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Abstract

Traditionally restructuring compilers were only able to

apply program transformations in order to exploit cer-

tain characteristics of the target architecture. Adapta-

tion of data structures was limited to e.g. linearization

or transposing of arrays. However, as more complex

data structures are required to exploit characteristics

of the data operated on, current compiler support ap-

pears to be inappropriate. In this paper we present the

implementation issues of a restructuring compiler that

automatically converts programs operating on dense

matrices into sparse code, i.e. after a suited data struc-

ture has been selected for every dense matrix that in

fact is sparse, the original code is adapted to operate

on these data structures. This simpli�es the task of

the programmer and, in general, enables the compiler

to apply more optimizations.

Index Terms: Restructuring Compilers, Sparse

Computations, Sparse Matrices.

1 Introduction

Development and maintenance of sparse codes is a

complex task. The user has to deal with complicated

data structures to exploit sparsity of matrices with re-

spect to storage requirements and computational time.

Additionally, the application of conventional transfor-

mations to sparse programs becomes more complex be-

cause the functionality of the code is obscured. There-

fore, in [7, 8] we have examined if it is possible to let the

compiler handle sparsity, i.e. the program is written in

a dense format, while the compiler performs program

and data structure transformations to deal with the

fact that some of the matrices operated on are sparse.

We have proposed a data structure selection and trans-

formation method that enables the compiler to select

appropriate data structures. Since run-time behavior
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of sparse codes is heavily dependent on the input data,

e�cient code is only achieved if certain peculiarities of

sparse matrices are accounted for in this selection.

In this paper we generalize this method and present

implementation issues. In section 2, a brief descrip-

tion of the data structure selection and transformation

method is given, in combinationwith the notation used

throughout this paper. Since reduction of sparse over-

head is only obtained if certain constraints on the data

structure are satis�ed, we present a mechanism to se-

lect a data structure according to these constraints in

section 3. In section 4, the generation of code is dis-

cussed, illustrated with examples in section 5. Finally,

we state issues for future research.

2 Background

Exploitation of sparsity requires identi�cation of state-

ments of which some instances are nulli�ed, and selec-

tion of an appropriate compact data structure.

2.1 Sparsity Exploitation

A sparse matrix A is de�ned by its nonzero struc-

ture: Nonz

A

= f(i; j) 2 I

A

� J

A

ja

ij

6= 0g, where

I

A

= f1; ::;mg and J

A

= f1; ::; ng determine the index

set I

A

�J

A

of the enveloping dense matrix. Reduction

of storage requirements is achieved by only storing the

nonzero elements in primary storage, although some

storage is necessary to reconstruct the underlying ma-

trix, referred to as overhead storage. Elements that

are stored explicitly are called entries. Set E

A

with

Nonz

A

� E

A

� I

A

� J

A

is used to indicate the indices

of all entries. If E

A

changes during program execution,

a dynamic data structure is required to handle the in-

sertion of a new entry (creation) and the deletion of

an entry that becomes a zero element (cancellation),

while a static data structure might be used otherwise.

Because the original code operates on dense matri-

ces, every occurrence of a sparse matrix A appears as

a two-dimensional array in an indexed statement S

of degree l, where the strides of all surrounding loops

have been normalized to 1:
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DO I

1

2 V

1

� � �

DO I

l

2 V

l

S : : : : A(f

1

(

~

I); f

2

(

~

I)) : : :

ENDDO

� � �

ENDDO

The bounds of execution set V

i

might depend on

indices I

1

; : : : ; I

i�1

. Only linear subscript functions

with integer coe�cients are considered. Consequently,

both functions can be represented by a single mapping

F

A

: Z

l

! Z

2

of the form F

A

(

~

I) = ~m

A

+M

A

�

~

I:

�

m

10

m

20

�

+

�

m

11

: : : m

1l

m

21

: : : m

2l

�

�

~

I

Subscript bounds are not violated, i.e. F

A

(

~

I) 2

I

A

� J

A

for all valid

~

I. A loop at nesting depth i

is called controlling if (m

1i

6= 0)_ (m

2i

6= 0), or non-

controlling otherwise. The indices of all elements op-

erated on by di�erent instances of statement S in one

execution of the innermost controlling loop at nesting

depth c, i.e. (m

1i

= 0) ^ (m

2i

= 0) for c < i � l, is

referred to as an access pattern of the corresponding

occurrence of matrix A:

P

I

1

;:::;I

c�1

A

= fF

A

(

~

I)jI

c

2 V

c

g

Access patterns are called row-wise if (m

1c

= 0) ^

(m

2c

6= 0), column-wise if (m

1c

6= 0) ^ (m

2c

= 0),

while all remaining access patterns are referred to as

diagonal-wise.

1

The direction of an access pattern

is

~

d

A

= (m

1c

;m

2c

).

The notion of an abstract data structure A

0

is

introduced to reason about a compact data structure

as long as no actual implementation has been selected.

For an occurrence A(F

A

(

~

I)) a guard `F

A

(

~

I) 2 E

A

' is

used in a multiway IF-statement to di�erentiate be-

tween operations on an entry or a non-entry. Function

�

A

: E

A

! AD

A

maps indices of an entry to its ad-

dress in A

0

. Consequently, the following notation is

used for an assignment of an arbitrary expression to

an element, where function new

A

returns a new ad-

dress in A

0

and adapts �

A

, E

A

and AD

A

accordingly

as side-e�ect to account for creation:

IF F

A

(

~

I) 2 E

A

THEN

A

0

[�

A

(F

A

(

~

I))] = : : :

ELSEIF F

A

(

~

I) =2 E

A

THEN

A

0

[new

A

(F

A

(

~

I))] = : : :

ENDIF

This kind of notation o�ers the possibility to elimi-

nate the branches in which sparsity can be exploited to

save computational time, because statement instances

where a zero is assigned to a non-entry or where an

arbitrary variable is updated with a zero do not have

to be executed. For example, one branch remains for

statement `ACC = ACC + A(F

A

(

~

I))':

1

Occurrences without controlling loops give rise to scalar-

wise singleton access patterns.

IF F

A

(

~

I) 2 E

A

THEN

ACC = ACC + A

0

[�

A

(F

A

(

~

I))]

ENDIF

The identi�cation of statements that can exploit

sparsity is done by means of an attribute gram-

mar [1, 17], based on a context free grammar for as-

signment statements.

2

The following semantic rules

are used to associate the strongest condition  , con-

structed from guards, with each expression in a syn-

thesized attribute nz, to indicate when the value of this

expression is nonzero, under the assumption that the

value of dense variables and entries is always nonzero:

Production Semantic Rule

E ! E

1

+ E

2

E.nz = dis(E

1

.nz, E

2

.nz);

E ! E

1

� E

2

E.nz = dis(E

1

.nz, E

2

.nz);

E ! E

1

� E

2

E.nz = con(E

1

.nz,E

2

.nz);

E ! E

1

= E

2

E.nz = E

1

.nz;

E ! E

1

�� E

2

E.nz = E

1

.nz;

E ! � E

1

E.nz = E

1

.nz;

E ! ( E

1

) E.nz = E

1

.nz;

E ! var E.nz = var.grd;

E ! const E.nz = is zero(const.val)

? `false':`true';

The guard of each variable is supplied as synthesized

attributed grd, and is `true' for dense variables. The

value of constants is supplied in attribute val. Func-

tions dis and con construct a disjunction and conjunc-

tion respectively of the arguments. The result is sim-

pli�ed according to logical equivalences that are based

on e.g. absorption laws or the fact that `true' is the

identity of the `^'-operator. The subtlety of a zero

right operand for `='- and `��'-operators is ignored. For

example, (simpli�ed) condition  is shown below for

some expressions, if A and B are sparse matrices:

Expression  

A(I,J)+A(I,J)*B(I,J) `(I;J) 2 E

A

'

A(I+1,J)*(X+B(I,J)) `(I+ 1;J) 2 E

A

'

A(I,J)+B(I,J)/5.0 `(I;J) 2 E

A

_

(I;J) 2 E

B

'

X+A(I,J) `true'

-0.0*(X+A(I,J)) `false'

From these conditions, the strongest condition �

is associated with each statement in attribute cnd,

that indicates the instances that must be executed.

