
A PARALLEL IMPLEMENTATION

OF THE HIRLAM MODEL

Lex Wolters

�

High Performance Computing Division

Department of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

Gerard Cats

Royal Netherlands Meteorological Institute

P.O. Box 201, 3730 AE De Bilt, The Netherlands

Abstract

This paper is a status-report describing the e�ort to implement the HIRLAM

numerical weather prediction model on a MasPar MP{1 system. Several

results of the parallel implementation of the forecast model are presented.

Di�erences with more traditional implementations on vector-computers are

outlined. While work is still going on, this report mainly focuses on ex-

plicit Eulerian methods. Semi-implicit methods and Lagrangian methods

will be treated in the next implementation.

1 Introduction

It is well known that atmospheric circulation models, as part of numerical weather

prediction systems, require enormous computer power. Coupled to ocean mod-

els, they form an even more computationally intensive task: climate models.

As a natural consequence atmospheric modeling has always been an important

application for high performance computer systems.

Since the 70's, numerical weather forecasting has been successfully utilizing

vector-computers. During the last decade, one could observe the arrival of very

powerful parallel computer systems. However, only a few complete application

codes have been ported to these new parallel architectures, because of the addi-

tional complexity of parallelizing programs.

�

Support was provided by the Esprit EC Agency CEC-DGXIII under Grant No. APPARC

6634 BRA III.

1



This report describes an e�ort to implement a complete application (and

production) code on a massively parallel computer system. The application code

is a numerical weather forecast model. It is part of the HIRLAM system, which is

described in more detail in section 2. Section 3 provides the reader an overview of

the hardware and software components of the MasPar MP{1, the parallel platform

used in this investigation. The motivation to port the model to a parallel system

is given in section 4. The rest of that section describes several implementation

issues. Results of the current parallel implementation are presented in section 5.

Finally, section 6 contains the conclusions.

2 HIRLAM

HIRLAM is a state-of-the-art analysis and forecast system for numerical weather

forecasts up to +48 hours. The name HIRLAM stands for HIgh Resolution

Limited Area Model. The HIRLAM system has been developed by the HIRLAM-

project group, a cooperative project of Denmark, Finland, Iceland, Ireland, The

Netherlands, Norway and Sweden. Currently it is in production for making actual

forecasts in Denmark, Finland, and Sweden. In the near future HIRLAM will

also be used for routine forecasting at several of the other participating weather

services. At the moment it runs on di�erent compute platforms, most of them

having a vector-architecture, like Cray and Convex.

The complete system consists of three parts: the analysis system dealing with

the observations, the initialization scheme, and the actual forecast model. In

this paper we only concentrate on the forecast model. The initialization step is

modest in computer requirements; furthermore, parallelization can proceed along

the same lines as for the forecast model, therefore we will not address this step

further. However, the analysis system di�ers completely from the forecast model

and has therefore not been investigated until now.

For a detailed description of the numerical methods and their implementation

in the HIRLAM model the reader is referred to the HIRLAM documentation [2].

We limit ourselves here only to a brief overview.

The forecast model contains two main components. Firstly, one has a `dynamics-

part' (called DYN), which solves the primitive equations during one time-step.

And secondly, the `physics-part' (PHYS) responsible for the parameterization of

several physical processes. The model provides the user with di�erent options to

chose between alternative numerical methods. The most important options are:

gridpoint versus spectral techniques, explicit versus semi-implicit time schemes,

and Eulerian versus semi-Lagrangian methods. As a starting point we choose for

the easiest options with respect to the parallelization of the model, which are

gridpoint, explicit, and Eulerian. The other options will be implemented in the

next parallel version.

Keeping this choice of options in mind, the discrete HIRLAM model is based

2



on �nite di�erence methods. The horizontal grid structure is a staggered Arakawa

C-grid, while its vertical structure is based on a general pressure and terrain fol-

lowing vertical coordinate �(p,p

s

). A centered space di�erencing is applied, while

the time di�erencing is based on a leap-frog scheme with explicit splitting and

an Asselin time-�lter. Lateral boundaries are treated with a boundary relaxation

scheme with a 6-hourly data input interval.

