
Finite Di�erence and Spectral Models for

Numerical Weather Forecasting

on a Massively Parallel Computer.

Gerard Cats

Royal Netherlands Meteorological Institute

P.O. Box 201, 3730 AE De Bilt, The Netherlands

cats@knmi.nl

Nils Gustafsson

Swedish Meteorological and Hydrological Institute

S-60176 Norrk�oping, Sweden

ngustafsson@lurch.smhi.se

Lex Wolters

�

High Performance Computing Division,

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

llexx@cs.leidenuniv.nl

Abstract

A computationally intensive part in a model for numerical weather forecasting solves a set of

partial di�erential equations. There are several techniques to obtain this solution numerically.

In this paper we will discuss the implementation of a numerical weather forecasting model on a

massively parallel architecture using two techniques: a �nite di�erence (gridpoint) method and

a spectral method. A comparison between the two methods based on their actual performance

will be presented. Besides the price/performance ratio of several compute platforms for this

forecast model will be discussed.

1 Introduction

Numerical models of the atmosphere have much contributed to our general understanding of

atmospheric processes. The use of such models has resulted in improved weather forecasts, with

important economical impact; also these models are now being used as components in climate

simulation models.

The horizontal and vertical resolution of atmospheric models is an important factor determin-

ing the accuracy of the models. Present day computer power limits the number of gridpoints and

thus the resolution to values that are unsatisfactory from a physics point of view. For example, the

number of oating point operations is proportional to (some power of) the number of gridpoints;

and the calculations have to be completed within some reasonable elapsed time: for weather fore-

casting, the forecasts must be available within a fraction of the time that they may be considered

valid; and for climate simulation, the simulated periods may cover several centuries, yet the cal-

culations should be done within months. From these considerations it follows that continuous

attempts are being made to run the models on the fastest available computer platforms.

�

Support was provided by the Esprit EC Agency CEC-DGXIII under Grant No. APPARC 6634 BRA III.

1

A general distinction can be made between global and local models. Local models (`limited

area models') have the advantage of a lower number of gridpoints at the same resolution as global

models. The disadvantage, on the other hand, is that they require lateral boundary conditions.

Assuming the boundary conditions are generated by a lower resolution global model, the time

range over which the higher resolution results from the local model are valid is roughly limited to

the time it takes the lower resolution boundary conditions to penetrate into the central part of

the limited area.

A modern atmospheric model consists of two main parts. The �rst is called the `dynamics';

its task is to solve the equations of motion discretised to the model gridpoints. The second part is

called the `physics'; it describes the aggregate e�ect of the physical processes with scales smaller

than the model resolution, on the larger, resolved, scales. Some physical processes like radiation,

not directly described by the basic model equations, are also parameterized.

If the model is to be used for weather forecasting, it is to start from initial conditions that

represent a very recent state of the atmosphere. Therefore, weather forecasting systems always

consist of an analysis scheme, which is a system to generate the initial conditions from observations,

and of the actual forecast model. These two components are supported by sophisticated systems

to collect observations and to distribute the results.

In concept, the actual forecast model solves identical equations of motion on a large number

of gridpoints. Therefore in theory, it should not be too di�cult to code it for high e�ciency on

either scalar, vector or parallel computers. Current codes have almost invariably been optimized

for vector architectures. With this research we intend to �nd out how much work is involved

to convert vector code to parallel code; how cost-e�ective massive parallel machines can be for

weather forecasting; and how meteorological models should be coded in future to achieve maximum

portability between di�erent hardware architectures (from SIMD to MIMD).

As an initial step, we decided to start with attempts to implement a limited area model on

a massively parallel SIMD machine. We chose a limited area model because there is a natural

projection of the model domain onto a rectangular array of processors; the choice of a SIMD

machine was motivated by the fact that most available codes are for vector, i.e. SIMD, machines.

In this way we eliminated many questions, like which data model to choose, and which strategy

to follow for converting an existing production code for parallellisation. Instead, we were able to

start our investigations concentrating on the questions:

{ What is the required e�ort to implement an existing application to achieve high e�ciency?

{ What is the cost-e�ectiveness of such implementation?

{ What is the scalability of such implementation?

Based on the considerations above, the HIRLAM

1

forecast model was chosen for the application

to be implemented, and the hardware platform we selected was a MasPar system.

2 The HIRLAM forecast model

The HIRLAM forecast model [4] is coded in standard Fortran 77, with the exception of some

I/O routines, that are in C. The core of the model are the subroutines to do the dynamics and

to do the physics. All model parameters are kept in core memory. The three-dimensional �elds

(temperature, wind, water vapour and liquid water) are stored as two-dimensional arrays; the

�rst dimension runs over all horizontal gridpoints, the second over the layers in the vertical. The

two-dimensional �elds (surface pressure and several soil parameters like land-sea mask) are kept as

one-dimensional arrays. The physics routines are coded as one-dimensional loops over all horizontal

gridpoints. Because almost all physical processes are in one-dimensional vertical columns, without

mutual communications, the model physics can be described as N disjunct processes, where N is

the number of gridpoints in the horizontal.

1

The HIRLAM system was developed by the HIRLAM-project group, a cooperative project of Denmark, Finland,

Iceland, Ireland, The Netherlands, Norway, and Sweden.

