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Abstract

We present the hybrid query language HQL/EER for an Extended Entity-Relationship

model. As its main characteristic, this language allows a user to freely mix graphical and

textual formulation of a query. We demonstrate the user-friendliness of this query language

by means of examples, and show how syntax and semantics of this language are formally

de�ned using programmed graph rewriting systems. Although we present the language in the

context of the EER model, the concept of hybrid languages is applicable in the context of

other database models as well.
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1 Introduction

The database research e�orts of the past decade have provided us with a wide range of both

database models and systems, allowing the user to perform complex manipulations on data struc-

tures of high modelling power.

This development has strengthened the need for ad-hoc query languages [6] as well as better

end user interfaces, fully exploiting the two-dimensional nature of computer screens. In the late

eighties, the observation that object schemes and instances allow for a natural graphical repre-

sentation, inspired a number of researchers to develop graph oriented database models, in which

notions from graph theory are used to uniformly de�ne not only the data representation part of

the model, but also its data manipulation language [5, 10, 12, 19, 25, 29, 34]. In several of these

models, it is investigated to what extent arbitrary data manipulationsmay be expressed in a purely

graphical way. One can conclude from this research that there is no limit to the expressive power

that may be obtained with pure graph based manipulation languages [4].

However, one also gets the impression that some of this research overshoots its mark in the

sense that the pure graphical formulation of a query sometimes even looks more complex than

its textual equivalent. The obvious solution to this problem is to try and combine the \best of

both worlds", i.e., to develop languages that allow those parts of an operation that are most

clearly speci�ed graphically resp. textually, to be indeed speci�ed graphically resp. textually. In a

sense, Zloof's Query-By-Example [35], which is commonly considered to be the �rst attempt at a

\two-dimensional" query language, already o�ers facilities along this line, since complex conditions

involving e.g., aggregate functions, are to be entered in plain text in what is called a condition

box, rather then in the relation skeletons in which join conditions and selections can be entered.

Similar facilities are o�ered in prototype interfaces for semantic database models, like SNAP [7].

In more recent proposals, like [27, 28], tools are presented which give the user a (limited) choice

�
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between graphical and textual speci�cation of operations. However, in the latter proposals, graphs

and text may not be mixed within the same operation.

It is our aim in this paper to introduce a hybrid query language, in which almost any component

of a given query may be expressed either textually or graphically, according to the users taste.

1

As

data model, we use an extended version of the Entity Relationship model [13], the basic concepts

of which we repeat in Section 2. However, we would like to stress that in our view, the concept of

hybrid languages is generally applicable in the context of languages for other (e.g., object-oriented)

database models. Our Hybrid Query Language for the Extended Entity Relationship model (called

HQL/EER in the sequel) is an extension of SQL/EER, an SQL-like textual query language for the

EER model (cf. Section 3). This language was inspired by some proposals made for query languages

for the Entity Relationship model [8, 11], as well as proposals to extend SQL to cope with features

of other database models than the relational one [30, 16]. Syntax and semantics of this language

are de�ned using an Extended Backus-Naur Form grammar. After an informal introduction of

HQL/EER by means of examples (cf. Section 4), we show in Sections 5 and Section 6 how the

language is formally de�ned using the concepts of programmed and attributed graph rewriting

systems [32]). Finally, in Section 7, we conclude with some practical issues and ideas for future

work.

2 The Extended Entity-Relationship Model

Before we discuss textual as well as graphical query languages, we sketch brie
y the main concepts

of our Extended Entity-Relationship (EER) model [13, 23, 24]. It is based upon the classical

Entity-Relationship model [9] and extended with the following concepts known from semantic

data models [26]:

� components, i.e., object-valued attributes to model complex structured entity types:

� multivalued attributes and components to model association types;

� the concept of type construction in order to support speci�cation and generalization;

� several structural restrictions like the speci�cation of keys, cardinality constraints,: : : , which

are, however, of no interest to this paper.

Let us illustrate the EER model and its features with a small example. It models the world of

sur�ng people who surf on di�erent kinds of waters (cf. Figure 1). First of all, one easily recognizes

the basic concepts of the ER model. These are entity types like PERSON, relationship types like

surfs on river, and attributes like Name (of PERSON) or Times/Year (of surfs on river).