3 MasPar MP{1

In this section we present some characteristics of the massively parallel computer

system we have used in this investigation: a MasPar MP{1 system. For a com-

pleted description see [1]. A MasPar MP{1 system is a SIMD architecture. In

the next subsections hardware, communication, and software topics, respectively,

will be discussed.

3.1 Hardware

In �gure 1 a schematic overview of the MasPar system is shown. The most

interesting component of the hardware is the Processor Element (PE) array. This

component can contain from 1,024 (1K) up to 16,384 (16K) PEs. Each PE is

a load/store arithmetic processor with 16 Kbytes or 64 Kbytes data memory.

Furthermore, a PE has forty 32-bit private registers, thirty-two special purpose

registers, and can calculate with 1, 8, 16, 32, and 64 bit integers. The 
oating

point precision is 32 or 64 bits. A full 16K system has a peak performance of

26,000 MIPS and 550 M
ops (64-bits) or 1,200 M
ops (32-bits).

A second component in the MasPar system is the Array Control Unit (ACU).

This is the single control unit for all PEs. The ACU is a register-based load/store

processor with thirty-two 32-bit registers, 128 Kbytes data memory and 1 Mbytes

instruction memory. The limit of its virtual instruction address space is 4 Gbytes.

The ACU is responsible for the instruction decode and broadcast of instructions

and data. It also includes a 12 MIPS scalar RISC processor for operations on

scalar data.

The third component is the front-end (versus the two �rst components, which

are called the DPU, which stands for Data Parallel Unit). In our case the front-

end is a Dec workstation. This Dec 5000 station determines the operating system

(Ultrix) and runs also other software like Dec-windows or X. It serves as an

interface to the MP{1 and is host for tools and compilers.

The last hardware component is optional: the parallel disk array. This disk

array contains 4, 8, or 16 disks with a total capacity up to 11.2 Gbyte. Its

sustained I/O rate is equal to 9 Mbyte/s. It enables the user to have parallel

access to large �les.

3



Figure 1: The MP{1 system architecture.

4



3.2 Communications

In parallel distributed memory computer systems communications between the

processors form a critical component. They are often the bottleneck in achieving

higher performance. For the MasPar MP{1 system one can distinguish three

types of communications.

Firstly, one has the communication between the Processor Elements (PEs).

This type can be divided into two classes. One is the so-called Xnet communi-

cation. This is a special case of communication, namely it can perform nearest-

neighbor communications. The Processor Element Array is arranged in a 2-

dimensional mesh with toroidal wrap-around. With Xnet communications one

can send to or receive data from the eight neighboring PEs, so in horizontal, ver-

tical and diagonal directions. This can be extended to communication between

two PEs that lie on a straight line in each of the eight directions. The maximum

communication speed using Xnet is 23 Gbyte/s for a full con�guration.

The second class of communication between PEs is the Router communica-

tion. This class makes it possible to send/receive data between two arbitrary

PEs, so it takes care of the global communications. The communication time is

independent of the distance between the PEs, but its maximum speed is consid-

erably slower than for Xnet communications: 1.3 Gbyte/s. Another limitation is

that there is only one Router channel for 16 PEs.

Secondly, one has the communication between the Array Control Unit (ACU)

and the PE array.

Finally we have communication channels between the FE and the DPU vice

versa. Usually these channels are used to distribute input data over the DPU and

return output data from the DPU. The number of data involved is big, and the

transfer rate is limited. Therefore these communications are extremely expensive

and should be limited as much as possible. The programmer is responsible for

distributing the data over the FE and the DPU, and much of a conversion e�ort

should be aimed at keeping the data as much as possible on the DPU.

3.3 Software

As stated above, the front-end serves as an user-interface to the MasPar system.

It also determines the operating system and as a result one can use all software

which is available for the front-end and operating system.

In addition we have the dedicated software to utilize the massively parallel

system. We want to mention some examples. The �rst example is the MasPar

Fortran (MPF) compiler. This compiler is an implementation of Fortran 90.