2

The solution of the dynamics of the model, on the other hand, requires horizontal communi-

cations between the columns. The amount of communications depends on the solution method

for the dynamics. The method that currently is in use at several of the meteorological services

participating in the HIRLAM project for their routine weather forecasting procedures is the so-

called semi-implicit Eulerian gridpoint method. Other existing integration schemes are the fully

explicit methods, semi-Lagrangian methods, and spectral methods. The semi-implicit schemes are

coded as relatively small corrections to the explicit methods. In the next paragraphs the several

integration methods are compared for their amount of horizontal communications.

The explicit Eulerian gridpoint dynamics require nearest-neighbour communications in both

horizontal directions. The integration is on a staggered grid [1], i.e., the wind variables are kept at

points halfway in between the points where the other variables are kept. At some place the �elds

must be destaggered, (e.g., before entering the physics routines). Due to destaggering, there are

some diagonal communications in the dynamics routines.

By application of semi-implicit corrections the integration scheme becomes more stable numeri-

cally, thus allowing longer time steps, and saving a factor of the order �ve in CP requirements. The

calculation of the semi-implicit corrections requires the solution of a set of Helmholtz equations.

On vector machines the solution of the Helmholtz equations costs a negligible extra of CP time,

but this may be di�erent on multi-processor machines, because it requires global communications.

Semi-Lagrangian methods allow another increase of the time steps, again with a factor in the

order of �ve. They require more than just nearest-neighbour communications, but the communi-

cations are still local: they do not extend over more than �ve (or so) grid distances. Although the

additional costs, over the Eulerian schemes, are substantial, semi-Lagrangian methods promise

to be very cost-e�ective. At this moment, however, these methods are not yet in a state of

development that they can be applied in routine forecasting.

The comparison between gridpoint and spectral methods is of a di�erent kind: whereas semi-

implicit and semi-Lagrangian methods were developed mainly for reasons of numerical stability,

spectral methods o�er rather more physical advantages. The spectral method itself is cheaper

than the gridpoint formulation; as an example we mention that the solution of the Helmholtz

equation for semi-implicit methods is almost free of costs in the spectral formulation. But because

the computation of non-linear terms and the physics part of the model requires the �elds to be

available in gridpoint space, the spectral model requires transformations between spectral space

and gridpoint space, and vice versa, each time step. The costs of these transformations are

substantial. On multi-processor machines this is even more relevant, because the transformations

require global communications. In HIRLAM, the transformations are Fourier transforms, and

cost-e�ciency of the spectral model heavily depends on the availability of e�cient library routines

for fast Fourier transforms.

We limited our investigations to the fully explicit gridpoint Eulerian and the semi-implicit

spectral Eulerian formulations. The former was chosen because of its minimum of global commu-

nications; the implementation model is the simplest possible: one or more gridpoints are mapped

onto a processor. By opting for the explicit formulation, we accept a loss of a factor of �ve on

e�ciency with respect to the current production version of HIRLAM, which is semi-implicit. The

spectral model, on the other hand, is more challenging because of all formulations it is the one

with most global communications.

So both the gridpoint as the spectral HIRLAM model use the same basic dynamical equations,

the same vertical and temporal discretizations by �nite di�erences and the same physical parame-

terization schemes. The di�erences concern the horizontal discretization and solution technique,

of which the advantages and disadvantages will be discussed in section 3.

Figure 1 shows an example of the horizontal integration area in the HIRLAM model. This

example is based on a horizontal grid of 110� 100 points, as it is used in a production model.

3

Figure 1: An example of a HIRLAM horizontal integration area with 110� 100 gridpoints.

3 Gridpoint Model versus Spectral Model

Two numerical techniques, the �nite di�erence or gridpoint technique and the spectral transform

technique, are most commonly applied within the meteorological community. Also the �nite

element technique has reached some popularity in recent years.

Let us illustrate the two most popular techniques by the simple example of one-dimensional

advection of temperature. In analytic form:

@T

@t

= u

@T

@x

: (1)

Introducing the most simple non-staggered horizontal grid, the discretisized gridpoint version with

a leap-frog time-stepping will read:

T (x; t+�t) = T (x; t��t) +

�t

�x

u(x; t) (T (x+�x; t)� T (x��x; t)) ; (2)

where T (x; t) is the temperature in gridpoint x at time t, u(x; t) is the wind-component in the

x-direction in gridpoint x at time t, �t is the time step, and �x is the grid-distance in the

x-direction.

For the spectral transform technique one will start the integrations from spectral coe�cients

^

T and û, de�ned by e.g.:

T (x; t) =

1

p

2�

X

k

^

T (k; t) exp(ikx) ; (3)

^

T (k; t) =

1

p

2�

X

x

T (x; t) exp(�ikx) : (4)

4

The computation of non-linear terms is carried out in gridpoint space and the gridpoint values

of the �elds and their derivatives are obtained by inverse transforms, e.g.:

@T

@x

=

1

p

2�

X

k

ik

^

T (k; t) exp(ikx) : (5)

Once, the gridpoint values of u and @T=@x have been obtained in gridpoint space, it is easy to

carry out the multiplication and then to do a transform back to spectral space for d

^

T=dt. Note

that we have transformed the partial di�erential equation into an ordinary di�erential equation

by using the orthogonal space functions exp(ikx).

From the simple example above, it is clear that the gridpoint technique requires communica-

tions in the neighbourhood of each gridpoint only, while the spectral transform technique requires

communication over all the gridpoints through the spectral transforms.