The concept of type construction provides means to construct new entity types (called output

types) from already existing entity types (called input types). This means that each object in the

set of instances of a constructed entity type also belongs to the set of instances of the input types.

Type constructions are represented by triangles, where all input types are connected by edges with

the baseline, and the output types with the opposite point. For instance, the type construction

spec1 represents the special case of a specialization. It has one input type PERSON and one output

type SURFER, i.e. PERSON is specialized to SURFER. Then, SURFER in turn is specialized to PROFI,

this time by spec2. This means that each PROFI is a surfer and therefore also a person.

A type construction is called specialization, if it has only one input entity type and one or

more output entity types. Another example is WATER, which is specialized into LAKE and RIVER.

We require the output types to have disjoint sets of instances. This means that in our example

modelling, a water can be either a lake, or a river. In the case of specialization, we assume that

all attributes are implicitly inherited from the input types to the output types. For instance, each

instance of type LAKE also has the attribute Name de�ned for the entity type WATER.

1

The term \hybrid" is in fact inspired by hybrid syntax directed editors, where the user can freely choose between

a syntax-directed and a free style of editing [15].
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Figure 1: An EER diagram, modelling the world of surfers

We do not allow entity types to be constructed by several type constructions. Every entity

type can only be constructed once. Furthermore, every constructed type must not, directly or

indirectly, be input type of its own type construction.

Generally, an instance of the input type(s) of a type construction is not necessarily a member

of the instance set of (one of) the output type(s). For instance, there could be surfers who are not

pro�s. If a total partition of the input instances is desired, the type construction triangle in the

diagram is labeled with `=' instead of `�'. For example, each instance of type WATER must be an

instance of LAKE or RIVER, but nothing else.

Complex structured entity types can be modeled by components. Roughly speaking, compo-

nents can be seen as object-valued attributes. For instance, Boards is a component of PROFI,

which consists of a list of references to instances of type SURFBOARD. Each pro� possesses one or

more surfboards. Components are always represented by an oval, even if they are single valued,

in which case we label the oval with \singl.". Both attributes and components can be multival-

ued, i.e., set-, bag-, or list-valued. In this case, we write a square into the oval that is connected

to the corresponding entity type or atomic value type via an arrow, which is always labeled 2.

E.g., note that both the entity type PROFI and its ancestor in the construction hierarchy (i.e., the

entity type SURFER) have a Boards-component, but with di�erent types. Since an ordinary surfer
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can only possess one surf board, the Boards-attribute for the entity type SURFER is singlevalued.

Since professional surfers can own several surf boards, the Boards-attribute for the entity type

PROFI is a list of surf boards. This way, the known concept of overriding (both of attributes and

components) is incorporated in the EER model.

3 SQL for the Extended Entity-Relationship Model

Based on the data model introduced in Section 2, we now informally repeat the main concepts

of the textual query language SQL/EER. A complete description of this language can be found

in [22]. Its formal semantics is based on a formally de�ned calculus for the EER model [18]. Both

syntax and semantics of SQL/EER are de�ned by means of an attributed string grammar [21].

SQL/EER directly supports all the concepts of the EER model, and takes into account well

known features that are an integral part of nowadays query languages:

1. relationships, attributes of relationships, components and type constructions;

2. arithmetic;

3. aggregate functions;

4. nesting of the output;

5. subqueries as variable domains.

Analogous to relational SQL, SQL/EER uses the select-from-where clause. This is captured in

the following EBNF grammar rule.

SFW-TERM ::= select TERMLIST

from DECLLIST

[ where FORMULA ]

As a �rst example, consider the SQL/EER query of Figure 2 (over the scheme of Figure 1). It

retrieves the name and age of all adults, i.e., persons older than 18.

select
from
where

in PERSON
p.Name, p.Age

p.Age 
p 

≥ 18
Figure 2: Name and age of adults (SQL/EER version)

In this query, the variable p is declared. It ranges over the set of currently stored persons.

DECL ::= VARIABLE in ENTITYTYPE

VARIABLE := STRING

ENTITYTYPE := STRING

The variable p can now be used to build terms like p.Name and p.Age, to compute the name and

age of the person p, respectively.