This indicates the programming model for the MasPar system: data-parallel

programming. Operations on Fortran-arrays expressed by the Fortran 90 array-

syntax will be executed in parallel, and the arrays concerned will be distributed

over the PEs. Operations with Fortran 77 syntax will be executed sequentially.

5



To translate Fortran 77 programs (like HIRLAM) to Fortran 90 MasPar provides

the VAST-II compiler.

A second programming language is the MasPar Parallel Application Language

(MPL). This language is based on C, and has extensions to provide access and

explicit control over the Data Parallel Unit (DPU). It can be considered as the

assembly language for a MasPar system.

Finally, we want to mention a very powerful software tool, the MasPar Pro-

gramming Environment (MPPE). MPPE has been shown to be very useful for

executing, debugging, pro�ling, and visualizing programs or program parts.

4 Implementation Issues

In this section we present several implementation issues one encounters during

porting the 28,000 lines of Fortran 77 HIRLAM code to MasPar system. For

most of these issues one has to make a decision how this topic should be treated.

But �rst we want to make clear what our motivation is to port the HIRLAM

code to a massively parallel system. Basically there are three questions we want

to answer:

1. To what extend should the HIRLAM code be adapted to run e�cient on a

massively parallel computer system?

2. What are the advantages and disadvantages to deploy these parallel systems

for a numerical weather prediction system?

3. How do the di�erent options within HIRLAM (explicit $ semi-implicit,

gridpoint $ spectral, Euler $ semi-Lagrangian) compare on a massively

parallel processor?

From a computer science point of view, there are several other reasons and inter-

ests, but these fall outside the topic of this workshop.

To give some feeling about the HIRLAM code itself, in �gure 2 the global

program structure of HIRLAM is presented, where we restricted ourselves to

gridpoint, explicit and Eulerian calculations.

Data distribution. The �rst issues concerns the distribution of the data. On

the one hand one has to deal with 3-dimensional �elds in the forecast model,

and on the other hand the processors in the parallel system are organized in a

2-dimensional mesh. One way to solve this problem is to take into account the

number of dependencies in north-south, east-west, and vertical directions, since

these dependencies will result in communications between processors if the data

is mapped on di�erent processors. Inspecting the two time-consuming parts of

HIRLAM, one �nds that in PHYS mainly vertical dependencies are involved,

while in DYN the dependencies are mainly in the horizontal plane. Besides the

6



Read start data GETDAT;

Read boundary data GETDAT;

Initialization;

Loop for each time-step:

Dynamics DYN;

Physics PHYS:

Hybrid coordinates HYBRID;

Radiation scheme RADIA;

Vertical diffusion VDIFF;

Temperature and specific humidity

convection scheme KUO;

Stratiform condensation scheme COND;

`check-routine' QNEGAT;

Soil processes SURF;

Horizontal diffusion HDIFF4;

Boundary relaxation BNDREL;

Statistics STATIS;

Print statistics PRSTAT;

6-hourly input of new boundary data GETDAT;

Output results PUTDAT;

Time-filter TIMFIL;

End_Loop.

Figure 2: The global program structure of HIRLAM.

number of dependencies in PHYS is much larger than in DYN. One solution is to

redistribute the data every time between the calls to DYN and PHYS. However,

this will result in a serious performance degradation. Because the number of

dependencies in PHYS is much larger than that in DYN, we chose for the solu-

tion where the data are mapped on the processors by projection of the vertical

dimension onto the horizontal plane.

Tables versus re-computation. The original HIRLAM contained several large

tables each specifying a function of some variable. There are several options how

to treat these tables. One can keep these tables on the front-end, but thereby

introducing many communications between the front-end and the PEs. A second

option is to distribute them over the PE-array. However, this will result in many

communications between the PEs. One can also keep copies of the tables on

each PE. This results in a waste of memory. Therefore we choose for the option

to recalculate an entry in one of these tables if necessary, so the tables are not

stored anymore. In this way we reduce the memory requirements and number of

communications. On the other hand the calculation time is increased.