For a global geometry the spectral transformations are straightforward, since this geometry

allows for a natural periodic variation of all variables in both directions. Therefore the spectral

transform technique [2, 8] has attained a great popularity for global numerical weather prediction.

Advantages of the spectral transform technique to be mentioned are:

1. Complete control the spatial spectrum makes it possible to avoid a devastating inuence of

interaction between the physical processes and small scale noise generated by, e.g., the �nite

di�erence approximations in a gridpoint model.

2. A proper truncation of transformed non-linear terms will allow for an aliasing-free represen-

tation of quadratic terms.

3. High order accuracy of spatial derivatives is obtained by computation of these derivatives in

spectral space followed by inverse transforms.

4. Possibility to use implicit time integration techniques, as well as horizontal di�usion schemes,

since the resulting implicit equations are easily solved in spectral space.

Initial steps to apply the spectral transform technique to a limited area were taken by Machen-

hauer and Haugen [5], who developed a spectral limited area shallow water model based on the

idea of extending the limited area in the two horizontal dimensions in order to obtain periodicity

in these two dimensions and to permit the use of e�cient Fast Fourier Transforms. The same idea

was implemented by Gustafsson [3] into the full multi-level HIRLAM framework.

There is yet no clear answer to the question whether it is preferable to apply the spectral or the

gridpoint technique for a particular model con�guration and for particular computer architecture.

Considering only computational accuracy, it is generally agreed that for a gridpoint model based

on a second order horizontal di�erence scheme, the shortest waves that can be forecasted with

a similar accuracy as in a spectral model are the 4 grid distance waves. The shortest wave in a

spectral model generally corresponds to 3 grid distances in the transform grid. Thus, the number

of horizontal gridpoints in a gridpoint model should be roughly twice (� (4=3)

2

) the number of

transform gridpoints in a spectral model to obtain a similar accuracy. There is not a similar

di�erence with regard to the vertical coordinate, since spectral and gridpoint models normally use

the same �nite di�erence schemes in the vertical.

With regard to computational e�ciency of the spectral HIRLAM versus the gridpoint HIRLAM,

the need for an extension zone in the spectral HIRLAM to obtain double periodicity should also be

taken into account. This is not a problem on traditional vector computers with a shared memory,

since all dynamics and physics calculations can be done in the non-extended `real' computational

area. However, on a parallel distributed memory architecture it is necessary to map the extended

area grid on the processor grid. Ideally, the number of gridpoints in the extended area should

be about 25% larger than in the inner computational area (10% in each direction), which means

that an equal percentage of processors has to be applied to perform the extra calculations in this

`arti�cial' area.

The performance of the spectral HIRLAM is crucially depending on the availability of fast FFT

subroutines. The basic algorithms of the package for `Super-Parallel' FFTs of Munthe-Kaas [7]

5

were designed and developed for applications on SIMD computers. The idea of super parallel FFTs

is a novel one, developed by Munthe-Kaas. The term SUPER PARALLEL algorithms is used to

denote \algorithms that in a SIMD fashion can solve multiple instances of similar problems, with

a degree of parallelism that is in the order of the sum of the sizes of all the sub-problems", see [9].

The only restriction in the FFT package of Munthe-Kaas is that the sizes of the problems should

be powers of 2 (in all dimensions in the case of multi-dimensional problems) and, in addition, that

the data must satisfy certain alignment requirements with the address space in the computer.

Two more remarks could be made on the e�ciency of spectral versus gridpoint models. First,

in favour of the spectral model, all calculations in gridpoint space could be made strictly local since

there is no horizontal staggering of the gridpoints. Also in spectral space, all calculations could be

made strictly local, the coe�cients of each wave-number are treated separately. As a second point,

when we move to larger number of horizontal point, say above 10

6

, the gridpoint methods become

relatively more e�cient, since the computational time needed for Fourier-transforms increases

faster than linearly in the number of points.

4 The Parallel Architecture

In this section we present some characteristics of the massively parallel MasPar systems used in

this investigation. These systems are also sold by Digital under the name of DECmpp systems.

For a detailed description of the systems see, e.g. [6].

A MasPar system has a SIMD architecture with from 1,024 (1K) up to 16,384 (16K) processors.

Each processor is called a Processor Element (PE). All together they form the PE-array. A PE is

an 80 ns load/store arithmetic processor with a 16 Kbytes or 64 Kbytes data memory. On a MP-1

system the PE is a 4-bits processor, while the newer MP-2 systems contain 32-bits processors.

The PE can operate on 1, 8, 16, 32, and 64 bit integers. The oating point precision is 32 or 64

bits. A full 16K MP-1 system has a peak performance of 26,000 MIPS and 550 Mops (64-bits) or

1,200 Mops (32-bits). For a full MP-2 system these numbers are 68,000 Mips, and 2,400 Mops

or 6,300 Mops, respectively.

The PEs are controlled by the Array Control Unit (ACU). This is a register-based load/store

processor with 128 Kbytes data memory and 1 Mbytes instruction memory. The ACU is responsi-

ble for the instruction decode and broadcast of instructions and data. It also includes a 12 MIPS

scalar RISC processor for operations on scalar data. The PE-array and ACU form the Data

Parallel Unit (DPU).