TERM ::= VARIABLE

j TERM '.' ATTRIBUTE

The formula \p.Age � 18" uses the predicate \�", de�ned for the integer data type.

FORMULA ::= TERM DATAPRED TERM

4



select
from
where

p1.Name
 PERSON, b inin in ina  p1.Addr, p1  p2.Addr, p2  PERSON

and p2.Name = a = b ‘John’
Figure 3: Name of persons sharing an address with John (SQL/EER version)

Besides entity types and relationship types, any multi-valued term can also be used as range in a

declaration. For instance, in the SQL/EER query of Figure 3, the variable a is bound to the �nite

list of addresses of person p1.

This query retrieves the name of all persons who share an address with a person called \John".

Note that the result of an SQL/EER is a multiset. This means that the same name may appear

several times in the answer of this query. By placing the reserved word distinct in front of the

term list in the select-clause, a set of distinct names is computed.

The last example shows the use of inheritance and the use of relationship types as predicates

in SQL/EER. Suppose we want to know the names of those professional surfers who surf on rivers

that 
ow into lakes on which they also surf. Figure 4 shows the corresponding SQL/EER query.

select p.Name
from r in in in PROFI
where p surfs_onto l and p surfs_on_river r and r flows_into l

 RIVER, l  LAKE, p 

Figure 4: Name of pro�s, sur�ng on rivers, 
owing into lakes they surf on (SQL/EER version)

Here, the variable p is declared of type PROFI. As pro�s are \specialized" persons, the attribute

Name is also de�ned for them. Thus, p.Name is a correct term. Furthermore, relationship types

can be used as predicate names in formulas. In the case of relationships with more than two

participating entity types, pre�x notation is used instead of in�x.

FORMULA ::= PARTICIPANT RELSHIPTYPE PARTICIPANT

j RELSHIPTYPE '(' PARTLIST ')'

PARTICIPANT ::= TERM

PARTLIST ::= PARTICIPANT [ ',' PARTLIST ]

Participation in a relationship is inherited too. Therefore, a variable of type LAKE (like l) is allowed

as participant in relationship flows into within the (sub-)formula \r flows into l".

4 Speci�cation of Hybrid Queries

In the previous section, we discussed a fully textual query language for the EER model. In this

section, we show informally how this language is extended with graphical alternatives for some

of its language constructs. The resulting language of this extension is called the hybrid query

language HQL/EER.

Brie
y, a query in HQL/EER consists of a piece of text (obeying the syntax of SQL/EER)

and/or an attributed labeled graph. As it is the case with the textual part, the graph generally

consists of declarations (as in the from-clause of the text), conditions (as in the where-clause of

the text), as well as selections (as in the select-clause of the text).

For expressing these declarations and conditions graphically, we restrict ourselves to the same

graphical symbols used for representing EER-schemes. For instance, variables for a river and a

water may be declared by drawing two (rectangular) nodes labeled resp. RIVER and WATER.

The structural constraints applying to the construction of EER schemes, apply to the graphical

part of hybrid queries as well. For instance, the condition that we are only interested in pairs of

a river and a water such that the river 
ows into the water, is indicated by drawing a (diamond

shaped) node labeled flows into with edges to both other nodes (cf. Figure 5).

From these restrictions, it readily follows that the graphical part of a hybrid query always

consists of subgraphs of a graphical representation of the EER-scheme, in which nodes may be
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RIVER WATER
waterriver flows

into

Figure 5: A sample graphical part of an HQL/EER query

\identi�ed" to express sharing. Consequently, arithmetic and aggregate functions cannot be ex-

pressed in this language. However, it would not be di�cult to think of graphical notations for

these concepts also. Besides, since the graphical part of a hybrid query is only related to the

\outermost" query, graphical parts cannot be associated to subqueries. Independent of these

restrictions, the expressive power of HQL/EER is of course equal to that of SQL/EER.

Since (some) nodes in the graphical part of an HQL/EER query correspond to declared vari-

ables, \references" to such nodes may be used as variables in the textual part. This is the way in

which the textual and graphical part of a hybrid query are linked together.