7



Disk storage. Since communication between the front-end and DPU is very

time-consuming, it should be reduced to a minimum. In the original HIRLAM

code some values were stored on disk and read every time they were necessary

in a routine. One example were the boundary values needed in the boundary

relaxation routine BNDREL. To eliminate the expensive communications, these

boundary values were distributed over the PE-array. An additional advantage

is that these values could be distributed in a very natural way, because of their

spatial meaning.

Arrays as parameters. As a consequence of the distributed memory system

of the MasPar MP{1 one cannot assume a sequential address space. This means

that the actual and formal parameter in a subroutine call should always have the

same size and shape. So `dirty' Fortran 77 tricks like passing only the �rst address

of an array-portion with some arbitrary length or passing 1-dimensional arrays to

routine, which require a 2-dimensional parameter, and vice versa, are not allowed.

Unfortunately, these tricks were heavily used in the original HIRLAM code.

Compiler directives. The most important compiler directives in MasPar For-

tran are ONDPU, ONFE, and MAP. With the ONDPU-directive the user can

specify that an array should be placed on the Data Parallel Unit. This in contrast

with the ONFE-directive, where the array is placed on the front-end. The MAP-

directive tells the compiler how the array should be mapped on the PE array.

The use of the ONDPU and ONFE directives is straightforward. However,

we should mention that these directives should be speci�ed in all routines, which

contain the arrays involved. For arrays in common blocks this can be simpli�ed by

the use of include-�les, but for arrays which are passed as parameters to routines

the only solution is to repeat the directive in each routine.

The reason we had to use the MAP-directive has a historical reason, since

the default mapping of arrays on the MasPar system is very natural. An 1-

dimensional array is mapped on the PE-array by distributing the array-elements

in the x-direction of the PE-array. If there are more elements than processors in

the x-direction, the distribution is continued on the second column of processors,

and so on. If the number of array-elements exceeds the total number of processors,

the rest of the elements is distributed in the same way as the �rst part. The �rst

dimension of a 2-dimensional array is always mapped in the x-direction of the

PE-array, and the second dimension in the y-direction. The third and higher

dimensions of more dimensional arrays are placed in the memory of the PEs.

This natural default mapping is not suited for the HIRLAM model. Be-

cause the HIRLAM model was written for vector-computers, arrays have been

arranged into long vectors, by combining the two horizontal dimensions into

one. So an array with `natural dimensions' U(MLON,MLAT,MLEV) is used as

U(MLON�MLAT,MLEV). The default mapping would project the second dimen-

sion, i.e. MLEV, onto the y-direction of the PE array. With the MAP directives

8



the data are forced to be distributed with the �rst dimension, MLON�MLAT,

to �ll the PE array. The second dimension, MLEV, is then a layer structure

over this. The conversion e�ort would have been much facilitated if the default

mapping could have been modi�ed by e.g., compiler options.

To be more speci�c, we had to include 718 directives to port the restricted

(only explicit, Eulerian and gridpoint) version of the HIRLAM model to the Mas-

Par system. With the other options fully implemented this number will increase

dramatically, and thereby striking the question if the usage/inclusion of compiler

directives can be considered as handling a second programming language?

Interface blocks. An interface block is a Fortran 90 concept, in which the user

speci�es the type and size of the parameters for each subroutine called in a pro-

gram or subroutine. In MasPar Fortran it is mandatory to use interface blocks

for all subroutines with parameter mentioned in compiler directives, in particular

the MAP-directive. Including these interface blocks in HIRLAM resulted some-

times in a fourfold increase of the number of source-lines of a subroutine.

Fortran 90. All Fortran 90 code, except for one routine, was translated from

the original Fortran 77 source code by means of the MPVAST compiler. VAST

was not able to produce e�cient code for one small routine of about 10 lines.

This was done by hand. The use of VAST resulted sometimes in the inclusion of

VAST-compiler directives.

Not implemented yet: PUTDAT and RADIA. Due to several problems these

two routines could not be ported successfully to the MasPar system yet. As a

result no output-�eld could be generated, since that is the task of PUTDAT. The

second routine, RADIA, executes a radiation scheme.