In parallel distributed memory computer systems communications between the processors form

a critical component. They are often the bottleneck in achieving higher performance. For the

MasPar system we will discuss two important types of communications.

The �rst type is the communication between the Processor Elements (PEs). It can be di-

vided into two classes: Xnet and Router communication. Xnet communication performs nearest-

neighbour communications. The Processor Element Array is arranged in a 2-dimensional mesh

with toroidal wrap-around. With Xnet communication one can send data to or receive data

from the eight neighboring PEs, so in horizontal, vertical and diagonal directions. This can be ex-

tended to communication between two PEs that lie on a straight line in each of the eight directions.

The maximum communication bandwidth using Xnet is 23 Gbyte/s for a full 16K con�guration.

Router communication provides the possibility to send/receive data between two arbitrary PEs

via a multi-stage crossbar network, so it takes care of the global communications. The communica-

tion time is independent of the distance between the PEs, but its maximum speed is considerably

slower than for Xnet communication: 1.3 Gbyte/s. Another limitation is that there is only one

Router channel for 16 PEs.

The second important type of communication is formed by the communication channels be-

tween the FE and the DPU, and vice versa. Usually these channels are used to distribute input

data over the DPU and return output data from the DPU with a theoretical peak transfer rate

of 2 Mbyte/s. With additional hardware this can be improved to 10 Mbyte/s. These are only

theoretical �gures: typical achievable rates are around 1 Mbyte/s and 6 Mbyte/s, respectively.

6

This shows that these communications are extremely expensive and should be limited as much as

possible. The programmer is responsible for distributing the data over the FE and the DPU, and

much of a conversion e�ort should be aimed at keeping the data as much as possible on the DPU.

A MasPar system needs a front-end, that serves as an interface to the DPU and is host for tools

and compilers. In our case the front-end is a Dec 5000 workstation. It determines the operating

system and as a result one can use all software which is available for the front-end and operating

system (ULTRIX). In addition we have the dedicated software to utilize the massively parallel

system: the MasPar Fortran (MPF) compiler. This compiler is an implementation of Fortran 90.

This indicates the programming model for the MasPar system: data-parallel programming. Op-

erations on Fortran-arrays expressed by the Fortran 90 array-syntax will be executed in parallel,

and the arrays involved will be distributed over the PEs. Operations with Fortran 77 syntax will

be executed sequentially. To translate Fortran 77 programs to Fortran 90 MasPar provides the

VAST-II compiler. Another very powerful software tool is the MasPar Programming Environ-

ment (MPPE). MPPE has been shown to be very useful for executing, debugging, pro�ling, and

visualizing programs or program parts.

Some details concerning the hard- and software used in our investigation. The MasPar MP-1

system was a MasPar DPU Model MP-1104 (64 rows, 64 columns), using a DEC 5000/240 front-

end running ULTRIX V4.2A (MP-3.1), and with the Mpfortran compiler version 2.1.46. The

MasPar MP-2 system contained a MasPar DPU Model MP-2216 (128 rows, 128 columns).

5 Gridpoint Model Results

Before discussing the performance results for the gridpoint version, we should mention some im-

plementation issues one encounters during porting the 28,000 lines of Fortran 77 HIRLAM code

to a MasPar system. A detailed overview of all implementation issues can be found in [10].

The �rst issue concerns the distribution of the data. As is stated in section 2 the dependencies,

that could result in communications between the processors, in the `physics'-part of HIRLAM are

almost exclusively in the vertical direction, in contrast to those in the `dynamics', which are mainly

in the horizontal directions. The number of dependencies in the `physics'-part is much larger than

in the `dynamics'-part. Therefore, to minimize the number of communications we chose for a data-

distribution where the data are mapped on the two-dimensional processor-array by projection of

the vertical dimension onto the horizontal plane.

A second issue concerns the inclusion of compiler directives in the original code. This is a result

from the fact that the three- and two-dimensional �elds are stored in two- and one-dimensional

arrays, resp., where the �rst dimension runs over all horizontal gridpoints. This means that for

a distribution of the horizontal gridpoints over all processors, we have to use compiler directives,

since the default mapping on a MasPar system maps the �rst dimension of a data-array only in

the x-direction of the processor-array, and the second dimension in the y-direction. With the

MAP-directive the user can overrule this default mapping and specify the desired distribution.

Indirect addressing is another topic. Since memory-addressing is part of an instruction, indirect

addressing is often not possible on a SIMD architecture. However, on the MasPar one speci�c

FORALL-statement allows the use of indirect addressing. As a result some routines in HIRLAM

had to be rewritten, since they depend on indirect addressing.

Due to several problems the `output'-routine PUTDAT could not be ported successfully to

the MasPar system yet. As a result no output-�eld could be generated, since that is the task of

PUTDAT.

Finally, it turned out that the compiler generates redundant Xnet-communications in several

routines, especially in the `physics'-routines. A work-around for this problem was to make sure

that array-dimensions and several loop-bounds were known at compile time. From a research point

of view this is a serious restriction, but for a production code this will improve the performance

on all kind of platforms.