We now illustrate these concepts on some simple examples over the scheme of Figure 1. Figure 6

shows a possible expression of the query of Figure 2 in HQL/EER. Intuitively, the PERSON-node

corresponds to the declaration of the variable p in the textual expression, while e.g., the int-node

corresponds to the term p.Age in the textual expression, since it is linked to the node corresponding

to the variable p by means of an Age-edge.

string
x, y
y 

select
where Age

Name x

y

PERSON

int
≥ 18

Figure 6: Name and age of adults (HQL/EER version)

Note that in the textual part of the hybrid query, two variables are used but not declared.

Instead, they refer to nodes in the graph. Hence the variable x ranges over the names of all

persons, while y ranges over their ages. The textual part speci�es that the values assigned to x

and y are retrieved, if and only if the value for y, i.e., the person's age, is larger than 18.

In the following sections, we formalize this correspondence between declarations, terms and

formulas in a textual expression on one hand, and subgraphs of a graphical expression on the other

hand.

In the previous example, the graphical part of the HQL/EER query consists simply of a

subgraph of the graphical representation of the scheme. The graphical part of the following

example is a \general" graph, which however still satis�es the structural constraints imposed by

the scheme.

Figure 7 shows a way of expressing the query of Figure 3 in HQL/EER. The fact that a

single address-node is linked to the Addr-attributes of both PERSON-nodes indicates that we are

interested in people sharing an address.

The graphical part of this query contains two illustrations of constructs whose graphical ex-

pression may be considered more natural than their textual counterpart. The aforementioned

sharing of the address-node as opposed to the join predicate \a=b" in the textual query, is one

example. Second, the graphical arrangement of the various nodes shows the interconnection of the

persons and their respective address lists in a more straightforward manner than the declarations

in the textual version of this query.

With another version of the SQL/EER query of Figure 3 (cf. Figure 8), we illustrate hybrid

queries consisting merely of a graph. The fact that the Name-attribute of one of the persons should

have the string value `John' is indicated by adding this value under the corresponding node. The

shading of the other string-node indicates the information to be retrieved, i.e., the names of the

persons who share an address with John.

Since HQL/EER queries may be totally graphical, our formalismsubsumes the purely graphical

query languages mentioned in the Introduction. More precisely, the outlook of the graphical part
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select
where

p1.Name
p2.Name = ‘John’

Addr
list listaddress

Addr

p1 p2

∈∈
PERSON PERSON

Figure 7: Name of persons sharing an address with John (HQL/EER version I)

Addr
list listaddress

Addr∈∈
PERSON PERSON

string

Name

John

string

Name

Figure 8: Name of persons sharing an address with John (HQL/EER version II)

of HQL/EER queries was inspired by the view-tool of the prototype visual database interface

described in [17], based on the Graph-Oriented Object Database model [20].

Figure 9 shows another example of an entirely graphical speci�cation of a query, namely that of

Figure 4. Note that an entity of type LAKE plays the role of a water in the relationship flows into,

illustrating how inheritance is used, in a manner similar to SQL/EER. Since PROFI (resp. LAKE)

inherits the participation in the surfs onto (resp. flows into) relationship from SURFER (resp.

WATER), the graphical part of this query is still considered to satisfy the structural constraints

imposed by the scheme.

Note also how each of the graph increments consisting of a diamond node and the two rectangles

it is connected to, corresponds to a conjunct in the where-clause of the textual expression.

PROFI
Name

string

flows
into

surfs
onto

surfs

river
on

profi

river

profi

river lakelake

RIVER LAKE

Figure 9: Names of pro�s, sur�ng on rivers, 
owing into lakes they surf on (HQL/EER version)

We conclude this collection of examples with a slightly more involved one, illustrating our claim

that HQL/EER allows those parts of an operation that are most clearly speci�ed graphically resp.

textually, to be indeed speci�ed graphically resp. textually. The hybrid query of Figure 10 retrieves

the address lists of surfers, who have a relative (i.e., a person with the same name)

� being a professional windsurfer;

� owning a board of the same type as the (single) board owned by the surfer;

� not sur�ng on dangerous lakes.

As it is hard to express negation graphically, we leave the part of the query involving this negation

in the textual part, and express everything else graphically.