A pointer to the left-hand side variable in an assign-

ment statement, supplied as synthesized attribute nm,

is copied in an inherited attribute lhs of the right-hand

side expression, and is passed down the parse tree:

Production Semantic Rule

stmt! var = E; E.lhs = var.nm;

E ! E

1

+ E

2

E

1

.lhs = E

2

.lhs = E.lhs;

E ! E

1

� E

2

E

1

.lhs = E

2

.lhs = E.lhs;

E ! E

1

� E

2

E

1

.lhs = E

2

.lhs = E.lhs;

E ! E

1

= E

2

E

1

.lhs = E

2

.lhs = E.lhs;

E ! E

1

�� E

2

E

1

.lhs = E

2

.lhs = E.lhs;

E ! � E

1

E

1

.lhs = E.lhs;

E ! ( E

1

) E

1

.lhs = E.lhs;

2

The ambiguity of this grammar is resolved by assignment of

the usual precedence and associativity to all operators.
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From attributes nz and lhs, another synthesized at-

tribute ne associated with expressions is constructed

that records when the right-hand side expression is not

equal to the left-hand side variable:

Production Semantic Rule

E ! E

1

+ E

2

E.ne = con(dis(E

1

.ne,

E

2

.nz), dis(E

1

.nz,E

2

.ne));

E ! E

1

� E

2

E.ne = dis(E

1

.ne,E

2

.nz);

E ! ( E

1

) E.ne = E

1

.ne;

E ! var E.ne = equal(var.nm.E.lhs)

? `false':`true';

/* others */ E.ne = `true';

For example, the value of attribute ne associated with

the right-hand side expression in assignment statement

`ACC=ACC+A(I,J)*X' is `(I; J) 2 E

A

'. Evaluation de-

pendences are depicted in �gure 1:

inherited

synthesized

stmt

E=

+

*

EE

var E E

var vargrd grd

nz nznm

ne

ne

nzlhs

lhsnmvar

cnd

Figure 1: Parse Tree

Finally, the condition of each statement is deter-

mined. An instance of an assignment statement must

be executed if the left- and right-hand sides are not

equal, and at least one of these expressions is nonzero:

for production `stmt! var = E;', the semantic rule is

`stmt.cnd = con(E.ne,dis(var.grd,E.nz));'. The condi-

tion � associated with some statements is shown be-

low. If � =`false', the statement can be eliminated

since none of its instances have to be executed.

Statement �

B(I,J)=B(I,J)+A(I,J) `(I;J) 2 E

A

'

A(2*I,J)=X*A(2*I,J) `(2I;J) 2 E

A

'

A(I,J)=X `true'

A(I,J)=A(I,J) `false'

A(I,J)=A(I,J)*B(I,J) `(I;J) 2 E

A

+C(I,J) _(I;J) 2 E

C

'

E�ectively, condition � consists of the disjunction

of all conditions in the branches that remain in the

corresponding IF-statement, as is illustrated below for

statement `A(I,J)=B(I,J)' with condition `(I; J) 2

E

A

_ (I; J) 2 E

B

', where subroutine del

A

is used to

indicate cancellation:

IF (I,J) 2 E

A

^ (I,J) 2 E

B

THEN

A

0

[�

A

(I;J)] = B

0

[�

B

(I;J)]

ELSEIF (I,J) 2 E

A

^ (I,J) =2 E

B

THEN

CALL del

A

(I;J)

ELSEIF (I,J) =2 E

A

^ (I,J) 2 E

B

THEN

A

0

[new

A

(I;J)] = B

0

[�

B

(I;J)]

ENDIF

2.2 Overhead Elimination

The presence of guards and �

A

-lookups re
ects over-

head that is due to the fact that a compact data struc-

ture must be scanned to determine if and where an

entry is stored. Additionally, skipping operations by

means of conditionals does not result in much gain in

execution time, because usually such tests are equally

expensive [13, 24]. Therefore, techniques to eliminate

this kind of overhead are required.

2.2.1 Guard Encapsulation

The disjunction of the conditions associated with all

statements in a loop body is called the loop condi-

tion. It indicates the iterations in which at least one

statement instance has to be executed. A guard  

dominates a condition �, i�. � !  is a tautology.

So, if a guard  dominates a loop condition �, iter-

ations in which  does not hold do not have to be

executed. This can be achieved by encapsulation of

a dominating guard `F

A

(

~

I) 2 E

A

' in the execution set

of a directly surrounding controlling loop. Because the

resulting execution set fI

c

2 V

c

jF

A

(

~

I) 2 E

A

g cannot

be generated directly in general, the following conver-

sion is performed:

DO I

c

2 V

c

IF F

A

(

~

I) 2 E

A

THEN

ACC = ACC + A

0

[�

A

(F

A

(

~

I))]

ENDIF

ENDDO #

DO AD 2 PAD

I

1

;:::;I

c�1

A

ACC = ACC + A

0

[AD]

ENDDO

If we can easily obtain PAD

I

1

;:::;I

c�1

A

= f�

A

(t)jt 2

(P

I

1

;:::;I

c�1

A

\ E

A

)g � AD

A

, only iterations in which

an entry (an element for which the dominating guard

holds) is operated on, are executed. Fewer iterations

result since the size of the execution set decreases,

while test overhead is eliminated completely. Because

AD = �

A

(F

A

(

~

I)) holds and �

A

is invertible, the value

of I

c

can be restored by using the following equations,

where �

i

� ~x = x

i

:

�

�

1

� �

�1

A

(AD) = m

10

+m

11

I

1

: : :+m

1c

I

c

�

2

� �

�1

A

(AD) = m

20

+m

21

I

1

: : :+m

2c

I

c

Guard encapsulation is feasible if the following con-

straints on the data structure are satis�ed: (1) fast

generation of addresses in PAD

I

1

;:::;I

c�1

A

is supported

for all valid I

1

; : : : ; I

c�1

, (2) if a dependence is carried

by the I

c

-loop, address-generation corresponds to the

original execution order of this loop,

3

and (3) to restore

the value of I

c

, �

1

��

�1

A

values are available if m

1c

6= 0

or �

2

��

�1

A

values if m

2c

6= 0 (i.e. row or column index

of each entry). For example, in the following fragment

encapsulation of guard `(I; I+ J) 2 E

A

', that domi-

nates the (identical) loop condition, in the execution

3

Usually, dependences caused by accumulations are ignored.
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set of the J-loop is possible and requires �

2

��

�1

A

(AD) to

reconstruct the value of J. Addresses in PAD

I

A

belong

to entries along P

I

A

= f(I; I+ J)j1 � J � 3g:

DO I = 1, M

DO J = 1, 3

IF (I,I+J) 2 E

A

THEN

ACC = ACC + A(I,I+J) * J

ENDIF

ENDDO

ENDDO #

DO I = 1, M

DO AD 2 PAD

I

A

J = �

2

� �

�1

A

(AD) - I

ACC = ACC + A

0

[AD] * J

ENDDO

ENDDO

Constraint (1) can be relaxed at the expense of

run-time overhead, if fast generation of addresses in

PAD

I

1

;:::;I

c�1

A

that corresponds to entries along an

enveloping access pattern P

I

1

;:::;I

c�1

A

� P

I

1

;:::;I

c�1

A

is required, under the condition that it can be deter-

mined at run-time whether an entry corresponds to the

actual access pattern. If only longitudinal envelop-

ing access patterns are considered this can be done

for each entry by testing inclusion `I

c

2 V

c

' on the

restored loop index (see section 4.2). A longitudinal

enveloping access pattern P

I

1

;:::;I

c�1

A

has the following

form, where g = gcd(m

1c

;m

2c

), T

1

� g �min(V

c

), and

T

2

� g �max(V

c

):

f(: : :+

m

1c

�t

g

; : : :+

m

2c

�t

g

)jT

1

� t � T

2

g

Examples are P

I

A

= f(100� 3J; I)j1 � J � 33g with

P

I

A

= f(100� t; I)j3� t � 99g and P

A

= f(4J; 2J)j1�

J � 25g with P

A

= f(2t; t)j2 � t � 50g.

Complications occur for guard encapsulation if cre-

ation or cancellation along the (enveloping) access pat-

tern a�ects the corresponding address set. We distin-

guish forward and backward creation, corresponding

to insertions that a�ect the value of an encapsulated

guard in following or preceding iterations respectively.

For some data structures, creation along arbitrary ac-

cess patterns might a�ect other address sets if garbage

collection is occasionally required. Deletion of an entry

that corresponds to the encapsulated guard is referred

to as inward cancellation. If inward cancellation can-

not occur, the corresponding dominating guard in a

loop body for which c < l holds can be hoisted out

the innermost non-controlling loops.