We will now present several timings achieved by porting the HIRLAM code to di�erent con�g-

urations of the MasPar architecture. We adopted as a test run the calculation of a 1-hour forecast

7

on a 64�64�16 grid at 55 km spacing. The gridpoint version with this resolution requires 60 time

steps of 1 minute. The grid �ts perfectly on a 4K (64� 64) PE array. On a 1K (32� 32) PE array

the grid is splitted automatically in four layers of 32� 32� 16 gridpoints. If the number of grid-

points is not a multiple of 32� 32 some PEs will be idle during part of the calculation. Therefore

the only sensible choice for the number of gridpoints in either horizontal direction is a multiple of

32. From physical arguments one would choose the highest feasible number of gridpoints for any

chosen model domain, because that leads to the highest possible resolution. Alternatively, if the

modeller would choose to keep the resolution �xed, he would surely extend the model domain as

much as possible, given the available computational power, so as to reduce the inuence of the

lateral boundary conditions. So in practice, any implementation will be on a 32� 32, or multiples

thereof, grid, and for our investigations it is no limitation that we only study the 64 � 64 � 16

grid, which exactly matches the 1K or 4K PE arrays.

In table 1 the total elapsed times are presented, that are needed to complete the test run on

di�erent MasPar con�gurations. Furthermore, the separate times spent in the input phase and in

the calculation of the 1-hour forecast are shown. The timings for the con�gurations denoted with

`opt.' are obtained by specifying the -Omax compiler option. It prevents the inclusion of extra

code for debug purposes, and performs the highest degree of optimization possible on the MasPar

system.

Table 2 gives a more detailed view by showing the elapsed time per time step, together with a

break-down in the times needed for the `dynamics' and the `physics'.

From these two tables several observations can be made. We want to mention the following

points:

{ From table 1 is it clear that I/O is an important factor. The input phase exists of two calls

to the routine GETDAT. The �rst time this routine reads the initial values and the second

time the boundary values. Since in a production run we will also have an output phase, and

every six forecast hours an input phase of new boundary values, the time to perform the

I/O operations will contribute signi�cantly to the total elapsed time. This will be discussed

in full detail in section 7.

{ Comparison of the corresponding timings for the 1K and 4K con�gurations show that the

calculations are nearly perfectly scalable with respect to the number of processors, if one

excludes the I/O. For `physics' the speedup factor is slightly higher than the theoretical

factor four, while for the `dynamics' a factor somewhat smaller than four is found.

{ The codes produced by the optimizing compiler (the `opt.'-versions) result in a dramatic

decrease of 40% in the CP time spent in the input phase, see table 1. The gain in elapsed

time for the actual forecast is only 10{20%.

{ The explicit gridpoint version runs less than a factor two faster on the MasPar MP-2 than

on the MasPar MP-1 (excluding again the input phase). A reason is the design decision

Table 1: Total elapsed times (in sec) to complete the test run with the gridpoint

HIRLAM model on di�erent MasPar con�gurations. Also the separate times

for the input phase and the calculation of a 1-hour forecast are shown. See text

for the meaning of the opt.-versions.

Model and # processors Total time Input phase Forecast

MasPar MP-1 1K 258 25 233

MasPar MP-1 4K 84 25 59

MasPar MP-1 4K (opt.) 67 15 52

MasPar MP-2 1K 158 25 133

MasPar MP-2 4K 59 25 34

MasPar MP-2 4K (opt.) 44 15 29

8

Table 2: Elapsed times (in millisec) for one time step with the

break down into the time spent in the `dynamics' and in the

`physics'. See text for the meaning of the opt.-versions.

Model and # processors Total Dynamics Physics

MasPar MP-1 1K 3790 1530 2260

MasPar MP-1 4K 937 408 529

MasPar MP-1 4K (opt.) 809 338 471

MasPar MP-2 1K 2142 1040 1106

MasPar MP-2 4K 550 287 263

MasPar MP-2 4K (opt.) 456 217 239

to enhance the processor power in the MP-2 only, and not to improve the communication

bandwidth with respect to the MP-1. This can also be seen in table 2, where the ratio

between the time for `dynamics' and the time for `physics' di�ers signi�cantly on both

systems. Remember, the dynamics contains many nearest-neighbour communications, while

for the physics communication is much less important.

6 Spectral Model Results

The following strategy was adopted for implementation of the HIRLAM spectral model on the

MasPar:

1. Available software packages for two-dimensional Fast Fourier Transforms on the MasPar

are based on an organization of the input and output data according to a two-dimensional

cut-and-stack mapping of the two-dimensional data arrays on the two-dimensional processor

grid. Therefore, this two-dimensional organization and mapping of the data was used in the

dynamical part of the model.

2. The organization of the computations in spectral space in the original spectral HIRLAM

model was based on a re-sorting of all spectral coe�cients to avoid unnecessary computa-

tions for spectral components that are to be truncated. This organization of the spectral

computations would not have been very e�cient on the MasPar. Thus, the computations

in spectral space were re-organized { all computations are done for all spectral components

followed by an explicit truncation.

3. For the physics, exactly the same code as in the gridpoint model was used.

With this strategy for implementation of the spectral HIRLAM model on the MasPar, all inter-

processor communication is carried out within the FFT routines, while the dynamics, physics and

spectral space calculations are strictly local.

It was possible to introduce the computer code changes corresponding to this implementation

strategy and also to convert the dynamical part of the code by simple editing commands. To

summarize the experiences from the implementation of the HIRLAM spectral model on the MasPar

system, it should �rst be mentioned that the implementation did not cause any major problems.

