, this proceeding is not suitable for practical use. The system of inequalities related

to an individual EER schema becomes soon too complex to be processed with reasonable resources.

Without optimization, solving the related system of inequations serves only to formally prove the

decidability of consistency (for EER schemata).

So, we propose a more straightforward and intuitive approach to check quantitative dependencies. The

basic idea is not to check the whole set of dependencies at once (via the system of inequalities) but to

separate the complex analysis of the whole set into checking single dependency pathes, respectively

dependency cycles. Therefore, we transform an EER schema into a so-called quantitative depen-

dency graph. This graph is a subgraph of the dependency graph introduced in section 2 and can be

derived from it. The quantitative dependency graph contains the same nodes as the dependency graph

but less edges. It's nodes also represent schema elements (entity and relationship types). In contrast

to the dependency graph, only those edges are considered that represent one of the dependencies

listed in de�nition 4. The edges are labeled with the exact ratio of instances of the connected schema

elements, or with a \�/="-sign (in the case of a type construction or a key component - cf. �g. 9).

The cardinality ratios between the nodes of the quantitative dependency graph depend on the direction

which is chosen to traverse a cycle, as indicated in �gure 9. Note that it is arbitrary in which direction

a cycle is traversed

7

, the results concerning consistency are the same in all directions. By covering all

possible pathes in the so created quantitative dependency graph, it is possible to calculate and keep

track of all the cardinality ratios between schema elements, i.e., nodes. A cycle in the quantitative

dependency graph indicates that each of the involved nodes (schema elements) recursively constraints

its own number of instances through the chain of the other nodes (elements) of that cycle. We have

to check ratios computed during the traversal of a cycle as well as ratios between input and output

types of a type constructor. Hence critical, i.e., unsatis�able, dependencies in the EER schema can

be detected. In case of an unsatis�able ratio (just like in �gure 7), the related EER schema elements

indicate where the speci�cation has to be revised. If no \critical" cycle has been detected the EER

schema is consistent.

7

Sometimes, one direction of a cycle within a directed graph is addressed as \circuit".

E2

E3 E4

E5

E6

E7 R1 E1

R2

R3

R4 R5 Tot

(1,2)(0,1)

(0,*) (3,*)

(0,2)

(1,3)

(0,2)

(1,1)(0,*)

(3,*)(0,1)

(1,1) (1,2)

(2,*)

a) b)

(1,1)
(3,*)

(0,2)
(1,3)

(0,2)

(1,1)

(3,*)(0,1)

(1,1)

(1,2)
(2,*)

E6

R4

E7

E2

R1
E1

E3 E4

E5 R3

R2

R5 (0,1/2)

(0,1/3)

(1/2,1)

(0,1/3)
(1,*)

(1/3,1)

(1/2,*)

(1/2,*)

Figure 9: Example of a transformation from a) EER schema to the related b) quantitative dependency

graph (with cardinality ratios)

Based on the quantitative dependency graph, we developed an algorithm which determines proposals

for the size of populations of a consistent EER schema. After having checked consistency, the cycles

are split up and a total order is imposed on all nodes of the quantitative dependency graph. With

termination ensured by the previous ratio check, a backtracking algorithm assigns numbers of instances

to each node, i.e., schema element, without violating the ratios imposed by the cardinality constraints.

The assignment process can be varied by prede�ning desired intervals for the numbers of instances

for each schema element [Za 92]. These proposals for the size of populations serve to trigger the

generation of the sound test data.

Test data

The approach presented so far serves for two goals. First, it yields a terminating method to decide

about the consistency of a given (EER) schema. Furthermore, it enhances the quality of the validation

process itself. With the certainty of consistency and with an already determined size of the appropriate

interpretation, the next level of correctness, the semantical correctness (cf. de�nition 3), can be tackled.

The validation process as described in section 2 is simpli�ed to the pure generation of \test instances"

for each schema element. In order to accomplish this task, a framework for a test data generator

which handles the quality parameters of test data generation (cf. [GhJM 91]) has been worked out

and presented in [Za 92]. It incorporates the incremental validation strategy presented in section 2

and delivers, step by step, full-scale test data sets which can be evaluated by the designer. Advantage

of this approach is that the designer can rely on the EER schema as comprehensible speci�cation

technique, and that his schema is used as executable speci�cation to prototype his design.

6 Conclusions

In this paper, we proposed a validation method for conceptual database schemata. This method bases

on a well-structured validation strategy with the following main parameters:

� the validation object: a conceptual database schema

� the validation goal: a set of hypotheses

� the testing method

To express the database schema, we used a semantic data model, the EER model. To de�ne the goals,

we considered traditional notions of correctness and re�ned them for database speci�cations.