Note that if entries are sorted on column or row

index, encapsulation of more general conditions, like

conjunctions and disjunctions of guards, becomes pos-

sible by generating code that performs an in-phase

scan of the associated data structures [13].

2.2.2 Access Pattern Expansion

Another way to reduce overhead is based on the idea

to avoid binary operations that involve two sparse vec-

tors and to reduce test overhead of certain occurrences

that cannot exploit sparsity, with work dependent on

the number of entries only [11, 13, 24]. The compiler

can decide to expand a sparse access pattern before it

is operated on with a scatter-operation, so that oper-

ations on this dense representation do not su�er from

sparse lookup overhead. If assignments occur, storage

is obtained or released directly to account for creation

or cancellation if necessary. This can be done with a

variant on the switch technique [24], where a bit array

records which elements are entries. The actual values

are stored back afterwards with a gather-operation.

These operations are feasible under constraints that

are similar to the requirements for guard encapsula-

tion: (1) the address set of the (enveloping) access

pattern is available, and (2) appropriate index infor-

mation is available per entry.

2.2.3 Nonzero Structures

If with information about the nonzero structure, that

is either user-supplied or obtained by on-�le analysis,

it can be determined that certain (enveloping) access

patterns are rather dense, or become dense by fre-

quently occurring creation, the compiler can decide

to use the dense representation as only storage dur-

ing the whole program. This eliminates the lookup

and creation overhead that is inherent to sparse data

structures, while the number of redundant operations

performed is probably small.

Information about the nonzero structure can also be

used to apply iteration space reduction. Consider

for example the code for ~y  A�~x for a band matrixA,

i.e. (a

ij

6= 0) ! (�b

1

� j � i � b

2

). After application

of the unimodular transformation U =

�

�1 1

1 0

�

[6,

27], all elements a

ij

with j � i = J are accessed in one

execution of the I-loop:

DO I = 1, M

DO J = 1, N

Y(I) = Y(I) + A(I,J) * X(J)

ENDDO

ENDDO #

DO J = 1 - M, N - 1

DO I = MAX(1,1-J), MIN(M,N-J)

Y(I) = Y(I) + A(I,J+I) * X(J+I)

ENDDO

ENDDO

Compile-time encapsulation in the execution set of the

outermost controlling loop results in a reduced execu-

tion set f�b

1

; : : : ; b

2

g for the J-loop, and dense storage

of the remaining diagonals becomes desirable.

2.3 Storage

Access patterns that are dense are stored in full-

sized arrays. Sparse access patterns are stored as

sparse vectors in data structures (D1) or (L1), illus-

trated in �gure 2 (inspired on existing data struc-

tures [13, 24, 26, 30]). In these implementations, the

4



numerical values of entries are stored in an array AVAL,

while corresponding column or row indices are stored

in a parallel integer array AIND. The implementations

di�er in the way each access pattern is stored: consecu-

tively (D1), or as a linked list (L1), and the information

required per access pattern: �rst and last index (D1),

or a pointer to the �rst entry (L1). Enough working

spacemust be available to account for creation in case

of dynamic data structures. An ordering (determined

by links for (L1)) between entries on the associated

index within one access pattern can be maintained at

the penalty of more expensive insertions and deletions.

An insertion or deletion in (L1) only a�ects the val-

ues of a few links. For (D1) the addresses of other en-

tries in the same access pattern might alter as a result

of data movement, while extra data movement results

if an insertion is performed in an access pattern with

no directly surrounding space.

4

(L1)AFIRST

AVALAINDALINK

(D1)ALOWAHIGH

AVALAIND

Figure 2: Sparse Data Structure

3 Storage Selection

Most overhead reduction would be obtained if all im-

posed constraints on the actual data structure of sparse

matrices were satis�ed. However, because usually el-

ements are involved in di�erently shaped access pat-

terns, this would demand for storage schemes with

much overhead storage that are expensive to main-

tain in order to support fast generation of addresses in

all address sets. For example, storing entries accord-

ing to row- and column-wise access patterns requires

a linked-lists implementation, where four integers are

associated with each entry (row and column index, and

two links). The overhead storage requirements of this

scheme can be reduced, but at the expense of more

expensive lookups [10]. Additionally, to simplify data

structure construction and code generation, a simple

correspondence between address sets and loop indices

must hold.

4

The access pattern is moved to the end of the array where

most working space is kept. If insu�cient space remains, garbage

collection is required to compress all data, which might a�ect the

addresses of all entries.

Overhead storage can be kept reasonably small if

only the constraints of consistent access patterns, i.e.

that are either disjoint or identical, are satis�ed. Data

structure selection for each sparse matrix in a program

is, therefore, controlled by an inconsistency table,

which initially has the following form:

A d c r

r 0 0 0

c 0 0

d 0

Every table-entry contains the number of static incon-

sistencies between row-, column- or diagonal-wise ac-

cess patterns of occurrences of a sparse matrixA. Since

an implementation is straightforward to select in case

of an empty table, reducing the number of nonzero en-

tries in this table is the most important goal during

data structure selection. Clearly, compromises have to

be made in some cases.

3.1 Self-Inconsistencies

Although all elements along one access pattern are dis-

tinct, it is possible that access patterns P

I

1

;:::;I

c�1

A

of

one occurrence overlap for di�erent I

1

; : : : ; I

c�1

. If

such access patterns are not identical, a static self-

inconsistency arises, as is illustrated for row-wise ac-

cess patterns in the following example:

DO J = 1, N / 2

DO K = 1, J

ACC = ACC + A(2,2*K)

ENDDO

ENDDO

A d c r

r 0 0 1

c 0 0

d 0

Encapsulation of `(2; 2K) 2 E

A

' in the execution set

of the K-loop, for instance, is feasible if fast generation

of the addresses of entries at even positions in every

pre�x of the second row is supported. This abundance

of constraints is re
ected in the inconsistency between

P

J

A

= f(2; K)j1� K � Jg for di�erent values of J. Con-

sideration of e.g. P

J

A

= f(2; t)j1 � t � Ng achieves self-

consistency, and requires fast generation of addresses

of entries in only one access pattern, justifying the sim-

pli�cation made in the next section.

3.2 Collection

In order to get a better grip on all access patterns of

one occurrence, these are characterized by an access

pattern collectionC

i

A

. This is a possibly enveloping,

but also consistent and simple description of all access

patterns. First, a conservative approximation of the

index set of all used elements a

xy

is constructed in

terms of a variant on the simple section [3, 4]:

8

<

:

l

1

� x � u

1

l

2

� y � u

2

l

3

� r

1

� x+ r

2

� y � u

3

l

4

� r

2

� x� r

1

� y � u

4

(3.2)

5



We use ~r = (

s�jm

1c

j

gcd(m

1c

;m

2c

)

;

jm

2c

j

gcd(m

1c

;m

2c

)

), where s =

(m

1c

�m

2c

� 0) ? 1:-1, in case of diagonal-wise access

patterns, or ~r = (1; 1) otherwise. Consequently, two

section bounds are parallel to the access patterns,

and fairly complex shaped sections can be dealt with.

Since the correspondences x = f

1

(

~

I) and y = f

2

(

~

I)

hold, the values of

~

l and ~u in a section of form (3.2) are

easily obtained by successive consideration of worst-

case values for I

i

in decreasing order, since execution

set V

i

might depend on I

j

, for all j < i. Consider,

for example, P

I;J

A

= f(I+ K; J+ 2K)j1 � K � 3g for

1 � I � 3 and 1 � J � 3. The following section

results, where the value of e.g. u

4

is determined as

2x� y = 2I� J � 2I� 1 � 5:

8

<

:

2 � x � 6

3 � y � 9

8 � x+ 2y � 24

�1 � 2x� y � 5

The access pattern collection consists of an enumer-

ation of all access patterns within this section: C

i

A

=

f(R

i

+

s�jm

1c

j�t

gcd(m

1c

;m

2c

)

; C

i

+

jm

2c

j�t

gcd(m

1c

;m

2c

)

)jT

i

1

� t � T

i

2

g,

for I

1

� i � I

2

. In this way, distinctions between par-

tially overlapping or multiple traversed access patterns

are eliminated, while the direction is normalized such

that the y-component is non-negative.