5 Results

In this section we present several timings achieved by porting the HIRLAM code

to a MasPar MP{1 system. As stated before, the current implementation is re-

stricted to the gridpoint version with explicit time stepping and Eulerian meth-

ods. Besides the current timings do not include the routine RADIA and PUT-

DAT, because they have not been ported to the MasPar system yet.

As test model we used a 64 � 64 � 16 grid. This grid �ts perfectly on a 4K

(64�64) PE array. On a 1K (32�32) PE array it results in 4 layers of 32�32�16

gridpoints. Varying the horizontal gridsize between 32 and 64 will not result in

di�erent timings for the parallel part of the calculation, since it only means that

some PEs are not active during the complete calculation.

In table 1 the elapsed times are presented to complete the input phase and 61

time-steps. The third version, 4K (opt), has been compiled with the Nodebug and

9



Omax options. These options result in a code without any debug information,

and the most optimized code will be produced by the compiler.

These results are food for thought. The improvement (speed-up) achieved by

increasing the number of processors from 1K to 4K is only 2.5, while a factor

of at least 4 should be expected (remember we deal with a SIMD architecture,

where all processors perform the same instruction; since the our test-grid �ts

perfectly on the 4K processor system, one needs only one `stage' to perform the

necessary computations; however, on a 1K system the data is distributed in 4

layers, so one needs 4 `stages', which should result at least in a factor of 4 in

performance di�erence). Furthermore, one sees an improvement of about 10% by

taking advantage of the optimizing compiler options.

To understand these facts we need a more detailed analysis of these times.

In table 2 the times are broken down into the time needed for the input phase,

which can only carried out sequentially, and the time for executing all time-steps.

The execution of a time-step is the part of the program which can be parallelized.

Several observations can be made from table 2. Firstly, one sees indeed the se-

quential character of the input phase, since there is no improvement by increasing

the number of processors. This is not only due to our implementation, but can

be assumed to be true for all parts in parallel programs on distributed memory

system, where data has to be read from disk and moved or distributed across the

memories of the available processors.

A second and even more serious observation is the total amount of time the

input phase takes. It varies from 8% for a 1K to 21% for a 4K system of the total

execution time. This is a considerable - and even an unacceptable - amount of

time for our application, since it is expected that the output phase (the routine

PUTDAT, which unfortunately could not be implemented yet) will cost the same

order of time. The input phase consists of two parts: reading the initialization

values and boundary values, each responsible for roughly half of the total time

spent in this phase. Each 6 hours simulation time new boundary values have to

be read, which will take about 16 sec. But the output phase will be called each 1

hour of simulation time, and this will also take about 16 sec. Depending on the

size of the time-step (but for explicit methods 1 hour will correspond with at most

Table 1: Elapsed times (in sec) to complete the input phase and the

time-steps 0{60 of the HIRLAM model. Times are shown for a 1K and

4K processor machine. See text for the meaning of the 4K (opt) version.

The italic numbers show the di�erent ratio's.

1K 4K 4K (opt)

Total time 391.31 157.76 143.02

(input phase 1 2.5 2.7

and steps 0{60) 0.4 1 1.1

10



Table 2: Elapsed times (in sec) broken down into the input phase and

the time-steps with overhead. See for notation the caption of table 1.

1K 4K 4K (opt)

Read input (GETDAT) 32.09 (1) 32.86 (1) 23.51 (1.4)

Steps 0{60 + overhead 359.21 (1) 124.91 (2.9) 119.50 (3.0)

Table 3: Elapsed times (in millisec) for 1 time step with the break down

into the time spent in routines DYN and PHYS. See for notation the

caption of table 1.

1K 4K

1 Time step 5800 (1) 1930 (3.0)

Dynamics (DYN) 2037 (1) 680 (3.0)

Physics (PHYS) 3393 (1) 1105 (3.1)

60 time-steps) these in- and output phases are very expensive. One way to solve

this problem is to use special hardware, like the Parallel Disk Array provided by

MasPar. This will be investigated in the near future.