In contrast, Figure 11 shows an SQL/EER version of the same query. Note how in this textual

query, related information is again dispersed over e.g., the declarations in the from-clause and

the join-predicates in the where-clause.
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where not exists in and p surfs_onto l ) LAKE : ( l.Dangerous  l 

Addr

Type

Boards

SURFER Name string PROFIName Windsurfer bool
true

list

SURF
BOARD

string

∈

s p

Boards

singl.

SURF
BOARD

Type

∈

list

Figure 10: \Involved" hybrid query

select
from

s.Addr

where not exists in and p surfs_onto l ) LAKE : ( l.Dangerous  l 
and p.Name = s.Name and p.Windsurfer
and

 SURFER, pb  PROFIinins in p.Boards, p 

 s.Boards.Type = pb.Type
Figure 11: \Involved" textual query

5 De�nition of the Hybrid Query Language

In Section 4, we introduced the ideas and concepts behind HQL/EER by means of examples. In

this and the following section, we explain how syntax and semantics of HQL/EER are formally

de�ned.

In this section, we concentrate on the syntax de�nition. On one hand, the formalization of

HQL/EER involves the representation of the graphical part of hybrid queries as labeled, attributed

graphs. Node and edge labels correspond to scheme elements, like entity type names. Node

attributes are used a.o., for storing non-structural information which is part of the query, such

as atomic values. On the other hand, we formalize the construction of an HQL/EER query as a

sequence of applications of graph rewriting rules.

2

As an example, consider Figure 12, which shows the attributed graph corresponding to the

graphical part of the hybrid query of Figure 8. In the upper part of the rectangles, resp. near

the arrows, we indicate the label of nodes resp. edges. In the bottom part of the rectangles, we

specify the name and value of node attributes. Formula and Decl will be referred to as attributes

of the graph itself (formally these might be looked upon as attributes of some uniquely labeled

node, present in any graph). The precise meaning of the di�erent node attributes and variables is

explained in the remainder of this Section.

The need for both an expressive graph model and a powerful graph rewriting formalism, mo-

tivates our choice of the graph rewriting formalism called PROGRES [32, 33, 36].

Before showing how HQL/EER is formalized using PROGRES, we �rst give a short summary

of its major characteristics. PROGRES is a very high level language based on the concepts

of PROgrammed Graph REwriting Systems, and was originally developed in the context of

modelling software development environments [14].

Graph rewriting rules (or productions) in PROGRES are speci�ed over a graph scheme. Such

a graph scheme is a set of graph properties (i.e., structural integrity constraints and attribute

dependencies) common to a certain category of graphs. The following components of a graph

scheme are distinguished:

� type declarations: these are used to introduce labels for nodes and edges in the considered

category of graphs, to declare and initialize node attributes;

2

Note that this does not imply that the user of HQL/EER should look upon the execution of his queries as graph

rewritings on the database (as opposed to e.g., the formalism discussed in [3]). In HQL/EER, graph rewriting is

only used for the de�nition of syntax and semantics of the query language.
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Term = p1.Addr
Output = false
Comp_Type = "ADDRESS"

Formula = { a = b}
Decl = { a in p1.Addr, p1 in PERSON,
             b in p2.Addr, p2 in PERSON }

Term = p2.Addr
Output = false
Comp_Type = "ADDRESS"

Term = p2
Output = false

Term = a
Output = false
Value = ""

Term = p1
Output = false

PERSON

LIST(ADDRESS)

ADDRESS

LIST(ADDRESS)

PERSON

Addr

Addr

∈

∈

Figure 12: Graph representation of the hybrid query of Figure 8

� class declarations: these denote coercions of node types with common properties by means

of multiple inheritance, hence they play the role of second order types. Class declarations

may also include attribute declarations.

Productions specify when and how graphs are constructed by substituting an isomorphic oc-

currence of one graph (called the left-hand side of the production) by an isomorphic copy of

another graph (called the right-hand side of the production). Productions are parametrized by

node and edge types. Furthermore, we call rules generic, if they are speci�ed using (among others)

classes. Generic graph rewriting rules represent the set of parametrized productions, obtained by

instantiating these classes with any of their types.

In addition, productions may specify application conditions (in their condition-clause) in

terms of structural and attribute properties of the isomorphic occurrence of the left-hand side.

The embedding-clause states how to embed an isomorphic copy of the right hand side of the

production rule in the considered graph. Attribute-computations are performed in the transfer-

clause.