The model had already been optimized for vector processors and the MasPar processor grid may

be looked upon as a huge vector processor. As mentioned above, the major change was related to

some of the data structures that needed to be changed to obtain an optimal mapping of the data

on the processor grid. In other words, the data parallel programming style had to be introduced

throughout the code. As in the gridpoint version to run e�ciently on the MasPar architecture,

actual array dimensions and loop bounds had to be introduced in some critical subroutines. Some

coe�cient matrices used for vertical transforms had to be forced to the PE memories by mapping

directives in order to minimize the sloshes of scalar values between the FE and the DPU. All

compilations were done with the highest degree of optimization (-Omax), which corresponds with

9

Table 3: Elapsed computing time (in sec) on di�erent MasPar MP-2 con�gurations

for a 6-hour forecast with the spectral HIRLAM model (16 vertical levels), and with

a di�erent number of horizontal points. See text for the meaning of the opt.-versions.

Model and # processors # horizontal points Forecast

Maspar MP-2 1K (opt.) 50� 50 216

Maspar MP-2 4K (opt.) 50� 50 50

Maspar MP-2 4K (opt.) 110� 100 241

Maspar MP-2 16K (opt.) 110� 100 55

Maspar MP-2 16K (opt.) 221� 221 287

the `opt.'-versions in the gridpoint model, and this will be also denoted as such in the spectral

model.

Two operational data sets from the application of the HIRLAM system at the Swedish Me-

teorological and Hydrological Institute were used for benchmarks on the MasPar systems. For

most of the tests, data from a horizontal area consisting of 110� 110 gridpoints (128� 128 in the

extended area, see section 3) and with 16 vertical levels were utilized. The horizontal grid distance

in this data set is approximately 55 km. In order to have a proper test of the smaller MasPar

systems, a data set with 50� 50 horizontal gridpoints (64� 64 in the extended area) was used in

addition.

For all the runs with a transform grid resolution of 55 km, it was possible to use a time step

of 5 minutes. So 72 time steps were carried to obtain forecasts valid at +6 hour. In order to test

the MasPar also on a larger data set, the 110� 100� 16 data set was interpolated horizontally to

a data-set with 221� 221� 16 (256� 256� 16 in the extended area) transform gridpoints.

The total elapsed computing times for di�erent HIRLAM spectral forecast model test runs on

di�erent MasPar sizes are contained in table 3. Note that only the elapsed computing time for the

pure forecast model integration is presented for each run, since the timing for the input phase is

the same as for the gridpoint version taken into account the di�erent horizontal areas of course.

The elapsed computing time for each time step, with the break down into the time spent in

the `dynamics' and the `physics', for the di�erent MasPar runs are given in table 4.

The following of more general interest could be noted about the results in tables 3 and 4:

{ The speedup factor to run the same forecast on four times as many processors seems to be

slightly greater than four. This means that the spectral formulation also leads to scalable

algorithms with respect to the number of processors.

{ Running on a particular processor con�guration with a 4 times larger horizontal area (e.g.,

on 221� 221 extended to 256� 256 horizontal points as compared to 110� 100 extended to

128� 128 horizontal points) increases the computing time with a factor somewhat greater

than four. This could be explained by the non-linear increase in computing time for the

FFTs as a function of the number of horizontal points.

Table 4: Elapsed times (in millisec) for one time step with the break down into

the time spent in the `dynamics' and in the `physics'. See text for the meaning

of the opt.-versions.

Model and Number of Forecast time

processors horizontal points Total Dynamics Physics

Maspar MP-2 1K (opt.) 50� 50 3006 1754 1252

Maspar MP-2 4K (opt.) 50� 50 699 457 242

Maspar MP-2 4K (opt.) 110� 100 3347 2051 1296

Maspar MP-2 16K (opt.) 110� 100 765 512 253

Maspar MP-2 16K (opt.) 221� 221 3986 2611 1375

10

{ Finally, from other benchmarks with HIRLAM spectral and gridpoint models on the Con-

vex C3840 and Cray Y-MP, we can calculate that for the spectral HIRLAM model without

I/O phases the processing speed on the MP-2 with 16K processors is about 1000 MFlops. For

the HIRLAM model this number has never been achieved on any other compute platform.

Yet it is only 1/6 of the theoretical maximum of the MP-2.

7 Performance Comparison

In this section we compare the performance of the gridpoint and spectral versions of the HIRLAM

model.

Let us �rst concentrate on the timings presented in the previous sections to perform one time

step in the integration of the forecast model. In table 2 it is shown that such a time step with

the `optimized' gridpoint version takes 456 ms for a 64 � 64 � 16 grid on a MasPar MP-2 with

4K processors. Of this time 217 ms is spent in the `dynamics' and the remaining 239 ms in the

`physics'. For the spectral model with 50� 50� 16 points, see table 4, the total time is 699 ms,

divided in 457 ms for the `dynamics' and 242 ms for the `physics'. The reduction of the number

of gridpoints from 64� 64� 16 in the gridpoint formulation to 50� 50� 16 is compensated by the

higher intrinsic accuracy of the spectral method (see section 3). Since the `physics'-part of both

versions is the same, we �nd nearly equal times for this part, while for the `dynamics' a di�erence

of a factor two is obtained. This is a result of the di�erent types of communications. However, as

explained in section 2 the spectral method allows a larger time step than in the gridpoint model.