Under these assumptions, we succeeded in showing that the (usually undecidable) correctness property

\consistency" is decidable for EER schemata. This result provides the theoretical basis for us to

develop an algorithm which decides whether an individual EER speci�cation is consistent or not and,

in case of consistency, delivers generated test data. Such data can be used to investigate semantical

correctness via prototyping.

Semantic data models of today cover a similar set of modeling concepts [HuKi 89], namely aggregation,

association, and generalization/specialization. Due to this fact, it is possible to show that consistency

is decidable for other semantic data models, too. Additionally, we identi�ed the same set of modeling

concepts in object oriented speci�cation languages. They are used to describe the static structure

of objects and object classes respectively. Thus, we presume that consistency is decidable for the

static structure of object oriented speci�cations, too. We supported our presumption by successfully

applying our validation framework to the object oriented speci�cation language TROLL [JSHa 91].

Further investigation of this topic will be part of our future work.

References

[Be 84] Beizer, B.: Software System Testing and Quality Assurance. Van Nostrand Reinhold

Company, USA 1984

[Be 91] Bernot, G.: Testing Against Formal Speci�cations: a Theoretical View. Rapport de

Recherche du Laboratoire d'Informatique, URA 1327 du CNRS, Departement de Math-

ematique ed d'Informatique, Ecole Normale Superieure, Paris, January 1991

[BrMa 86] Bry, F.; Manthey, R.: \Checking Consistency of Database Constraints: A Logical Basis",

Proc. 12th Int. Conf. Very Large Data Bases, Kyoto, Japan 1986 (13{20)

[Ch 76] Chen, P.: \The Entity-Relationship Model - Toward a Uni�ed View of Data" In: ACM

Transactions on Database Systems, Vol.1, No.1, March 1976 (9{36)

[DeDa 89] Delcambre, L.; Davis, K.: \Automatic Validation of Object-Oriented Database Struc-

tures", Proc. 5th Int. Conf. Data Engineering, Los Angeles, California, IEEE Computer

Society, 1989 (2{9)

[EGHH+ 92] Engels, G.; Gogolla, M.; Hohenstein, U.; H�ulsmann, K.; L�ohr-Richter, P.; Saake, G.;

Ehrich, H.-D.: \Conceptual Modelling of Database Applications Using an Extended ER

Model", In: Data & Knowledge Engineering, North-Holland, 9(2), 1992 (157{204)

[GhJM 91] Ghezzi, C.; Jazayeri, M.; Mandrioli, D.: Fundamentals of Software Engineering.Prentice-

Hall International, USA 1991

[HuKi 89] Hull, R.; King, R.: \Semantic Database Modeling: Survey, Applications, and Research

Issues", In: ACM Computing Surveys, Vol.19, No. 3, 1989 (201{260)

[JSHa 91] Jungclaus, R.; Saake, G.; Hartmann, T.: \Language Features for Object-Oriented Con-

ceptual Modeling", Proc. 10th Int. Conf. on Entity-Relationship Approach, Teory, T.

(ed.), San Mateo (CA), 1991 (309{324)

[NMLo 93] Neufeld, A.; Moerkotte, G.; Lockemann, D.: \Generating Consistent Test Data: Re-

stricting the Search Space by a Generator Formula", In: The VLDB Journal, 2(2), 1993,

(173{213)

[LeNo 90] Lenzerini, M.; Nobili, P.: \On the Satis�ability of Dependency Constraints in Entity-

Relationship Schemata", In: Information Systems, Vol.15, No.4, 1990 (453{461)

[L�o 92] L�ohr-Richter, P.: \Basic Units for the Database Design Process", Studer, R. (Hrsg.):

Proc. 2nd Workshop Informationssysteme und K�unstliche Intelligenz: Modellierung,

Ulm, Feb. 1992, Informatik-Fachberichte 303, Springer-Verlag, 1992 (56{67)

[Ma 74] Manna, Z.: Mathematical Theory of Computation. Mc Graw - Hill, USA 1974

[No 83] Noble, H.: \The Automatic Generation of Test Data for a Relational Database", In:

Information Systems, Vol.8, No.2, 1983 (79{86)

[OsCl 92] Osterweil, L.; Clark, L.A.: \A Proposed Testing and Analysis Research Initiative", In:

IEEE Software, Vol.9, No.5, 1992 (89{96)

[PaSt 82] Papadimitriou, C. / Steiglitz, K.: Combinatorial Optimization - Algorithms and Com-

plexity. Prentice-Hall, USA 1982

[WaFu 89] Wallace, D.R., Fuji, R.U.: \Software Veri�cation and Validation: An Overview", In:

IEEE Software, Vol.6, No.3, 1989 (10{17)

[Za 92] Zamperoni, A.: \A Conceptual Framework for the Generation of Logical Models for EER

Schemata", Diploma Thesis (german), Technical University of Braunschweig, 1992