The remainder of this section is organized as follows: in a �rst step (cf. Section 5.1), we show

how to capture the structure of the graphical part of HQL/EER queries in a PROGRES graph

scheme and a set of generic productions. For instance, the graph scheme shows that there will be

nodes for representing entities and nodes for representing values, while some (generic) production

shows that given an entity, a value may be linked to it by means of an edge, which then represents

one of the entities attributes. All this is still independent of any particular EER diagram.

In a second step (cf. Section 5.2), we show how this graph scheme is to be extended by further

class as well as type de�nitions corresponding to a concrete EER diagram. Instantiation of the

generic productions (resulting from the �rst step) with appropriate types then yields a set of

productions which completely describe the attributed graph representation of allowed graphical

parts of HQL/EER queries.

5.1 HQL/EER in terms of PROGRES classes

The starting point for the de�nition of HQL/EER is a formalization of the graphical notation

introduced in Section 4 in terms of a PROGRES graph scheme. Figure 13 shows part of this

scheme.

The node class NODE is the root of our node class hierarchy. In the external-section, at-

tributes of nodes of types of this class (or of its subclasses) are declared, whose value depends on

a user-supplied parameter of the production which creates the node. If the value of an attribute

(like Comp Type in the class COMPLEX VALUE) is derived from that of other attributes, we

use the keyword derived. The class de�nition also speci�es a default value for all attributes.

9



section NODE CLASSES;

node class NODE

external Term: String := \";

RefVar: String := \";

Output: Boolean:=false;

end;

node class ENT REL is a NODE end;

node class ENTITYTYPE is a ENT REL end;

node class VALUE is a NODE end;

node class ATOMIC VALUE is a VALUE

external Value: String := \";

end;

node class COMPLEX VALUE is a VALUE

derived Comp Type: String := \";

end;: : :

end;

Figure 13: De�nition of a PROGRES graph scheme, EER diagram independent part

The classes ENT REL and VALUE are direct descendants of the NODE-class. ENT REL is

an extra common ancestor for classes ENTITYTYPE and RELSHIPTYPE, which is useful for the

de�nition of edges ending in attribute nodes. The class VALUE in turn has two direct descendants,

namely ATOMIC VALUE and COMPLEX VALUE. Nodes of types of the former class have an

attribute in which the actual value is stored. For simplicity, we assume all values are stored as

strings.

We now come to the graph rewriting rules specifying the syntax of the graphical part of

HQL/EER. Since building this graph always starts with the creation of one or more isolated

nodes, similar to the declaration of variables in the textual part, we must �rst specify a graphical

alternative for some of the EBNF-rules for variable declarations.

Consider e.g., the graphical counterpart for the rule for declaring variables of an entity type.

DECL ::= VARIABLE in ENTITYTYPE

||||||||||||

production 

transfer 1’.Term := VarName;
{ 1’.Term & ’in’ &  Decl := Decl ∪ 

ε ::=
1’:

EType

type in stringCreateEntity ( EType :  ENTITYTYPE ; VarName :  ) =

end;
to_string (EType) };

The left hand side of this PROGRES production is the empty graph (represented as "), while

the right hand side consists of a single new node of a type of class ENTITYTYPE. The quoted

number is used as a node identi�er in e.g., the transfer-clause. When creating a new node of

some entity type, the value of the Term-attribute (i.e., the name of a variable) must be provided

by the user. The corresponding declaration (built using the new nodes Term-attribute as well as

its type, obtained by applying the built-in function to string) is inserted in the graph-attribute

Decl.

Note that there is no need to specify a graphical alternative for the rule which states that a

variable is a term. The act of creating an isolated node in a graph corresponds to the declaration

of a variable, while the node itself may readily be used as a term.

In some cases, a graphical alternative can also be used for declaring a variable ranging over
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something else than an entity or relationship type. Concretely, if a variable ranges over a list-,

bag- or set-valued attribute, the production shown below may be used.