The third observation is the fact that the compiler optimization mainly con-

cerns the sequential part of the program, see table 2. If this optimization concerns

I/O operations, sequential source-code in the program or both, has not been in-

vestigated. Since we are mainly interested in the parallel part of the program,

we will not include the timings of the optimized version in the rest of this report.

However, these compiler options result in an improvement of 40% for the input

phase, and can therefore contribute to the problem mentioned above concerning

the in- and output phase.

Finally, the speed-up is only 2.9 going from 1K to 4K processors. We will

investigate this fact in the rest of this section.

To give an idea about the time one time-step takes, and how the di�erent

components contribute to this time, we present in table 3 these times, and con-

centrate specially on the two main time-consuming part: the routines DYN and

PHYS. From this table we see that DYN contributes for 35% and PHYS for about

57.5% to the total time for one time-step, nearly independent of the number of

processors used. Furthermore, again only a speed-up of roughly 3.0 is achieved

by enlarging the PE array.

To investigated this disappointing speed-up of 3.0 in more detail, we timed two

types of subroutines in more detail. The �rst type concerns routines, which should

theoretically (= expected) contain relatively many PE communications due to the

choice of data-distribution. The second type is just the opposite: routine with

relatively few PE communications. In table 4 the results are presented. From

this table we can conclude that the routines with `many' PE communications

11



behave as expected considering the speed-up of 4.1. However, the routines with

'few' communications show a strange tendency by a speed-up of only 3.1{3.3.

Therefore, we analyzed the instructions generated by the compiler for the last

type of routines. It turned out that the compiler generates many redundant Xnet

communications for these routines! A work-around for this problem was to make

sure that array-dimensions and several loop-bounds were known at compile time.

From a research point of view this is a serious restriction, but for a production

code this will improve the performance on all kind of platforms. However, even the

fact that this improvement for the HIRLAM code could be achieved by changing

some parameter statements in the subroutines, we can only present the resulting

timing for three routines at the moment, see table 5. We included in this table

also the resulting times for one time-step. The table shows a dramatic decrease

of the elapsed times. Also the resulting speed-ups are accordingly: more than

5.0. Unfortunately we were not able to extend this observation to all routines

before the deadline of this paper/workshop. However, it is expected that this

improvement holds for all other routines, even for the routines with `many' PE

communications.

To compare the obtained times with other compute-platforms, we ran the

same HIRLAM test-run on di�erent systems. Results are shown in table 6.

To �t in with the `common' way to compare di�erent computer systems we

present in table 7 the M
op-rate for the DYN-routine on the two MasPar con�g-

urations and a 1-processor Cray-YMP. One important remark concerning these

results: the Cray results were in 64-bits precision, while the MasPar calculation

were in 32-bits. However, to justify this di�erence we want to stress the fact that

it is not easy (or even possible) at the moment to switch from 32-bits to 64-bits

variables on one machine, if one has to handle a large production code. In the

production version one has to start with the default precision on a machine. In

most cases this is 32 or 64-bits precision. By compiler options (like i8 or r8) about

90% of the job to achieve the required precision can be done, but the other 10%

remains and should be modi�ed by hand.

Table 4: Elapsed times (in millisec) of some routines with theoretically

many and few PE-communications. See for notation the caption of ta-

ble 1 and for the di�erence the text.

many PE communications few PE communications

Routine 1K 4K Routine 1K 4K

DYN 875 (1) 215 (4.1) KUO 1682 (1) 504 (3.3)

HDIFF4 496 (1) 121 (4.1) VDIFF 640 (1) 207 (3.1)

12



Table 5: Elapsed times (in millisec) of the three improved routines com-

pared with the original versions. Also the resulting time for 1 time step

is shown. See for notation the caption of table 1.

1K 1K (improved) 4K 4K (improved)

KUO 1682 871 (1) 504 152 (5.7)

VDIFF 640 430 (1) 207 80 (5.4)

COND 383 301 (1) 118 59 (5.1)

1 Step 5800 4697 (1) 1930 1392 (3.4)

6 Conclusions

Before starting the conclusions, we want to stress the fact that all tables in the

previous section contain preliminary results. Further and much more detailed

performance analysis and improvement are required. Besides we do not want to

restrict only to a few options in the existing HIRLAM model, but to parallelize

the complete code with all options.