O�sets and bounds for row-, column- and diagonal-

wise access patterns are given in the following tables,

where l

�

= l

1

and u

�

= u

1

if s = 1, or l

�

= u

1

and

u

�

= l

1

otherwise:

R

i

C

i

I

1

I

2

row i 0 l

1

u

1

col. 0 i l

2

u

2

diag. v

2

� i �v

1

� i l

4

u

4

T

i

1

max(l

2

; l

3

� i; i� u

4

)

max(l

1

; l

3

� i; i+ l

4

)

dmax(

l

�

�v

2

�i

r

1

;

l

2

+v

1

�i

r

2

;

l

3

+(r

2

v

1

�r

1

v

2

)�i

r

2

1

+r

2

2

)e

T

i

2

min(u

2

; u

3

� i; i� l

4

)

min(u

1

; u

3

� i; i+ u

4

)

bmin(

u

�

�v

2

�i

r

1

;

u

2

+v

1

�i

r

2

;

u

3

+(r

2

v

1

�r

1

v

2

)�i

r

2

1

+r

2

2

)c

Diagonal-wise enumeration along r

2

� x � r

1

� y = i

for successive i is obtained by application of unimod-

ular transformation U =

�

r

2

v

1

�r

1

v

2

�

on the row-

wise enumeration, where ~v is taken such that det(U ) =

r

2

� v

2

+ r

1

� v

1

= 1. Such integers can be found during

computation of gcd(m

1c

;m

2c

) as shown in [6]. Con-

sequently, the access pattern collection of the previ-

ous example is C

i

A

= f(t; 2t � i)jdmax(2;

3+i

2

)e � t �

bmin(6;

9+i

2

)cg for �1 � i � 5:

Accessed PointSimple Section

5

5

y

x

10

The collection of P

I;J

A

= f(I+ J; K)j1 � K � I+ Jg

for 1 � I � 3 and 1 � J � 2 is C

i

A

= f(i; t)j1 � t �

ig for 2 � i � 5, as depicted in the following �gure.

Section bound 0 � x�y results, because the minimum

value of -K is -I-J:

8

<

:

2 � x � 5

1 � y � 5

3 � x+ y � 10

0 � x� y � 4

5

y

x

Accessed Point
Simple Section

The collection of column-wise access patterns P

I

A

=

f(2I+ J� 2; I)j1 � J � 2g for 1 � I � 4, is C

i

A

=

f(t; i)ji � t � i + 4g for 1 � i � 4:

8

<

:

1 � x � 8

1 � y � 4

2 � x+ y � 12

0 � x� y � 4

Approximation of actual access patterns by the ac-

cess pattern collection, which is uniquely determined

by the values of

~

d

A

~

l, and ~u, yields a uniform and self-

consistent description. However, some accuracy might

be lost as shown in the previous example where lon-

gitudinal enveloping access patterns result. The col-

lection of P

I

A

= f(4J� 3; 2I� 2J+ 5)j1 � J � 3g

for 1 � I � 3 with normalized direction, which is

C

i

A

= f(i � 2t; t)jd

i�9

2

e � t � b

i�1

2

cg for 11 � i � 19,

6



consists of too many points because not only longi-

tudinal enveloping access patterns are considered, but

also because transversal enveloping access patterns

are included, e.g. for i = 12:

5

5

x

y 10

10

Accessed PointSimple Section

Clearly, there are I

2

� I

1

+ 1 access patterns in C

i

A

,

with a total number of

P

I

2

i=I

1

(T

i

2

� T

i

1

+ 1) elements.

For an arbitrary element a

xy

in collection C

i

A

, the value

of i is determined as x, y, or r

2

� x � r

1

� y for row-

, column- and diagonal-wise access patterns respec-

tively, so that it is stored in the k

th

access pattern,

where k is i� l

1

+ 1, i� l

2

+ 1, or i� l

4

+ 1. Element

a

74

, for example, belongs to the 5

th

access pattern in

the previous example, since i = 15 and l

4

= 11. The

value of t is determined as y, x, or v

1

� x + v

2

� y for

row- column- and diagonal-wise access patterns.

3.3 Complications

Although most occurrences of matrices in numerical

programs �t the framework of section 2.1, the compiler

must occasionally deal with complex subscripts (e.g.

subscripted subscripts), or unknown loop bounds, as

in the following fragments for an 100� 100 matrix A:

DO I = 1, 10

Z = : : :

: : : A(Z,I)

ENDDO

DO I = 1, 50

DO J = 1, 90

: : : A(PV(I),J)

ENDDO

ENDDO

Z = : : :

DO I = 10, Z

DO J = 1, I

: : : A(5+I,J)

ENDDO

ENDDO

If a complex subscript occurs, direction

~

d

A

, and thus

the access pattern collection, can only be determined

if this subscript is invariant in one execution of the in-

nermost controlling loop. Otherwise, only the section

with e.g. ~r = (1; 1) can be determined, which is used

in the computation of static inconsistences. Clearly,

the direction is unknown for the �rst fragment, while

~

d

A

= (0; 1) holds in the second.

An approximation of the section can still be ob-

tained, if constraints 1 � x � m and 1 � y � n,

that hold if subscript bounds are not violated, are

used in those cases where compile-time analysis fails

(cf. [3]). For complex subscripts, the new constraints

are used directly for the whole subscript, so that, for

instance, u

3

= 190 results for the second fragment

since x + y =`PV(I)'+J �`PV(I)'+90. This yields col-

lection C

i

A

= f(i; t)j1 � t � 90g for 1 � i � 100.

Taking this simple approach for subscripts in which at

least one loop index has (indirectly) unknown bounds

yields, for example, u

3

= 200 and l

4

= �99 for the

third fragment because both x and y contain such

indices. However, in this case more accurate results

are obtained if constraint 5 + I � 100 is used to de-

rive an upper bound for I.

5

For example, u

3

= 195

is obtained by x + y = 5 + I+ J � 5 + 2I, while

computation of l

4

= 5 does not require any bounds,

because x � y = 5 + I� J � 5 + I� I. Collection

C

i

A

= f(i; t)j1 � t � i� 5g for 15 � i � 100 results.

More accuracy is achieved by incorporation of ad-

vanced techniques. Induction variable recognition [1]

can be used to replace some complex subscripts by lin-

ear functions of loop indices, while symbolic manipu-

lations (cf. symbolic dependence testing [23]) improve

computations on remaining complex subscripts.

3.4 Table Computation

Computation of the inconsistency table is closely re-

lated to the data dependence analysis problem, where

static dependence between the statements of occur-

rences A

k

and A

k

0

is assumed if the sections of C

i

A

k

and C

i

A

k

0

overlap. However, a static inconsistency be-

tween the access patterns of these occurrences is only

recorded if also the sections or normalized directions

di�er. As a result of normalization, identical access

patterns that are traversed in opposite directions are

also considered consistent.

The intersection of two sections of form (3.2) with

identical ~r is again a section of form (3.2), and is con-

structed by taking the most interior values for all sec-

tion bounds (cf. [3]). Consequently, two sections de-

scribed by

~

l; ~u and

~

l

0

; ~u

0

respectively overlap, if this

intersection is non-empty:

V

1�i�4

max(�

i

�

~

l; �

i

�

~

l

0

) � min(�

i

� ~u; �

i

� ~u

0

)

The sections are identical if

~

l =

~

l

0

, ~u = ~u

0

. The inter-

section of two sections with di�erent ~r is not necessar-

ily of form (3.2), and more computations are required

to detect overlap. It should be noted that, since sec-

tions are a conservative approximation, overlap does

not necessarily imply that the underlying diophantine

equations (F

A

k

(

~

I) = F

A

k

0

(

~

I

0

) for valid

~

I and

~

I

0

) ac-

tually have a solution [4, 5, 16, 22, 28]. Consider, for

example, code that computes the sum of the diagonal

and o�-diagonal parts of a square sparse matrix A:

5

The compiler must also deal with a system of inequalities if

maximum and minimum functions are used in lower and upper

bounds, which increases the complexity of section computation.