How this turns out, will be discussed in the next paragraphs.

For a real HIRLAM production forecast one has to consider the following facts. In an opera-

tional implementation for a 55 km resolution, the `dynamics' will be calculated with time steps of

1 minute in the fully explicit version because of numerical stability. For the `physics' a larger time

step can be chosen, namely 15 minutes. Furthermore, there will be an input phase for new bound-

ary values every 6 hours and an output phase every hour. Finally, to get some information about

changes in pressure, wind-speed, etc., and to save on the total amount of output-information,

every 5 minutes some statistics will be calculated.

Taken into account these facts we can calculate the total averaged costs for an operational

1-hour forecast on a MasPar MP-2 system with 4K processors. The time for one time step in

the `dynamics' and in the `physics' can be found in table 2. Since the output phase (the routine

PUTDAT) is the inverse of the input phase (the routine GETDAT) it can be assumed that they

each will take the same amount of time. In table 1 one sees that an input phase, existing of two

calls to GETDAT, takes 15 s (optimized version). Therefore the averaged time spent in the I/O

phases in our 1-hour forecast will be: (1=6+1)� 15=2 = 8:7 s. The time to compute the statistics

has been measured to be 0.06 ms on the MP-2 with 4K processors.

As a result the total time to produce a 1-hour forecast with the fully explicit method is 23.6 s, as

is shown in table 5. Of this time 56% is spent in the `dynamics'. With a semi-implicit scheme this

contribution would be reduced by a factor �ve theoretically, since the time step can be increased by

this factor, see section 2. On the other hand it implies the solution of a set of Helmholtz equations,

which introduces an overhead. A reasonable estimate for this overhead is 100% of the dynamics

time, so we should double the dynamics time for each time step. Since the other components will

be the same as in the explicit version, the total time for 1-hour forecast will become 15.7 s for

Table 5: Times to calculate an operational 1-hour forecast on a MasPar MP-2 with

4K processors. See text for details.

Method Dynamics Physics Statistics I/O Total

Fully explicit 60 � 0.22 = 13.2 4 � 0.24 = 1.0 12 � 0.06 = 0.7 8.7 23.6

Semi-implicit 12 � 0.44 = 5.3 4 � 0.24 = 1.0 12 � 0.06 = 0.7 8.7 15.7

Spectral 12 � 0.46 = 5.5 4 � 0.24 = 1.0 12 � 0.06 = 0.7 8.7 15.9

11

the semi-implicit version, see table 5. We are currently implementing the semi-implicit scheme to

investigate the actual performance.

The e�ort to implement the semi-implicit method would in the end lead to an overall reduction

in CP time of a factor 1.5. This rather moderate result stems of course from the considerable I/O

overhead. We intend to investigate if this overhead can be reduced by the use of disk arrays and

other I/O improvements provided by MasPar. This of course will also e�ect the total time for the

explicit version.

Using table 4 one can make the same calculations for the spectral version. It takes 0.46 s for

the dynamics and 0.24 s for the physics on a MASPAR MP-2 with 4K processors to complete one

time step. Again the di�erences in the number of horizontal gridpoints is compensated by the

higher intrinsic accuracy of the spectral method. Since the I/O and the statistics will take the

same amount of time as in the gridpoint version, the resulting time for the spectral version on the

MasPar MP-2 is 15.9 s, see table 5.

If we subtract the I/O overhead in the comparison we obtain the following times to complete

a 1-hour forecast: for the fully explicit gridpoint formulation 14.9 s, as an estimate for the semi-

implicit gridpoint formulation 7.0 s, and for the spectral formulation 7.2 s. From these numbers

we can �rst conclude that despite the fact that although the spectral formulation heavily depends

on global communications and the explicit gridpoint formulation needs only nearest-neighbour

communications, the spectral version is a factor two faster to produce the 1-hour forecast. This

is due to the fact that the spectral method allows a �ve times larger time step. However, if one

includes the semi-implicit scheme to the explicit method, also resulting in global communications,

it is estimated that the semi-implicit gridpoint version and the spectral version have on the balance

the same e�ciency like on sequential or vector platforms. One reason for this is the highly

optimized FFT package that has been used for spectral model. As explained most of the inter-

processor communication in the spectral model occur within this package. So if one wants to reduce

the communication overhead, one should concentrate on this package, while in the gridpoint model

inter-processor communication is spread throughout large parts of the code.

In the comparison above, the positive e�ect of the improved accuracy of the spectral model

was assumed to be equal to the negative e�ect of the need for an extension zone.

8 Cost/Performance for the HIRLAM Model

From our �ndings we now can derive rough estimates of the cost-e�ciency of the MasPar system

compared to other hardware platforms. Before doing so, however, we stress the fact that to achieve

the timings above, much human investment was needed. The human costs are not reected in the

estimates below.

In table 6 we present the total CP time to complete a 1-hour forecast on di�erent computing

platforms. The MasPar MP-1 timings are determined in the same way as in the previous section

for the MP-2 numbers. For the spectral version we assume that the MP-2 system is twice as

e�cient as a MP-1, when it executes parallel code. This is based on the experiences with the

gridpoint version and on performance measurements with the FFT package.