DECL ::= VARIABLE in TERM

||||||||||||

2’:
AVType

production 

transfer 2’.Term := VarName;
{ 2’.Term in 1’.Term };Decl := Decl ∪ 

::=1’:
CVType

1’:
CVType

condition 1’.Comp_Type = 

∈

type in

VarInTerm ( CVType :  COMPLEX_VALUE ;

 ATOMIC_VALUE ;

 : CVType -> AVType ; VarName :  ) =string∈

type in

end;

(AVType);to_string

AVType : 

This production also illustrates a convention in the usage of quoted numbers. The same number is

used for corresponding nodes in the left and right hand side of a production. A number preceded

by a quote then refers to the node in the left hand side, while a number followed by a quote refers

to the node in the right hand side.

The PROGRES part of the rule which states that a constant string is a term, is quite straight-

forward. It allows the addition of an atomic value to the graphical part of an HQL/EER query.

The actual value must of course be provided as a parameter. This value is then assigned to both

the Value- and the Term-attribute of the newly created node.

The graphical alternative for the rule which states that a term followed by an attribute is also

a term, also has an obvious semantics: to a node of a type of class ENT REL, a newly created

node of a type of class VALUE is linked by means of an edge of a type with the proper source and

target type. The term of this new node is assigned the string concatenation (expressed using the

operator \&") of the term of the existing node, a dot and the string representation of the type of

the edge.

TERM ::= TERM '.' ATTRIBUTE

||||||||||||

transfer 2’.Term := 1’.Term & "." & 

::=
AttName’1:

ERType
1’=’1

ValType
2’:

to_string (AttName);
end;

production type intype inAddAttribute ( ERType :  ENT_REL ; ValType :  VALUE ;
AttName : ERType -> ValType ) =

A complete description of the (hybrid) grammar of HQL/EER (including e.g., productions for

roles, formulas, components, constructions,: : : ) can be found in [2].

5.2 HQL/EER in terms of PROGRES types

In the foregoing subsection, we have shown how to de�ne the syntax of the graphical part of

HQL/EER queries in terms of a PROGRES graph scheme and associated PROGRES productions.

As classes play the role of second order types, productions speci�ed using classes cannot be applied

to concrete graphs without the declaration of a set of related �rst order types. Given such a set of

type de�nitions, a rule speci�ed in terms of classes actually represents the set of rules, obtained

by substituting any class by a type of this class. If a given EER scheme is mapped to an extension

of the graph scheme outlined in the foregoing Section, it is guaranteed that any application of

a PROGRES rule from the syntax de�nition of HQL/EER results in a graph that obeys the
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section NODE CLASSES;

node class PERSON C is a ENTITYTYPE end;

node class SURFER C is a PERSON C end;

node class WATER C is a ENTITYTYPE end;

node class RIVER C is a WATER C end;: : :

end;

section NODE TYPES;

node type SURFER : SURFER C end;

node type PERSON : PERSON C end;

node type FLOWS INTO : RELSHIPTYPE end;

node type STRING : ATOMIC VALUE end;

node type ADDRESS : ATOMIC VALUE end;

node type LIST OF ADDRESS : ORDERED VALUE

derived Comp Type:String := \ADDRESS";

end;: : :

end;

section EDGE TYPES;

edge type Name : PERSON!STRING;

edge type Addr : PERSON!LIST OF ADDRESS;

edge type Water : FLOWS INTO!WATER;

edge type River : FLOWS INTO!RIVER;: : :

end;

Figure 14: De�nition of a PROGRES graph scheme, EER diagram dependent part

structural constraints imposed by this scheme. Figure 14 shows part of the graph scheme for the

translation of the scheme of Figure 1.

The node classes whose name is su�xed with a \C" are introduced to cope with inheritance.

On one hand it is not possible to specify inheritance relationships between node types, so we have

to use a class for each entity type. On the other hand, actual nodes have to belong to a type,

so for each class we have to declare a type of each of these classes. Note also how attributes and

roles are uniformly modeled using edge types.