7



DO I = 1, N

DG = DG + A

1

(I,I)

DO J = 1, I - 1

LW = LW + A

2

(I,J)

UP = UP + A

3

(J,I)

ENDDO

ENDDO

A d c r

r 0 0 0

c 0 0

d 0

Clearly, the sections of C

i

A

1

, C

i

A

2

and C

i

A

3

are dis-

joint. For example, the sections of C

i

A

1

and C

i

A

2

do

not overlap because max(0; 1) > min(0; N� 1):

6

8

<

:

1 � x � N

1 � y � N

2 � x+ y � 2N

0 � x� y � 0

$

1 � x � N

1 � y � N � 1

2 � x+ y � 2N � 1

1 � x� y � N � 1

If the following fragment also appears in the program,

the inconsistency table changes because the section of

C

i

A

4

, that consists of the whole index set, overlaps with

parts of all other sections:

DO I = 1, N

DO J = 1, N

A

4

(I,J) = A

4

(I,J) * 10.0

ENDDO

ENDDO

A d c r

r 1 1 1

c 0 0

d 0

Inconsistences between access patterns of two col-

lections with identical normalized directions can be

solved, if the collections are combined by minimal ex-

pansion of the sections into one section of form (3.2),

i.e. the section described by bounds min(�

i

�

~

l; �

i

�

~

l

0

) and

max(�

i

� ~u; �

i

� ~u

0

) for 1 � i � 4 (cf. [3]) is considered.

For example, combiningC

i

A

2

and C

i

A

4

yields collection

C

i

A

4

for both occurrences and eliminates the `r-r' entry.

However, since the section of A

2

is expanded, two new

static inconsistencies arise:

A d c r

r 2 2 0

c 0 0

d 0

Reshaping access pattern by application of conven-

tional loop transformations, such as distribution, in-

dex set splitting, unrolling, and unimodular transfor-

mation [2, 6, 20, 23, 25, 27, 28, 29], can assist in elim-

inating inconsistencies between arbitrary access pat-

terns. For example, the previous code is consistent

after fragmentation of collection C

i

A

4

by a sequence of

such transformations on the loop-nesting of A

4

:

DO I = 1, N

DO J = 1, I - 1

A

4

a

(I,J) = A

4

a

(I,J) * 10.0

ENDDO

A

4

b

(I,I) = A

4

b

(I,I) * 10.0

ENDDO

DO J = 1, N

DO I = 1, J - 1

A

4

c

(I,J) = A

4

c

(I,J) * 10.0

ENDDO

ENDDO

C

i

A

4

a

= C

i

A

2

C

i

A

4

b

= C

i

A

1

C

i

A

4

c

= C

i

A

3

6

The peculiarity of section bounds 1 � x and 2 � x+ y for

C

i

A

2

arises because the execution of J is empty for I=1. Making

these bounds more tight is desirable for comparisons.

A d c r

r 0 0 0

c 0 0

d 0

If the compiler cannot eliminate all inconsistencies,

constraints imposed by certain occurrences are favored

over those of less relevant occurrences. This is done by

combining the collections of inconsistent access pat-

terns by minimal expansion of both sections into a new

section of form (3.2) for one direction. This requires

partial recomputation of the sections for occurrences

with ignored direction, to account for another value

of ~r. Since encapsulation or expansion is disabled if

storage is not done according to the normalized direc-

tion, the direction that belongs to occurrences with the

potential of encapsulation or expansion in frequently

executed statements is taken. This approach has as

advantage that only one collection is associated with

every occurrence, avoiding the need for run-time tests

to determine in which of the data structures of over-

lapping collections an element might be stored. The

major disadvantage, however, is that the presence of

collections with large associated sections that cannot

be fragmented, diminish the potential to account for

peculiarities of the sparse matrix.

3.5 Storage Construction

Because some collections are combined or fragmented,

a number of non-overlapping access pattern collections

remains per sparse matrix A that belong to represen-

tative occurrences A

k

1

� � �A

k

r

. The sections of these

C

i

A

k

j

usually form a partition of the index set of the

matrix, as illustrated in �gure 3.

Figure 3: Partition

Per collection it is recorded whether dense or sparse

storage of the access patterns is appropriate. All sparse

collections are stored in one data structure (D1) or

(L1), where per collection �

1

� �

�1

A

or �

2

� �

�1

A

values

are stored for column-wise, or row- or diagonal-wise ac-

cess pattern respectively. If at least one loop for which

guard encapsulation will be applied requires an order-

ing as explained in section 2.2, this is also recorded

for the corresponding collection. This requires inser-

tion and deletion routines that keep the entries stored

in monotonic increasing order on stored values, as a

result of direction normalization. Because the access

8



patterns in one collection will be stored in one format,

application of transformations is also useful to isolate

access patterns with di�erent properties.

One of the following declarations results for sparse

storage of a matrix A. Su�cient working space is sup-

plied for dynamic data structures. Parameter � is

the density, u is the total number of access patterns

(sum of I

2

� I

1

+ 1 over all collections), v is the to-

tal number of elements along all access patterns (sum

of

P

I

2

i=I

1

(T

i

2

� T

i

1

+ 1) over all collections), w is the

maximumnumber of elements along one access pattern

(maximum of 1+ max

I

1

�i�I

2

(T

i

2

�T

i

1

) over all collections),

and x is some tunable constant:

INTEGER ANP, ASZ

(D1):PARAMETER (ANP = u,ASZ =

+ � � v + 2 � w + x)

7

REAL AVAL(ASZ)

INTEGER AIND(ASZ), AHIGH(ANP),

+ ALOW(ANP), ALAST

(L1):PARAMETER (ANP = u,ASZ =

+ � � v + x)

REAL AVAL(ASZ)

INTEGER AIND(ASZ), ALINK(ASZ),

+ AFIRST(ANP), AFREE

Scalar ALAST points to the last used element in (D1) to

support extra data movement, while AFREE is a pointer

to a linked list in (L1) that contains all free elements.

Per collection C

i

A

k

j

, an initially zero o�set is recorded,

and increased with I

2

+I

1

+1 after consideration of each

collection, such that the k

th

access pattern in a col-

lection starts at location ALOW(D) or AFIRST(D) in the

data structure, where D=o�set

A

k

j

+k. For every access

pattern collectionC

i

A

k

j

that requires dense storage, the

following declaration is generated, where a unique label

lab

A

k

j

is used per collection and m = max

I

1

�i�I

2

(T

i

2

�T

i

1

).

Because the maximum length is taken, this format is

not very well suited for e.g. triangular shaped dense

access patterns. If I

2

�I

1

= 0 holds, a one-dimensional

array is used.

REAL ADNSlab

A

k

j

(1 +m; I

2

� I

1

+ 1)

4 Code Generation

First, compiler-supplied primitives are presented, fol-

lowed by a discussion of code generation for speci�c

program constructs and sparse occurrences.

4.1 Primitive Operations

The de�nition of certain primitive operations for data

structures (D1) and (L1) is supplied by the compiler,

so that these primitives can be used in the generated

7

The size of extra working space in (D1) to prevent the need

for frequent garbage collection is inspired on [12, 15].

code. The following table lists some basic operations

with a short description, where `_' can be D1 or L1:

INT_() Initialization of data structure

LKP_() Lookup of location of an entry

(? otherwise)

INS_() Insertion of an entry

DEL_() Deletion of entry at a location

Location ? cannot be used as storage in a data struc-

ture for A, but it has the property that AVAL(?)=0.0.

Insertions and deletions are fast, provided that data

movement is not required in (D1). However, no or-

dering is maintained on the entries. Therefore, the

following primitives are also supported, where ODELL1

is equal to DELL1 since data movement does not occur

for data structure (L1):

OINS_() Ordered insertion of an entry

ODEL_() Ordered deletion of an entry

Two operations are supplied to support expansion

of an access pattern:

SCAT_() Expansion into dense

GATH_() Compression into sparse

A detailed description and de�nitions of these prim-

itives are given in [9].

4.2 Encapsulated Guards

If guard encapsulation in the execution set of a sur-

rounding I

c

-loop is feasible and cancellation or cre-

ation along the (enveloping) access pattern cannot oc-

cur, code for the following conversion is generated:

DO I

c

2 V

c

IF (F

A

(

~

I) 2 E

A

) THEN

: : : A(F

A

(

~

I)) : : :

ENDIF

ENDDO #

DO AD 2 PAD

I

1

;:::;I

c�1

A

: : : A

0

[AD] : : :

ENDDO

Addresses in PAD

I

1

;:::;I

c�1

A

that correspond to an

access pattern in a sparse collection C

i

A

k

j

are found

through D = o�set

A

k

j

+ k in the data structure, where

the value of k is determined independently of the value

of I

c

before the resulting loop as shown below, where

R = m

10

+ m

11

I

1

+ : : :+m

1c�1

I

c�1

and C = m

20

+

m

21

I

1

+ : : : ;+m

2c�1

I

c�1

(see section 3.2):

k i

r i� l

1

+ 1 R

c i� l

2

+ 1 C

d i� l

4

+ 1 r

2

�R� r

1

� C

One of the following frameworks is generated:

(D1): DO AD = ALOW(D), AHIGH(D)

: : :

ENDDO

(L1): AD = AFIRST(D)

DO WHILE (AD 6= ?)