In this table all calculations are performed in 32 bits precision, unless stated otherwise. Con-

cerning the comparison of 32 bit and 64 bit calculations, we have the following remarks: 1) Up

to now we have not seen that 32 bits is insu�cient for the HIRLAM model, perhaps with the

exception of initialization. But this may be di�erent at high resolutions. 2) If 32 bits is su�cient

then the 32 bits MasPar should be compared to a 32 bits Convex or a 32 bits Cray. The last is

not available, so the Cray is too expensive for its purpose. 3) On a Convex 210 64 bits arithmetic

is as expensive as 32 bits.

As a result the numbers in table 6 can be compared. The Cray and Convex are simply too

accurate for the investigated versions of HIRLAM, which is paid by a relatively bad cost/bene�t

ratio. This is a hardware feature, just like the MasPar has to pay for its hardware concept by

extra communications.

Concerning this cost/performance comparison it is clear that a parallel system like the MasPar

12

Table 6: Price/performance comparison for di�erent systems. Performance is mea-

sured as the total elapsed time to complete a 1-hour forecast.

System Method List price ($) 1-hour forecast (sec)

MasPar MP-1 4K explicit � 195K 32

semi-implicit 20

a

spectral 23

b

MasPar MP-2 4K explicit � 540K 24

semi-implicit 16

a

spectral 16

Dec Alpha semi-implicit � 60K 42

Convex C210 (64-bits) semi-implicit � 100K

c

96

Cray Y-MP (64-bits)

d

) semi-implicit � 2.5M

e

6

a

estimated

b

assumption: parallel performance of a MP-2 is twice the performance of a MP-1

c

not listed anymore

d

1 processor

e

per processor

is competitive with vector-architectures for this application. However, the system is defeated by

a state-of-the-art workstation like a DEC-alpha. Only if an improvement of the I/O overhead

(e.g., by parallel disk-arrays) leads to a substantial reduction, the parallel MasPar MP-1 system

can become price-competitive to a DEC-alpha workstation, and then only for semi-implicit and

spectral versions.

Finally, it should be mentioned that for operational weather forecasting the performance is

more important than the costs: producing a forecast for a few hours ago is not useful, even if it is

relatively cheap.

9 Conclusions

To conclude a summary of the main results of this investigation:

� A spectral HIRLAM model is preferable to an explicit gridpoint version, despite the global

communications needed versus the nearest-neighbour communications.

� It has been estimated (an actual implementation is currently undertaken) that a semi-implicit

gridpoint version will result in an equal performance as the spectral model.

� I/O is an important issue in parallel systems. For the MasPar architecture it contributes

for 25-55% to the total elapsed time for producing a HIRLAM forecast (MasPar provides

several options to improve I/O, which is also currently under investigation).

� Concerning cost/performance a massively parallel system, like MasPar, can compete with

vector-architectures. However, improvements in sequential processing should not be lost

track of.

� The algorithms for numerical weather forecasting used in this application give evidence of a

good scalability.

� The e�ort to port an application like HIRLAM to a parallel architecture is quite considerable.

However, this was also true for vector platforms when they entered the market.

13

Acknowledgments

Finally, we would thank Hans Munthe-Kaas (Bergen University, Norway) for the use of his library

with Super-Parallel FFTs, the Para//ab at the Institute of Informatics (Bergen University) for

giving access to their DECmpp 12000/SxModel 200 (MasPar MP-2216), and Nigel Jagger (MasPar

Computer Corporation, Reading, UK) for his support and the access to their MasPar MP-1104.

References

[1] A. Arakawa and V.R. Lamb, 1976: Computational Design of the Basic Dynamical Processes of

the UCLA General Circulation Model, Report, Dept. of Meteorology, University of California,

Los Angeles, 1976.

[2] E. Eliassen, B. Machenhauer, and E. Rasmussen, On a Numerical Method for Integration of

the Hydrodynamical Equations with a Spectral Representation of the Horizontal Fields, Report

No. 2, Institut for Teoretisk Meteorologi, University of Copenhagen, 1970.

[3] N. Gustafsson, The HIRLAM model, in Proceedings of Seminar on Numerical Methods in

Atmospheric Models, ECMWF, Reading, UK, 9{13 September 1991.

[4] P. K�allberg (editor), Documentation Manual of the Hirlam Level 1 Analysis-Forecast System,

June 1990.

[5] B. Machenhauer and J.E. Haugen: Test of a spectral limited area shallow water model with

time-dependent lateral boundary conditions and combined normal mode/semi-Lagrangian time

integration schemes, in Proceedings of Workshop on Techniques for Horizontal Discretization

in Numerical Weather Prediction Models, ECMWF, 2{4 November 1987, pp 361-377.

[6] MasPar, MasPar MP-1 Hardware Manuals, July 1992.

[7] H. Munthe-Kaas: Super Parallel FFTs, to appear in SIAM J. on Scienti�c and Stat. Comput.

[8] S.A. Orzag, Transform method for calculation of vector-coupled sums. Application to the

spectral form of the vorticity equation, J. Atmos. Sci., 27 (1970) 890{895.

[9] D. Parkinson, Super Parallel Algorithms, in Supercomputing, SATO ASI series F, Vol. 62,

Springer, 1989.

[10] L. Wolters and G. Cats, A Parallel Implementation Of the HIRLAM Model, to appear in

Proceedings of The Fifth ECMWF Workshop on the Use of Parallel Processors in Meteorology,

ECMWF, 23{27 November, 1992, ECMWF, Reading.

14