Given these extra de�nitions, the production for declaring variables of an entity type may for

instance be used to create a node of type PERSON, since this type is declared (indirectly) of class

ENTITY. Analogously, the production for the addition of attributes may be used to link a new

node of type NUMBER to an existing node of type PERSON by means of an edge of type Age or

Length. The \instantiated" production for specifying the age of a person is shown in Figure 15.

production AddAttribute  =

transfer 2’.Term := 1’.Term & ’.’ & ’Age’;

::=
Age’1:

PERSON
1’=’1

NUMBER
2’:

Figure 15: An instantiation of a PROGRES rule

6 Semantics of HQL/EER

In this section, we de�ne the semantics of HQL/EER queries in terms of the formally de�ned

semantics of SQL/EER [21]. We do this by providing a translation algorithm which transforms

a hybrid HQL/EER query consisting of a textual and a graphical part into a purely textual

12



SQL/EER query. Consider an HQL/EER query with a textual part \select T from D where

F" (with T a term list, D a list of declarations, and F a formula), and graphical part G. Then the

following algorithm shows how to augment the textual part with information from the attributes

of G's nodes and G's global variables, resulting in an SQL/EER query. The semantics of the

HQL/EER query is then de�ned as the semantics of this SQL/EER query.

1. In both T, D and F, substitute any variable referring to a node in the graphical part, by the

Term-attribute of this node;

2. Add to T (using commas) the Term-attribute of any node in G whose Output-attribute is

true;

3. Add to D (using commas) all declarations in Decl;

4. Add to F (using conjunctions) all formulas in Formula.

The reader may verify that an application of this algorithm to the hybrid query of Figure 8

(whose graph-representation is given in Figure 12) results in the textual query of Figure 3 (cf.

Figure 16).

7 Future Work

In this paper, we formally de�ned a hybrid query language, allowing the intertwined usage of text

and graphs for the speci�cation of queries. Releasing some of the restrictions we initially imposed,

provides a number of ideas for further research:

� As mentioned previously, we restricted the graphical part of HQL/EER queries to using

only those graphical elements also present in the graphical notation for EER schemes. This

condition may be relaxed to allow e.g., graphical representation of functions, predicates and

quanti�cation (cf [34]).

� The graphical part of an HQL/EER query only applies to the \outermost" level of the

textual part of the query. We are currently investigating how graphs may be associated to

subqueries.

� The concept of hybrid languages may well be applied to languages for the speci�cation of

other things than queries, e.g., for updates.

On the more practical side, our claims about the advantages of a hybrid language over purely

textual or purely graphical languages require validation, preferably in the form of the development

and testing of a prototype implementation

In view of this, we conclude this article by shortly elaborating on how we imagine an interface

should allow users to specify the mixture of graphs and text of which an HQL/EER query consists.

Our proposal is to let this process be guided (as much as possible and feasible) by the interface. In

other words, hybrid queries should be speci�ed in a syntax directed manner. A primary observation

to be made however, is that syntax directed editing of graphs and text are two basically di�erent

things. In a sense, they are even each others opposite.

On one hand, when a user starts an editing session with a syntax directed textual editor for some

given formal language, he is normally presented a single non-terminal symbol of the language's

grammar. For instance, a session with a syntax directed editor for SQL/EER would start with

the non-terminal QUERY. This non-terminal may then be expanded by recursively applying rules

from the grammar. As a result of such an application, an occurrence of the left hand side in the

current expression is replaced by the right hand side. For instance, the non-terminal FORMULA

may be replaced by the sequence of non-terminals \TERM DATAPRED TERM". Brie
y, syntax

directed editing of text is essentially a top down process.
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On the other hand, composing graphs is essentially a bottom up process. Imagine making the

drawing of Figure 9 with some mouse driven drawing tool. Typically, you �rst make some loose

labeled nodes, and later on connect these nodes into a semantically meaningful graph. As observed

in [3], \syntax direction" may be added to such a process. The paper outlines how purely graphical

queries (as well as many other types of database operations) may be constructed by among others,

copying and pasting graph-increments from a graphical representation of the considered scheme.

In this paper, we formalized this bottom up speci�cation of the graphical part of a hybrid query

by means of graph rewriting rules, associated to rules from the (textual) grammar of SQL/EER.

Building the graphical part of an HQL/EER query using these rules, always starts with an empty

graph. Recursive application of graph rewriting rules results in the creation of nodes or edges or

the assignment of values to node and edge attributes. Created nodes are always \terminal", i.e.,

they never play the role of \placeholders" like non-terminals in the speci�cation of the textual

part do. This rule driven speci�cation process corresponds closely to the drawing tool approach.

We are currently preparing the implementation of a hybrid syntax directed editor.
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Figure 16: Translating a hybrid into a textual query
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