: : :

AD = ALINK(AD)

ENDDO

9



Within the loop body, the value of I

c

is restored

and inclusion in V

c

is tested. The resulting code for

column-wise access patterns in shown below, where ex-

ecution set V

c

= fL

I

1

;:::;I

c�1

; : : : ; U

I

1

;:::;I

c�1

g:

I

c

= AIND(AD)�m

10

�m

11

� I

1

+ : : :�m

1c�1

� I

c�1

IF (MOD(I

c

;m

1c

) = 0) THEN

I

c

= I

c

/ m

1c

IF (L

I

1

;:::;I

c�1

� I

c

)

+ AND (I

c

� U

I

1

;:::;I

c�1

) THEN

: : :

ENDIF

ENDIF

In this construct, the original loop body is generated

in which most occurrences A(F

A

(

~

I)) that correspond

to the encapsulated guard are replaced by AVAL(AD)

(details are given in section 4.5). If m

1c

= 1, the MOD

and integer division operations are not required, while

a compare is eliminated if the compare value corre-

sponds to the value of the index bound of the stored

access patterns. If I

c

is not used in the tests or loop

body, this computation is omitted.

If the execution order must be preserved, an ordering

on the entries will be maintained, and the same con-

structs can be used, with a negative stride for (D1) or

preceding list reversal for (L1) if the direction in stor-

age is reversed by normalization.

8

If forward or back-

ward creation, or inward cancellation might occur, the

same construct is used for (L1), in which computation

AD=ALINK(AD) is performed before inward cancellation.

For (D1) the following framework accounts for changes

in the address set:

AD = ALOW(D)

DO WHILE (AD � AHIGH(D))

: : :

AD = AD + 1

ENDDO

Since in a WHILE-loop the condition is evaluated in

every iteration, it might be useful to hoist an expensive

computation of D out this loop. Additionally, adjust-

ments to AD are made for one of the following events,

while AD is decremented after inward cancellation:

forward creation backward creation

AD=AD-ALOW(D) AD=AD-ALOW(D)

: : : : : :

AD=AD+ALOW(D) AD=AD+ALOW(D)+1

After backward creation, the o�set to the base address

has to be incremented, as is illustrated in �gure 4 for

insertion of a

32

in row-wise storage during operation

on a

33

, where extra data movement occurs.

Insertions in other access patterns of this collection

that might cause garbage collection are correctly han-

dled if the construct for forward creation is used, be-

cause this preserves the o�set to the possibly changed

8

For both data structures, we can also use a WHILE-loop

that scans entries until the bounds are exceeded in order to

limit the number of entries examined. Storing access patterns

according tomost frequentoccurringdirections reduces overhead

for (L1), but might require routines that maintain a monotonic

decreasing ordering on �

i

� �

�1

A

values.

AINDAVAL 32aa31 33a1 32free free

ALOW(D) AD

a377

AVALAIND free

ALOW(D) AD

a31 33a1 3 a377

Figure 4: Extra Data Movement

base address. If several guards are encapsulated in the

execution sets of loops in one nesting, di�erent vari-

ables ADlab, declared as INTEGER, are used in the

resulting nested constructs.

4.3 Dense Storage

An occurrence A(F

A

(

~

I)) in the program that is con-

tained in the section of a dense and consistent col-

lection C

i

A

k

j

is replaced by the corresponding dense

data structure `ADNSlab

A

k

j

(E,D)', where D is deter-

mined as shown in the previous section for a zero o�-

set. For index E, the normalized value of t is taken, i.e.

v

1

� f

1

(

~

I) + v

2

� f

2

(

~

I) � T

i

1

+ 1, where i is determined

as for D. For example, if dense storage is selected for

collection C

i

A

= f(t; i)ji � t � i + 4g for 1 � i � 4 (cf.

section 3.2), the following conversion is applied on the

next loop, since i = I:

DO I = 1, 4

DO J = 1, 2

B(I,J) = A(2*I+J-2,I)

ENDDO #

ENDDO ADNS(I+J-1,I)

The trapezoidal part of the matrix is stored in rectan-

gular storage, i.e. access patterns are skewed in stor-

age. This also occurs for the dense storage of collection

C

i

A

= f(t; t� i)jmax(1; 1 + i) � t � min(M; N+ i)g for

�b

2

� i � b

1

in the following fragment on a band

matrix A (cf. section 2.2.3), since i = �J:

DO J = �b

1

, b

2

DO I = MAX(1,1-J), MIN(M,N-J)

Y(I) = Y(I) + A(I,J+I) * X(J+I)

ENDDO #

ENDDO ADNS(I-MAX(1,1-J)+1,b

2

+1-J)

Loop invariant computations in D and E can be hoisted

out the loop. In the resulting storage scheme, all access

patterns are up-justi�ed, as is illustrated below for a

4� 4 band matrix A with b

1

= b

2

= 1:

A =

0

@

a

11

a

12

0 0

a

21

a

22

a

23

0

0 a

32

a

33

a

34

0 0 a

43

a

44

1

A

a

12

a

11

a

21

a

23

a

22

a

32

a

34

a

33

a

43

- a

44

-

However, in this case it is also valid to use just

one of the bounds that is derived from the section

bounds without increasing storage requirements, i.e.

10



only 1 + i � t or 1 � t is considered. This automat-

ically yields more sophisticated storage schemes with

regular properties [13, 24], since E=I+J or E=I:

- a

11

a

21

a

12

a

22

a

32

a

23

a

33

a

43

a

34

a

44

-

1 + i � t

a

12

a

11

-

a

23

a

22

a

21

a

34

a

33

a

32

- a

44

a

43

1 � t

If transversal enveloping access patterns occur in the

collection, or directions have been normalized, this is

correctly accounted for in D and E, as is illustrated

with the following conversion for dense storage of C

i

A

=

f(i � 2t; t)jd

i�9

2

e � t � b

i�1

2

cg for 11 � i � 19, since

i = 4I+ 7 (cf. section 3.2):

DO I = 1, 3

DO J = 1, 3

B(I,J) = A(4*J-3,2*I-2*J+5)

ENDDO #

ENDDO ADNS(7-2*J,4*I-3)

If the direction belonging to an occurrence that is

contained in the section of a dense collection C

i

A

k

j

has been ignored, the value of D and E are both vari-

ant in the innermost loop because i is determined as

f

1

(

~

I), f

2

(

~

I), or r

1

� f

1

(

~

I)� r

2

� f

2

(

~

I) for row-, column-

and diagonal-wise stored access patterns respectively.

For instance, if the previous up-justi�ed diagonal-wise

storage is used, the following conversion is applied on

a fragment with row-wise access of this band, since

i = I� J:

DO I = 1, 4

DO J = MAX(I-1,1), MIN(I+1,4)

Y(I) = Y(I) + A(I,J) * X(J)

ENDDO #

ENDDO ADNS(I-MAX(1,1+I-J)+1,I-J+2)

4.4 Expansion

Expansion of an access pattern in a sparse collection

C

i

A

k

j

, found through D, into a dense vector AP of ap-

propriate length in which all elements are initialized to

zero, is performed with a scatter-operation. The value

of each entry in the sparse data structure is assigned to

the corresponding element in AP at index E. During the

scatter, each E

th

bit in an initially reset bit-vector BIT

is also set to support a so-called switch [24], which pro-

vides information about the nonzero structure. Index

E is computed as

val+o

f

for integers f and o:

val f o

r y 1 1� T

i

1

c x 1 1� T

i

1

d y r

2

v

1

� i� r

2

(1� T

i

1

)

These integers are passed as parameters to the scat-

ter and gather subroutines, to construct index E from

the stored row or column indices. Expansion of access

pattern P

I;J

A

= f(I+ K; J+ 2K)j1 � K � 3g for I=1

and J=1, for example, where storage is done according

to the �rst collection in section 3.2, is performed as

shown below, since D=3, o = �1 and f = 2:

ALOW(3)..AHIGH(3)

AVAL : : : a

23

a

59

a

47

: : :

AIND : : : 3 9 7 : : :

.#&

AP a

23

0.0 a

47

a

59

Within the scope of this expansion, all operations

are performed on the dense representation AP. A right-

hand side occurrence A(F

A

(

~

I)) along the expanded ac-

cess pattern is replaced by AP(E), while the follow-

ing constructs are used for a left-hand side occurrence,

depending on the value of the associated guard and

right-hand side expression:

nonzero r.h.s.