The conclusions can be drawn by answering the three basic questions formu-

lated in section 4.

Question 1: To what extend should the HIRLAM code be adapted to run e�cient

on a massively parallel computer system?

Firstly, some of the routines had to be changed. Most of these changes do not

degrade the performance on vector or sequential platforms (some of them even

led to a better performance). These changes lead to recommendations for future

developments on the HIRLAM code, and in fact should not be counted as e�orts

to port the code to a massively parallel machine, but rather as e�orts to make

the code more portable in a general sense.

Secondly, the inclusion of compiler directives is questionable. The main prob-

lem is that directives result in the introduction of some kind of second program-

ming language. This is unacceptable from point of view of maintenance. This

Table 6: Comparison of timings (in sec) on di�erent systems for 1 time

step.

1 time step (sec)

1K MasPar 5.8

1K MasPar (improved) 4.7

4K MasPar 1.9

4K MasPar (improved) 1.4

Dec 5000 (front-end) � 60.0

Convex C210 � 8.0

13



Table 7: M
ops-rate for the DYN routine on several systems.

M
ops percentage of

peak performance

1K MasPar MP{1 22.5 30%

4K MasPar MP{1 91.4 30%

CRAY-YMP (1 proc.) 193.8 58%

experience is not restricted to the MasPar system in particular, but more to

the usage of directives in general, where one assumes that that will solve most

problems without introducing other di�culties.

Furthermore, the mandatory usage of interface blocks on the MasPar system is

again from a point of maintenance not very welcome. To strengthen this fact, we

do not see any need to use these interface blocks for the case they are mandatory

now.

A fourth fact is the I/O problem. This holds for all massively parallel systems

in general. It is open at the moment how e�cient the input and output phase

of HIRLAM can be handled by the MasPar system. We expect that the Parallel

Disk Array will improve the current observations considerably, but this has not

been investigated yet.

As a �nal point we can say that the already obtained performance of the Mas-

Par system is quite acceptable. Especially, considering the improvements which

could be achieved by a detailed analysis, we expect a very good cost/performance

ratio.

Question 2: What are the advantages and disadvantages to deploy these parallel

systems for a numerical weather prediction system?

The advantages are clear: performance, cost-e�ciency and scalability (at least

for pure explicit methods). An open question is if and how the analysis scheme

could be implemented on a SIMD architecture. At the moment we expect that

the analysis scheme is more suitable for a MIMD platform.

Question 3: How do the di�erent options within HIRLAM (explicit $ semi-

implicit, gridpoint$ spectral, Euler$ semi-Lagrangian) compare on a massively

parallel processor?

This question is still open and cannot be answered at the moment. Currently

we are working on the incorporation of semi-implicit methods. This technique

results in solving Helmholtz equations on a massively parallel system and there-

fore to global communications. Another option, applying spectral methods, is

currently under investigation by Nils Gustafsson (SMHI), also on a MasPar sys-

tem. Spectral methods require global communications as well, so there may be a

relation with the semi-implicit option. Further results will soon become available.

14



Finally, we want to mention that we are also working on MIMD-implementations

of HIRLAM. This is a continuation of the work presented in 1988 in this series

of workshops, see [3]. Besides we will start next year an investigation on the

parallelization of the analysis scheme.

References

[1] MasPar, MasPar MP{1 Hardware Manuals, July 1992.

[2] P. K�allberg (editor), Documentation Manual of the Hirlam Level 1 Analysis-

Forecast System, June 1990.

[3] G. Cats, H. Middelkoop, D. Stree
and, and S.D. Swierstra, A Meteorological

Model on a Transputer Network, pp. 47{75 in [4].

[4] G.-R. Ho�mann and D.K. Maretis (editors), The Dawn of Massively Par-

allel Processing in Meteorology, Proceedings of the 3rd Workshop on Use of

Parallel Processors in Meteorology (Springer-Verlag, Berlin, 1990).

15