F

A

(

~

I) 2 E

A

AP(E) = : : :

F

A

(

~

I) =2 E

A

CALL INS_(: : :)

BIT(E) = 1

AP(E) = : : :

zero r.h.s

F

A

(

~

I) 2 E

A

AD = LKP_(: : :)

CALL DEL_(: : :)

BIT(E) = 0

AP(E) = 0.0

F

A

(

~

I) =2 E

A

{

Guard `F

A

(

~

I) 2 E

A

' is evaluated without lookup

overhead by bit-vector test `BIT(E)=1' (details of code

generation are given in the next section). Creation

or cancellation are directly accounted if required. Be-

cause each deletion (or ordered insertion) requires a

preceding lookup, expansions become more useful if

this does not occur frequently. After all operations

have been performed on this access pattern, the actual

values are stored back with a gather operation. Used

elements of AP and BIT are reset during the gather

operation to support next expansions.

9

For example, expansion of each access pattern of A

results in the following conversion if sparse matrices A

and B are stored in row-wise (D1) data structures, so

that D=I, f = 1 and o = 0. Since guard `(I; J) 2 E

B

'

has been encapsulated, the right-hand side expression

is nonzero in every iteration, and the appropriate con-

structs are used:

DO I = 1, M

DO J = 1, N

A(I,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

#

DO I = 1, M

CALL SCATD1(AVAL,AIND,ALOW(I),

+ AHIGH(I),AP,BIT,1,0)

DO AD = BLOW(I), BHIGH(I)

IF (BIT(J) = 0) THEN

CALL INSD1(AVAL,AIND,ALOW,

+ AHIGH,I,ANP,ASZ,ALST,J,.0)

BIT(J) = 1

ENDIF

AP(J) = AP(J) + BVAL(AD)

ENDDO

CALL GATHD1(AVAL,AIND,ALOW(I),

+ AHIGH(I),AP,BIT,1,0)

ENDDO

9

Resetting BIT is not necessary if the multiple switch tech-

nique [19, 24] is used with the value of D, but increases the storage

requirements of vector BIT.

11



The more operations are performed on an expanded

access pattern, the less scatter and gather overhead

dominates. Insertions are performed to obtain stor-

age only and, therefore, do not require actual values.

If assignments to AP occur, all operations along the

expanded access pattern must be done on AP, since it

contains the most recent value. To avoid run-time tests

for inclusion in an expanded access pattern, expansion

of an access pattern in a sparse collection is only per-

formed if there are no occurrences in the loop-body

with ignored direction and the same collection.

Expansions for which E equals the stored column or

row indices because f = 1 and o = 0, can be done with

sparse BLAS subroutines [11] if available, although the

switch has to be handled separately in that case. For

example, a scatter and gather that resets used elements

of AP in sparse BLAS for (D1) are shown below:

CALL SSCTR(AHIGH(D)-ALOW(D)+1,

+ AVAL(ALOW(D)),AIND(ALOW(D)),AP)

: : :

CALL SGTHRZ(AHIGH(D)-ALOW(D)+1,AP,

+ AVAL(ALOW(D)),AIND(ALOW(D)))

4.5 Sparse Occurrences

In this section we present a `condition-driven' code

generation method for the occurrences of sparse matri-

ces in a statement. Most explanation is done for (D1)

because conversion into (L1) is straightforward. The

approach is based on the fact that guard `F

A

(

~

I) 2 E

A

'

is `true' for an occurrence with encapsulated guard or

in dense storage, is evaluated with test `BIT(E)=1' for

an occurrence along an expanded access pattern, or is

evaluated as follows otherwise:

AD = LKPD1(AIND,ALOW(D),AHIGH(D),E)

IF (AD 6= ?) : : :

Index E and D are determined as explained earlier.

The �

A

-lookup is obtained as `side-e�ect' of guard eval-

uation if the test succeeds. An occurrence at the right-

hand side is replaced by AVAL(AD). For a left-hand side

occurrence, the following constructs are required, de-

pending on the value of its guard and right-hand side

expression:

10

nonzero r.h.s.

F

A

(

~

I) 2 E

A

AVAL(AD) = : : :

F

A

(

~

I) =2 E

A

CALL INS_(: : :)

zero r.h.s.

F

A

(

~

I) 2 E

A

CALL DEL_(: : :)

F

A

(

~

I) =2 E

A

{

First, two variables � and  are set to the condi-

tions associated with the statement under considera-

tion and right-hand side expression respectively (cf.

section 2.1). All occurrences that are contained in the

section of a dense collection are replaced as explained

10

To support fast deletion in DELL1, function LKPL1 also sup-

plies a pointer to an eventual previous entry. For an encapsu-

lated guard, this pointer is maintained during the WHILE-loop.

in section 4.3. Right-hand side occurrences with encap-

sulated guards are replaced by AVAL(AD), while code

generation for left-hand side occurrences is deferred.

Corresponding guards in � and  changed into `true'.

Subsequently, evaluation code is generated for each

occurrence A(F

A

(

~

I)) where guard `F

A

(

~

I) 2 E

A

' dom-

inates �. If guard hoisting is valid (see section 2.2.1)

this evaluation is generated at higher level, so that the

test becomes more useful. A right-hand side occur-

rence is replaced by AVAL(AD) or AP(E), while code

generation is deferred again otherwise. Conditions �

and  are adapted accordingly.

Evaluation code for all disjunctions in � is gener-

ated next, while  is adapted accordingly. Right-hand

side occurrences are replaced by AP(E) or AVAL(AD),

which is valid since AVAL(?) = 0:0 holds. For example,

the following code results for `X=X+A(I,J)+B(J,K)', if

occurrence B is along an expanded access pattern, be-

cause � =`(I; J) 2 E

A

_ (J; K) 2 E

B

' holds:

AD = LKPD1(AIND,ALOW(D1),AHIGH(D1),E1)

IF (AD 6= ? _ BIT(E2)=1) THEN

X = X + AVAL(AD) + AP(E2)

ENDIF

If there is a left-hand side sparse occurrence, further

evaluation code on remaining guards in  is gener-

ated to di�erentiate between the cases  =`true' and

 =`false' respectively. All remaining right-hand side

occurrences are replaced by AP(E) or by:

AVAL(LKPD1(AIND,ALOW(D),AHIGH(D),E))

(4.5)

Finally, code for a possible left-hand side occurrence

A(F

A

(

~

I)) is generated. If the value of guard `F

A

(

~

I) 2

E

A

' is not known in the current scope, di�erentiating

evaluation code is generated. The value of the right-

hand side expression is determined from the value of

 in the current scope. Corresponding constructs are

taken from the previous tables.

For example, the following code results for statement

`A(I,J)=X+A(I,J)*B(J,I)', because conditions � and

 are both `true':

AD = LKPD1(AIND,ALOW(D),AHIGH(D),E)

EXPR = X + AVAL(AD) * BVAL(

+ LKPD1(BIND,BLOW(D1),BHIGH(D1),E1))

IF (AD 6= ?) THEN

AVAL(AD) = EXPR

ELSE

CALL INSD1(AIND,ALOW,AHIGH,D,

+ ANP,ASZ,ALST,E,EXPR)

ENDIF

The address of construct (4.5) is saved, since it can be

used by the following evaluation code. Identical parts

in both branches are computed in variable EXPR before

the IF-statement to prevent code duplication. Simi-

larly, identical parts in the constructs for an expanded

access pattern can be placed after the IF-statement, as

was done in section 4.4.

Statement `A(I,J)=0.0' is converted as shown be-

low, since �=`(I; J) 2 E

A

' and  =`false':

12



AD = LKPD1(AIND,ALOW(D),AHIGH(D),E)

IF (AD 6= ?) THEN

CALL DELD1(AIND,ALOW(D),

AHIGH(D),ALST,AD)

ENDIF

For statement `A(I,J)=A(I,J)*B(I,K)', code gen-

eration proceeds as follows, since �=`(I; J) 2 E

A

' and

 =`(I; J) 2 E

A

^ (I; K) 2 E

B

' hold. First, evalua-

tion code for the dominating guard is generated. Since

 =`(I; K) 2 E

B

' holds afterwards, and a sparse occur-

rence appears at the left-hand side, further distinction

on B is made. Finally, the constructs for a nonzero

and zero right-hand side expression that correspond to

`(I; J) 2 E

A

' are generated:

AD1 = LKPD1(AIND,ALOW(D1),

+ AHIGH(D1),E1)

IF (AD1 6= ?) THEN

AD2 = LKPD1(BIND,BLOW(D2),

+ BHIGH(D2),E2)

IF (AD2 6= ?) THEN

AVAL(AD1) = AVAL(AD1) * BVAL(AD2)

ELSE

CALL DELD1(AIND,ALOW(D1),

+ AHIGH(D1),ALST,AD1)

ENDIF

ENDIF

A complication arises if the guard of the left-hand

side occurrence is involved in a disjunction in condi-

tion �, since the exact value of this guard must be

known to generate appropriate constructs. Therefore,

evaluation code for that guard is generated �rst. In

statement `A(I,J)=A(I,J)*2.0+B(K,J)', for example,

�=`(I; J) 2 E

A

_(K; J) 2 E

B

' holds. Consequently, the

following IF-statement results, di�erentiating between

the cases � =`true' and � =`(K; J) 2 E

B

'. Further

evaluation of � results in the ELSE-branch, followed

by an insertion because  =`true' holds:

AD1 = LKPD1(AIND,ALOW(D1),

+ AHIGH(D1),E1)

IF (AD1 6= ?) THEN

AVAL(AD1) = AVAL(AD1) * 2.0 +

+ BVAL(LKPD1(BIND,BLOW(D2),

+ BHIGH(D2),E2))

ELSE

AD2 = LKPD1(BIND,BLOW(D2),

+ BHIGH(D2),E2)

IF (AD2 6= ?) THEN

CALL INSD1(AIND,ALOW,AHIGH,D1,

+ ANP,ASZ,ALST,E1,BVAL(AD2))

ENDIF

ENDIF

4.6 Storage Initialization

The most general and 
exible initialization method is

from-�le construction, since it can be used for arbi-

trary sparse matrices. In order to keep the input stor-

age scheme simple, coordinate scheme storage is used,

where each �le consists of an integer nz, followed by

nz triples (i; j; a

ij

) [13, 14, 15, 18, 30]. In [9], it is

discussed how the compiler can generate appropriate

initializing routines.

5 Examples

Consider code generation for the �rst fragment of sec-

tion 3.4, where the diagonal of a sparse matrix A is

dense. For C

i

A

1

, data structure ADNS(N) is used (note

that I

2

�I

1

= 0 holds for this collection), while the row-

and column-wise access patterns of C

i

A

2

and C

i

A

3

are

stored in AVAL. After distribution of the J-loop, guard

encapsulation of `(I; J) 2 E

A

' and `(J; I) 2 E

A

' be-

comes feasible, and the following code results for (D1):

DO I = 1, N

DG = DG + ADNS(I)

DO AD = ALOW(I), AHIGH(I)

LW = LW + AVAL(AD)

ENDDO

DO AD = ALOW(N+I), AHIGH(N+I)

UP = UP + AVAL(AD)

ENDDO

ENDDO

Consider a 4 � 4 matrix, with zero elements a

31

, a

42

,

a

24

, and a

34

= 0. Possibly resulting contents of data

structure (D1) and ADNS for this matrix are shown in

�gure 5, where array AHIGH has been omitted for clar-

ity. Row or column indices are stored for column- and

row-wise access patterns respectively. No ordering is

required on the entries.

a12 a13 a14a23a32 a43 a41AVALAIND 131 2 1 121a21

ALOW 1 2 3 4 6 7 85

ADNS a33 a44a11 a22

Figure 5: Data Structure (D1)

However, if many other occurrences in the program

have row-wise access patterns, row-wise storage is se-

lected for the whole matrix. If all attempts to reshape

access patterns fail, the following code results. Usage

of preceding tests for the �rst and last statement prob-

ably does not gain much execution time:

DO I = 1, N

AD = LKPD1(AIND,ALOW(I),AHIGH(I),I)

IF (AD 6= ?) DG = DG + AVAL(AD)

DO AD = ALOW(I), AHIGH(I)

J = AIND(AD)

IF (J � I-1) LW = LW + AVAL(AD)

ENDDO

DO J = 1, I - 1

AD = LKPD1(AIND,ALOW(J),AHIGH(J),I)

IF (AD 6= ?) UP = UP + AVAL(AD)

ENDDO

ENDDO

Consider outer product code for matrix multiplica-

tion C  C + A � B, where matrices A, B and C are

in fact sparse [13, 19, 21, 24]:
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DO K = 1, N

DO I = 1, M

DO J = 1, L

C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO

ENDDO

ENDDO

Condition `(I; K) 2 E

A

^(K; J) 2 E

B

' is associated with

the assignment statement. Clearly, guard `(K; J) 2 E

B

'

can be encapsulated in the execution set of the J-loop.

However, because inward cancellation does not occur

for A, the guard `(I; K) 2 E

A

' can be hoisted and en-

capsulated in the execution set of the I-loop. Addi-

tionally, to avoid expensive lookups for matrix C, each

row of this matrix is expanded before operated on. Se-

lecting column-wise storage for A and row-wise storage

for B and C results in the following code for (D1):

DO K = 1, N

DO AD1 = ALOW(K), AHIGH(K)

I = AIND(AD1)

CALL SCATD1(CVAL,CIND,CLOW(I),

+ CHIGH(I),AP,BIT,1,0)

DO AD2 = BLOW(K), BHIGH(K)

J = BIND(AD2)

IF (BIT(J) = 0) THEN

CALL INSD1(CVAL,CIND,CLOW,

+ CHIGH,I,CNP,CSZ,CLST,J,0.0)

BIT(J) = 1

ENDIF

AP(J) = AP(J) + AVAL(AD1)

+ * BVAL(AD2)

ENDDO

CALL GATHD1(CVAL,CIND,CLOW(I),

+ CHIGH(I),AP,BIT,1,0)

ENDDO

ENDDO

Similarly, two guard encapsulations are feasible for the

middle product JKI and inner product IKJ if both ma-

trices are stored column- or row-wise respectively, and

for middle product JIK if A and B are stored row- and

column-wise. However, in inner product IJK opera-

tions on zeros are likely to occur, since a conjunction

cannot be encapsulated.

In [8] several version for LU-factorization for (D1)

were presented under the assumption that garbage col-

lection did not occur. Here, we present a version for

row-wise storage that correctly accounts for garbage

collection, possibly caused by insertions in the J

th

row.

Because  =`true' holds after code generation for con-

dition �=`(J; I) 2 E

A

^ (I; K) 2 E

A

' of S

2

, only a

nonzero right-hand side construct is generated.

DO J = 2, N

DO I = 1, J - 1

S

1

: A(J,I) = A(J,I) / A(I,I)

DO K = I + 1, N

S

2

: A(J,K) = A(J,K) - A(J,I) * A(I,K)

ENDDO

ENDDO

ENDDO

#

DO J = 2, N

CALL SCATD1(AVAL,AIND,ALOW(J),

AHIGH(J),AP,BIT)

DO I = 1, J - 1

IF (BIT(I) 6= 0) THEN

AP(I) = AP(I) / AVAL(

+ LKPD1(AIND,ALOW(I),AHIGH(I),I))

KA = ALOW(I)

DO WHILE (KA � AHIGH(I))

K = AIND(KA)

IF (I+1 � K) THEN

IF (BIT(K) = 0) THEN

KA = KA - ALOW(I)

CALL INSD1(AVAL,AIND,ALOW,

+ AHIGH,J,ANP,ASZ,ALST,K,0.0)

KA = KA + ALOW(I)

BIT(K) = 1

ENDIF

AP(K) = AP(K)-AP(I)*AVAL(KA)

ENDIF

KA = KA + 1

ENDDO

ENDIF

ENDDO

CALL GATHD1(AVAL,AIND,ALOW(J),

AHIGH(J),AP,BIT)

ENDDO

6 Future Research

More research is necessary into strategies for solving

inconsistencies, automatic analysis of nonzero struc-

tures, and problems that are transparent in the original

dense code, such as the reduction of creation (�ll-in).

Since in practical implementations user-de�ned sub-

routines appear, problems that arise if sparse matrices

are passed as parameter in the original code must also

be dealt with.
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